1
|
Ávila E, de Almeida MV, Valle MS, Pliego JR. Effects of Hydrogen Bonding Solvation by Diverse Fluorinated Bulky Alcohols on the Reaction Rate and Selectivity in Crown Ether Mediated Nucleophilic Fluorination in an Aprotic Solvent. ACS ORGANIC & INORGANIC AU 2025; 5:69-83. [PMID: 39927103 PMCID: PMC11803469 DOI: 10.1021/acsorginorgau.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 02/11/2025]
Abstract
Solvent effects play a critical role in ionic chemical reactions and have been a research topic for a long time. The solvent molecules in the first solvation shell of the solute are the most important solvating species. Consequently, manipulation of the structure of this shell can be used to control the reactivity and selectivity of ionic reactions. In this work, we report extensive experimental and insightful computational studies of the effects of adding diverse fluorinated bulky alcohols with different solvation abilities to the fluorination reaction of alkyl bromides with potassium fluoride promoted by 18-crown-6. We found that adding a stoichiometric amount of these alcohols to the acetonitrile solution has an important effect on the kinetics and selectivity. The most effective alcohol was 2-trifluoromethyl-2-propanol (TBOH-F3), and the use of 3 equiv of this alcohol to fluorinate a primary alkyl bromide led to a 78% fluorination yield in just 6 h of reaction time at a mild temperature of 82 °C, with 8% of E2 yield. The more challenging secondary alkyl bromide substrate obtained 44% fluorination yield and 56% E2 yield at 18 h of reaction time. More fluorinated alcohols with six or more fluorine atoms have resulted in relatively acidic alcohols, leading to large amounts of the corresponding ethers of these alcohols as side products. The widely used hexafluoroisopropanol (HFIP) was the least effective one for monofluorination, indicating that both acidity and bulkiness are important features of the alcohols for promoting fluorination using KF salt. Nevertheless, the ether of HFIP can be easily formed with the substrate, generating a highly fluorinated ether product. Theoretical calculations predict ΔG ‡ in close agreement with the experiments and explain the higher selectivity induced by the fluorinated bulky alcohols in relation to the use of crown ether alone.
Collapse
Affiliation(s)
- Eloah
P. Ávila
- Chemistry
Department, Federal University of Juiz de
Fora, Cidade Universitaria,
São Pedro, Juiz de Fora, Minas Gerais 36036-900, Brazil
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, São João del-Rei, MG 36301-160, Brazil
| | - Mauro V. de Almeida
- Chemistry
Department, Federal University of Juiz de
Fora, Cidade Universitaria,
São Pedro, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Marcelo S. Valle
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, São João del-Rei, MG 36301-160, Brazil
| | - Josefredo R. Pliego
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, São João del-Rei, MG 36301-160, Brazil
| |
Collapse
|
2
|
Lee S, Kim M, Han H, Son J. Dioxazolones as electrophilic amide sources in copper-catalyzed and -mediated transformations. Beilstein J Org Chem 2025; 21:200-216. [PMID: 39877860 PMCID: PMC11773186 DOI: 10.3762/bjoc.21.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
Over the past decade, dioxazolones have been widely used as N-acylamide sources in amidation processes of challenging substrates, typically employing precious transition metals. However, these catalytic systems often present several challenges associated with cost, toxicity, stability, and recyclability. Among the 3d transition metals, copper catalysts have been gaining increasing attention owing to their abundance, cost-effectiveness, and sustainability. Recently, these catalytic systems have been applied to the chemical transformation of dioxazolones, conferring a convenient protocol towards amidated products. This review highlights recent advancements in the synthetic transformations of dioxazolones, with particular examples of copper salts.
Collapse
Affiliation(s)
- Seungmin Lee
- Department of Chemistry, Dong-A University, Busan 49315, South Korea
| | - Minsuk Kim
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University, Busan 49315, South Korea
| | - Hyewon Han
- Department of Chemistry, Dong-A University, Busan 49315, South Korea
| | - Jongwoo Son
- Department of Chemistry, Dong-A University, Busan 49315, South Korea
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University, Busan 49315, South Korea
| |
Collapse
|
3
|
Pliego JR. Theoretical design of new ligands to boost reaction rate and selectivity in palladium-catalyzed aromatic fluorination. J Comput Chem 2025; 46:e27513. [PMID: 39350669 DOI: 10.1002/jcc.27513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/31/2024] [Accepted: 09/26/2024] [Indexed: 01/01/2025]
Abstract
The development of palladium-catalyzed fluorination with biaryl monophosphine ligands has faced two important problems that limit its application for bromoarenes: the formation of regioisomers and insufficient catalysis for heteroaryl substrates as bromothiophene derivatives. Overcoming these problems requires more ligand design. In this work, reliable theoretical calculations were used to elucidate important ligand features necessary for achieving more rate acceleration and selectivity. These features include increasing the ligand-substrate repulsion and creating a negative charge in the space around the fluoride ion bonded to the palladium. The investigated L5 ligand presents these features, and the calculations predict that this ligand completely suppresses the regioisomer formation in the difficult case of 4-bromoanisole. In addition, the free energy barriers are decreased by 2-3 kcal mol-1 in comparison with the catalysis involving the AlPhos ligand. Thus, the present study points out a direction for new developments in palladium-catalyzed fluorination.
