1
|
Shahmohammadi A, Dalvand S, Molaei A, Mousavi-Khoshdel SM, Yazdanfar N, Hasanzadeh M. Transition metal phosphide/ molybdenum disulfide heterostructures towards advanced electrochemical energy storage: recent progress and challenges. RSC Adv 2025; 15:13397-13430. [PMID: 40297000 PMCID: PMC12035537 DOI: 10.1039/d5ra01184a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Transition metal phosphide @ molybdenum disulfide (TMP@MoS2) heterostructures, consisting of TMP as the core main catalytic body and MoS2 as the outer shell, can solve the three major problems in the field of renewable energy storage and catalysis, such as lack of resources, cost factors, and low cycling stability. The heterostructures synergistically combine the excellent conductivity and electrochemical performance of transition metal phosphides with the structural robustness and catalytic activity of molybdenum disulfide, which holds great promise for clean energy. This review addresses the advantages of TMP@MoS2 materials and their synthesis methods-e.g., hydrothermal routes and chemical vapor deposition regarding scalability and cost. Their electrochemical energy storage and catalytic functions e.g., hydrogen and oxygen evolution reactions (HER and OER) are also extensively explored. Their potential within battery and supercapacitor technologies is also assessed against leading performance metrics. Challenges toward industry-scale scalability, longevity, and environmental sustainability are also addressed, as are optimization and large-scale deployment strategies.
Collapse
Affiliation(s)
- Ali Shahmohammadi
- Faculty of Chemistry, Kharazmi University 43 South Mofatteh Avenue Tehran Iran
| | - Samad Dalvand
- Iranian Research & Development Center for Chemical Industries (IRDCI), Academic Center for Education, Culture and Research (ACECR) Karaj Iran
| | - Amirhossein Molaei
- Faculty of Petroleum and Natural Gas Engineering, Sahand University of Technology Tabriz Iran
| | | | - Najmeh Yazdanfar
- Iranian Research & Development Center for Chemical Industries (IRDCI), Academic Center for Education, Culture and Research (ACECR) Karaj Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
2
|
G S SG, Abraham N, R S H, S R, Xavier TS. Optimization studies on output stabilization time and graphene oxide concentration in graphene-based flexible micro-supercapacitor. NANOTECHNOLOGY 2024; 36:085401. [PMID: 39608019 DOI: 10.1088/1361-6528/ad983a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
Miniature energy storage devices are vital for developing flexible and wearable electronics. This paper discusses the fabrication of flexible laser-induced graphene-based micro-supercapacitors (MSCs) using graphene oxide (GO) coated polyimide film as the precursor for laser scribing. The areal capacitance of the MSCs was assessed daily after applying a H2SO4/polyvinyl alcohol (PVA) gel electrolyte. The capacitance displayed a substantial increase in the early days before stabilizing at a consistent value. The stabilization time was evaluated through systematic experimentation conducted over ten consecutive days. The experiments showed that the capacitance stabilized after six days. Various concentrations of GO were used to assemble the MSCs, and their performance was evaluated to determine the optimal concentration. The electrochemical impedance spectroscopy revealed that the supercapacitor fabricated with the optimum concentration of GO exhibited the lowest resistance. The optimized MSC displayed an areal capacitance of 10.07 mF cm-2at a current density of 13µA cm-2. The device could maintain a reliable output at different bending states and retain 87.9% of its original capacitance after 5000 charge-discharge cycles, highlighting its suitability for flexible and self-powered systems.
