1
|
Sivanandan ST, Nair DK, Namboothiri INN. Recent advances in the synthetic applications of Morita-Baylis-Hillman and Rauhut-Currier adducts of nitroalkenes. Org Biomol Chem 2023; 21:6243-6262. [PMID: 37486601 DOI: 10.1039/d3ob00853c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The Morita-Baylis-Hillman (MBH) and Rauhut-Currier (RC) adducts of nitroalkenes are important synthetic intermediates in organic synthesis. This review discusses the applications of different MBH and RC adducts of nitroalkenes such as MBH alcohols, acetates, bromides and hydrazinonitroalkenes as well as ketoalkylnitroalkenes in the synthesis of complex molecules including carbocycles and heterocycles. It also covers the mechanistic aspects, including the key intermediates and the reaction pathways. Early reports on MBH and RC reactions of nitroalkenes and applications of the products were covered in previous reviews. The present review covers the reports that appeared in the timeline of 2015-2023.
Collapse
Affiliation(s)
- Sudheesh T Sivanandan
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India.
- Department of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Divya K Nair
- Department of Chemistry, Mercy College, Palakkad, Kerala 678 006, India
| | | |
Collapse
|
2
|
Li Y, Huang X, Peng S, Wang J, Lang M. NHC-catalyzed [3 + 3] cycloaddition of α-bromoenals with nitroketene aminals or nitroketene N, S-acetals: synthesis of nitro-containing dihydropyridin-2-ones. Org Biomol Chem 2023; 21:1399-1403. [PMID: 36723143 DOI: 10.1039/d2ob02334b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An N-heterocyclic carbene (NHC)-catalyzed [3 + 3] cycloaddition of α-bromoenals with nitroketene aminals or nitroketene N,S-acetals has been developed. This methodology provides an efficient strategy for the construction of valuable nitro-containing heterocyclic compounds. This protocol features mild reaction conditions, easily available starting materials, broad substrate scope and easy scalability.
Collapse
Affiliation(s)
- Yarui Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China. .,International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, People's Republic of China
| | - Xiaoxia Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China. .,International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, People's Republic of China
| | - Shiyong Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China.
| | - Jian Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China.
| | - Ming Lang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China. .,International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, People's Republic of China
| |
Collapse
|
3
|
Feng D, Zuo X, Zhao F, Lin H, Dai J, Sun Y, Clercq ED, Pannecouque C, Kang D, Liu X, Zhan P. Identification of "dual-site"-binding diarylpyrimidines targeting both NNIBP and the NNRTI adjacent site of the HIV-1 reverse transcriptase. Eur J Med Chem 2023; 247:115045. [PMID: 36577216 DOI: 10.1016/j.ejmech.2022.115045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Here, we reported a novel series of "dual-site" binding diarylpyrimidine (DAPY) derivatives targeting both the NNRTI adjacent site and NNRTIs binding pocket (NNIBP). The anti-HIV-1 activity results demonstrated that compound 9e (EC50 = 2.04-61.1 nM) displayed robust potencies against a panel of HIV-1 NNRTIs-resistant strains, being comparable to that of etravirine (ETR). Moreover, 9e displayed much lower cytotoxicity (CC50 = 59.2 μM) and higher SI values (4605) toward wild-type HIV-1 strain. The HIV-1 RT enzyme inhibitory activity clarified the binding target of 9e was HIV-1 RT (IC50 = 0.019 μM). Furthermore, the molecular modeling study was also investigated to give a reasonable explanation of the preliminary SARs. Further test indicated that 9e possessed significantly improved water solubility under pH 7.0 and 7.4 conditions. Additionally, the in silico prediction of physicochemical properties and CYP enzymatic inhibitory ability were investigated to evaluate their drug-like features. Consequently, compound 9e showed the highest activity and low cytotoxicity, which could be used as a lead for further modification to obtain potent HIV-1 NNRTIs.
Collapse
Affiliation(s)
- Da Feng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xiaofang Zuo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Hao Lin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Jiaojiao Dai
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Yangyin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| |
Collapse
|
4
|
Niu C, Du DM. Recent Advances in Organocatalyzed Asymmetric sulfa-Michael Addition Triggered Cascade Reactions. CHEM REC 2023:e202200258. [PMID: 36594608 DOI: 10.1002/tcr.202200258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/14/2022] [Indexed: 01/04/2023]
Abstract
The sulfa-Michael addition reaction is a crucial subset of the Michael addition reaction, and aroused the interest of numerous synthetic biologists and chemists. In particular, sulfa-Michael addition triggered cascade reaction has developed quickly in recent years because it offers an efficient method to construct C-S bonds and other bonds in one approach, which is widely applicable for building chiral pharmaceuticals, their intermediates, and natural compounds. This review emphasizes the recent advancements in sulfa-Michael addition-triggered cascade reactions for the stereoselective synthesis of sulfur-containing compounds, including sulfa-Michael/aldol, sulfa-Michael/Henry, sulfa-Michael/Michael, sulfa-Michael/Mannich and some sulfa-Michael triggered multi-step processes. Moreover, some reaction mechanisms and derivatization experiments are introduced appropriately.
Collapse
Affiliation(s)
- Cheng Niu
- Key Laboratory of Medical Molecule Science & Pharmaceutics Engineering (Ministry of Industry and Information Technology), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Da-Ming Du
- Key Laboratory of Medical Molecule Science & Pharmaceutics Engineering (Ministry of Industry and Information Technology), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| |
Collapse
|
5
|
Zeng YF, Wu JB, Chen JT, Guo Y, Wang Z. Oxidative functionalization of alkylidenecyclopropanes and alkylidenecyclobutanes: a versatile platform to access nitrated cyclopropanes and cyclobutanes. Org Biomol Chem 2022; 20:7022-7026. [PMID: 36006008 DOI: 10.1039/d2ob01426b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A divergent radical nitration of alkylidenecyclopropanes (ACPs) and alkylidenecyclobutanes (ACBs) with Fe(NO3)3·9H2O or AgNO2 has been achieved, affording three categories of products including β-nitro alcohol, α-nitro ketone and nitro nitratosation products with yields up to 90%. Particularly, the cyclopropyl and cyclobutyl rings were conserved in the products. The applicability of this method was demonstrated by the scale-up experiment and reduction of the nitro into an amino group. Preliminary mechanistic studies suggested that the nitro radical was involved in the reaction process.
Collapse
Affiliation(s)
- Yao-Fu Zeng
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Jin-Bo Wu
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Jin-Tao Chen
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yu Guo
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|