Collapse
Affiliation(s)
- Josefredo R Pliego
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, MG, Brazil
| |
Collapse
|
4
|
Spiller TE, Donabauer K, Brooks AF, Witek JA, Bowden GD, Scott PJH, Sanford MS. Room-Temperature Photochemical Copper-Mediated Fluorination of Aryl Iodides. Org Lett 2024; 26:6433-6437. [PMID: 39024514 PMCID: PMC11316249 DOI: 10.1021/acs.orglett.4c02227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
This report describes a method for the photochemical Cu-mediated fluorination of aryl iodides with AgF via putative aryl radical (Ar•) intermediates. It involves irradiating an aryl iodide with UVB light (λmax = 313 nm) in the presence of a mixture of CuI and CuII salts and AgF. Under these conditions, fluorination proceeds at room temperature for substrates containing diverse substituents, including alkoxy and alkyl groups, ketones, esters, sulfonate esters, sulfonamides, and protected amines. This method has been translated to radiofluorination using a combination of K18F, K3PO4, and AgOTf.
Collapse
Affiliation(s)
- Taylor E. Spiller
- Department of Chemistry, University of Michigan, 930 North Avenue, Ann Arbor, Michigan, 48104, United States
| | - Karsten Donabauer
- Department of Chemistry, University of Michigan, 930 North Avenue, Ann Arbor, Michigan, 48104, United States
| | - Allen F. Brooks
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Jason A. Witek
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Gregory D. Bowden
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North Avenue, Ann Arbor, Michigan, 48104, United States
| |
Collapse
|
5
|
Vesseur D, Li S, Mallet-Ladeira S, Miqueu K, Bourissou D. Ligand-Enabled Oxidative Fluorination of Gold(I) and Light-Induced Aryl-F Coupling at Gold(III). J Am Chem Soc 2024. [PMID: 38607393 DOI: 10.1021/jacs.4c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
MeDalphos Au(I) complexes featuring aryl, alkynyl, and alkyl groups readily react with electrophilic fluorinating reagents such as N-fluorobenzenesulfonimide and Selectfluor. The ensuing [(MeDalphos)Au(R)F]+ complexes have been isolated and characterized by multinuclear NMR spectroscopy as well as X-ray diffraction. They adopt a square-planar contra-thermodynamic structure, with F trans to N. DFT/IBO calculations show that the N lone pair of MeDalphos assists and directs the transfer of F+ to gold. The [(MeDalphos)Au(Ar)F]+ (Ar = Mes, 2,6-F2Ph) complexes smoothly engage in C-C cross-coupling with PhCCSiMe3 and Me3SiCN, providing direct evidence for the oxidative fluorination/transmetalation/reductive elimination sequence proposed for F+-promoted gold-catalyzed transformations. Moreover, direct reductive elimination to forge a C-F bond at Au(III) was explored and substantiated. Thermal means proved unsuccessful, leading mostly to decomposition, but irradiation with UV-visible light enabled efficient promotion of aryl-F coupling (up to 90% yield). The light-induced reductive elimination proceeds under mild conditions; it works even with the electron-deprived 2,6-difluorophenyl group, and it is not limited to the contra-thermodynamic form of the aryl Au(III) fluoride complexes.
Collapse
Affiliation(s)
- David Vesseur
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) , CNRS/Université Paul Sabatier , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| | - Shuo Li
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) , CNRS/Université Paul Sabatier , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (UAR 2599) , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| | - Karinne Miqueu
- E2S-UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), CNRS/Université de Pau et des Pays de l'Adour, Hélioparc, 2 Avenue du Président Angot, 64053 Pau, Cedex 09, France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) , CNRS/Université Paul Sabatier , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| |
Collapse
|
6
|
Dong J, Liang Y, Li Y, Guan W, Zhang Q, Fu J. A Catalytic Three-Component Aminofluorination of Unactivated Alkenes with Electron-Rich Amino Sources. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305006. [PMID: 38226424 DOI: 10.1002/advs.202305006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Indexed: 01/17/2024]
Abstract
We present herein a copper-catalyzed three-component aminofluorination of unactivated alkenes with N-bromodialkylamines and readily available nucleophilic fluoride under the assistance of a bidentate auxiliary. This protocol exhibits excellent functional group tolerance toward a wide range of unactivated alkenes and N-bromodialkylamines to furnish the corresponding β-fluoroalkylamines in a highly regio- and diastereoselective manner. The appropriate choice of nucleophilic fluoro source is essential to make this reaction a reality. Further DFT calculations show that the exothermic ion exchange between external fluoride ion and Cu(II) intermediate provides additional driving force to the irreversible migratory insertion, which offsets the unfavorable reaction energetics associated with the subsequent C(sp3)-F reductive elimination. This finding offers a new avenue to catalytic intermolecular aminofluorination of unactivated alkenes with electron-rich amino sources via a remarkable reductive elimination of Cu(III) species to forge the C(sp3)-F bonds.
Collapse
Affiliation(s)
- Junchao Dong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yujie Liang
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yang Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
- Warshel Institute for Computational Biology and School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Wei Guan
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Junkai Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
7
|
Purushotam, Bera A, Banerjee D. Recent advances on non-precious metal-catalysed fluorination, difluoromethylation, trifluoromethylation, and perfluoroalkylation of N-heteroarenes. Org Biomol Chem 2023; 21:9298-9315. [PMID: 37855147 DOI: 10.1039/d3ob01132a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
This review highlights the recent advances, from 2015 to 2023, on the introduction of organo-fluorine derivatives at the N-heteroarene core. Notable features considering new technologies based on organofluorine compounds such as: (i) approaches based on non-precious metal catalysis (Fe, Co, Mn, Ni, etc.), (ii) the development of new strategies using non-precious metal-catalysts for the introduction of organo-fluorinine derivatives using N-heterocycles with one or more heteroatoms, (iii) newer reagents for fluorination, difluoromethylation, trifluoromethylation, or perfluoroalkylation of N-heteroarenes using different approaches, (iv) mechanistic studies on various catalytic transformations, as and when required, and (v) the synthetic applications of various bio-active organo-fluorine compounds, including post-synthetic drug derivatization, are discussed.
Collapse
Affiliation(s)
- Purushotam
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Atanu Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
8
|
Hyeon Ka C, Kim S, Jin Cho E. Visible Light-Induced Metal-Free Fluoroalkylations. CHEM REC 2023; 23:e202300036. [PMID: 36942971 DOI: 10.1002/tcr.202300036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Fluoroalkylation is a crucial synthetic process that enables the modification of molecules with fluoroalkyl groups, which can enhance the properties of compounds and have potential applications in medicine and materials science. The utilization of visible light-induced, metal-free methods is of particular importance as it provides an environmentally friendly alternative to traditional methods and eliminates the potential risks associated with metal-catalyst toxicity. This Account describes our studies on visible light-induced, metal-free fluoroalkylation processes, which include the use of organic photocatalysts or EDA complexes. We have utilized organophotocatalysts such as Nile red, tri(9-anthryl)borane, and an indole-based tetracyclic complex, as well as catalyst-free EDA chemistry through photoactive halogen bond formation or an unconventional transient ternary complex formation with nucleophilic fluoroalkyl source. A variety of π-systems including arenes/heteroarenes, alkenes, and alkynes have been successfully fluoroalkylated under the developed reaction conditions.
Collapse
Affiliation(s)
- Cheol Hyeon Ka
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Seoyeon Kim
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
9
|
Andrews M, Carpentier A, Slawin AMZ, Cordes DB, Macgregor SA, Watson AJB. Mechanism of Cu-Catalyzed Iododeboronation: A Description of Ligand-Enabled Transmetalation, Disproportionation, and Turnover in Cu-Mediated Oxidative Coupling Reactions. ACS Catal 2023; 13:11117-11126. [PMID: 37614524 PMCID: PMC10442916 DOI: 10.1021/acscatal.3c02839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Indexed: 08/25/2023]
Abstract
We report a combined experimental and computational study of the mechanism of the Cu-catalyzed arylboronic acid iododeboronation reaction. A combination of structural and density functional theory (DFT) analyses has allowed determination of the identity of the reaction precatalyst with insight into each step of the catalytic cycle. Key findings include a rationale for ligand (phen) stoichiometry related to key turnover events-the ligand facilitates transmetalation via H-bonding to an organoboron boronate generated in situ and phen loss/gain is integral to the key oxidative events. These data provide a framework for understanding ligand effects on these key mechanistic processes, which underpin several classes of Cu-mediated oxidative coupling reactions.
Collapse
Affiliation(s)
- Matthew
J. Andrews
- EaStCHEM,
School of Chemistry, University of St Andrews, Purdie Building, St Andrews KY16 9ST, U.K.
| | - Ambre Carpentier
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Alexandra M. Z. Slawin
- EaStCHEM,
School of Chemistry, University of St Andrews, Purdie Building, St Andrews KY16 9ST, U.K.
| | - David B. Cordes
- EaStCHEM,
School of Chemistry, University of St Andrews, Purdie Building, St Andrews KY16 9ST, U.K.
| | - Stuart A. Macgregor
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Allan J. B. Watson
- EaStCHEM,
School of Chemistry, University of St Andrews, Purdie Building, St Andrews KY16 9ST, U.K.
| |
Collapse
|
10
|
Thangavadivale VG, Tendera L, Bertermann R, Radius U, Beweries T, Perutz RN. Solution and solid-state studies of hydrogen and halogen bonding with N-heterocyclic carbene supported nickel(II) fluoride complexes. Faraday Discuss 2023; 244:62-76. [PMID: 37097153 DOI: 10.1039/d2fd00171c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nickel fluoride complexes of the type [Ni(F)(L)2(ArF)] (L = phosphine, ArF = fluorinated arene) are well-known to form strong halogen and hydrogen bonds in solution and in the solid state. A comprehensive study of such non-covalent interactions using bis(carbene) complexes as acceptors and suitable halogen and hydrogen bond donors is presented. In solution, the complex [Ni(F)(iPr2Im)2(C6F5)] forms halogen and hydrogen bonds with iodopentafluorobenzene and indole, respectively, which have formation constants (K300) an order of magnitude greater than those of structurally related phosphine supported nickel fluorides. Co-crystallisation of this complex and its backbone-methylated analogue [Ni(F)(iPr2Me2Im)2(C6F5)] with 1,4-diiodotetrafluorobenzene produces halogen bonding adducts which were characterised by X-ray analysis and 19F MAS solid state NMR analysis. Differences in the chemical shifts between the nickel fluoride and its halogen bonding adduct are well in line with data that were obtained from titration studies in solution.
Collapse
Affiliation(s)
| | - Lukas Tendera
- Institut für Anorganische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany.
| | - Rüdiger Bertermann
- Institut für Anorganische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany.
| | - Udo Radius
- Institut für Anorganische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany.
| | - Torsten Beweries
- Leibniz-Institut für Katalyse, Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - Robin N Perutz
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
11
|
Chandra G, Singh DV, Mahato GK, Patel S. Fluorine-a small magic bullet atom in the drug development: perspective to FDA approved and COVID-19 recommended drugs. CHEMICKE ZVESTI 2023; 77:1-22. [PMID: 37362786 PMCID: PMC10099028 DOI: 10.1007/s11696-023-02804-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/29/2023] [Indexed: 06/28/2023]
Abstract
During the last twenty years, organic fluorination chemistry established itself as an important tool to get a biologically active compound. This belief can be supported by the fact that every year, we are getting fluorinated drugs in the market in extremely significant numbers. Last year, also ten fluorinated drugs have been approved by FDA and during the COVID-19 pandemic, fluorinated drugs played a very crucial role to control the disease and saved many lives. In this review, we surveyed all ten fluorinated drugs approved by FDA in 2021 and all fluorinated drugs which were directly-indirectly used during the COVID-19 period, and emphasis has been given particularly to their synthesis, medicinal chemistry, and development process. Out of ten approved drugs, one drug pylarify, a radioactive diagnostic agent for cancer was approved for use in positron emission tomography imaging. Also, very briefly outlined the significance of fluorinated drugs through their physical, and chemical properties and their effect on drug development. Graphical abstract
Collapse
Affiliation(s)
- Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Durg Vijay Singh
- Department of Bioinformatics, School of Earth Biological and Environmental Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Gopal Kumar Mahato
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| | - Samridhi Patel
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar 824236 India
| |
Collapse
|
12
|
Car-Parrinello molecular dynamics study of CuF, AgF, CuPF6 and AgPF6 in acetonitrile solvent and Cluster-Continuum calculation of the solvation free energy of Cu(I), Ag(I) and Li(I). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Copper-Mediated Aromatic Fluorination Using N-Heterocycle-Carbene Ligand: Free Energy Profile of the Cu(I)/Cu(III) and Cu(II) radical Mechanisms. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|