Collapse
Affiliation(s)
- Sangeetha Gopan G S
- Department of ECE, College of Engineering Trivandrum, Thiruvananthapuram, Kerala 695016, India
- APJ Abdul Kalam Technological University, Thiruvananthapuram Kerala 695016, India
| | - Nelsa Abraham
- APJ Abdul Kalam Technological University, Thiruvananthapuram Kerala 695016, India
- Department of ECE, Rajiv Gandhi Institute of Technology, Kottayam, Kerala 686501, India
| | - Harikrishnan R S
- Department of Mechanical Engineering, College of Engineering Trivandrum, Thiruvananthapuram, Kerala 695016, India
| | - Rani S
- APJ Abdul Kalam Technological University, Thiruvananthapuram Kerala 695016, India
- Department of Mechanical Engineering, College of Engineering Trivandrum, Thiruvananthapuram, Kerala 695016, India
| | - T S Xavier
- Department of Physics, Govt. College for Women, Thiruvananthapuram, Kerala 695014, India
| |
Collapse
|
3
|
Nagaraju M, Ramulu B, Arbaz SJ, Shankar EG, Kiran AS, Yu JS. Rational Construction of Bi 2CuO 12Se 4 and VGCFs@Fe 2O 3 Composite Electrodes for High-Performance Semi-Solid-State Asymmetric Supercapacitors. SMALL METHODS 2024; 8:e2400149. [PMID: 38881177 PMCID: PMC11672177 DOI: 10.1002/smtd.202400149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/25/2024] [Indexed: 06/18/2024]
Abstract
Recently, supercapacitors (SCs) are extensively explored as effective energy storage devices. Specifically, asymmetric SCs are being developed to enhance energy density using suitable materials with favorable nanostructures. This study describes the construction of a bismuth copper selenite (BCS-200) working electrode with an ultrathin nanosheet (UTNS) architecture. This morphology is achieved using a low-cost electrodeposition (ED) method, followed by annealing. The impact of ED time on the development of morphology is studied by synthesizing comparative electrodes simultaneously. The optimized BCS-200 electrode prepared with a deposition time of 200 s shows higher specific capacity/capacitance (Cs/Csc) values of 330.9 mAh g-1/2206.6 F g-1 than the other synthesized electrodes (BCS-100, BCS-150, BCS-250, and BCS-300). Besides, a vapor-grown carbon fiber (VGCF)-added Fe2O3 composite coated on nickel foam (NF) is developed as a negative electrode. The VGCFs@Fe2O3/NF electrode exhibits the (Cs/Csc) values of 183.5 mAh g-1/734.4 F g-1, which is associated with ultra-high cycling stability. In addition, the fabricated BCS-200 and VGCFs@Fe2O3/NF electrodes are combined to construct a wearable semi-solid-state asymmetric SC (SSASC) with an energy density (Ed) of 20.5 Wh kg-1 and a cycling stability of 91.7% over 40000 charge/discharge cycles. Furthermore, the real-time applicability of the SSASC is verified by powering it in practical applications.
Collapse
Affiliation(s)
- Manchi Nagaraju
- Department of Electronics and Information Convergence EngineeringInstitute for Wearable Convergence ElectronicsKyung Hee University1732 Deogyeong‐daero, Giheung‐guYongin‐siGyeonggi‐do17104Republic of Korea
| | - Bhimanaboina Ramulu
- Department of Electronics and Information Convergence EngineeringInstitute for Wearable Convergence ElectronicsKyung Hee University1732 Deogyeong‐daero, Giheung‐guYongin‐siGyeonggi‐do17104Republic of Korea
| | - Shaik Junied Arbaz
- Department of Electronics and Information Convergence EngineeringInstitute for Wearable Convergence ElectronicsKyung Hee University1732 Deogyeong‐daero, Giheung‐guYongin‐siGyeonggi‐do17104Republic of Korea
| | - Edugulla Girija Shankar
- Department of Electronics and Information Convergence EngineeringInstitute for Wearable Convergence ElectronicsKyung Hee University1732 Deogyeong‐daero, Giheung‐guYongin‐siGyeonggi‐do17104Republic of Korea
| | - Ampasala Surya Kiran
- Department of Electronics and Information Convergence EngineeringInstitute for Wearable Convergence ElectronicsKyung Hee University1732 Deogyeong‐daero, Giheung‐guYongin‐siGyeonggi‐do17104Republic of Korea
| | - Jae Su Yu
- Department of Electronics and Information Convergence EngineeringInstitute for Wearable Convergence ElectronicsKyung Hee University1732 Deogyeong‐daero, Giheung‐guYongin‐siGyeonggi‐do17104Republic of Korea
| |
Collapse
|
4
|
Sheriff K, Sulejmanovic D, Jun J, Cannon W, Petta L, Phillips J, McMillen C, Hwu SJ. Electrochemically Assisted Single Crystal Growth of Reduced Preyssler Polyoxometalates Decorated with M2+ ( M = Co, Ni) and Cubane-Like Ni 4O 4 Units. Inorg Chem 2024. [PMID: 39230942 DOI: 10.1021/acs.inorgchem.4c02267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Polyoxometalates (POMs) are of great interest to the scientific community, and their reduction and nucleation have been well-established by multi-step techniques. The present study develops an electrochemical approach for simultaneous reduction and nucleation of polyoxometalate-containing solids. Herein we report crystal growth of reduced Preyssler polyoxotungstate-based (anionic formula [NaP5W30O110]14-) new crystalline solids made of Preyssler anions interlinked by Co2+ and Ni2+ ions. Crystal nucleation and in situ reduction were achieved at room temperature using a two silver wire electrode setup in various aqueous solutions under constant applied potentials. The POM material was deposited on the cathode, and its structure was characterized by X-ray diffraction techniques. The primary structure type observed involves POMs decorated by disordered Co2+/Ni2+ octahedra and fused into 1-D pillars by additional Co2+/Ni2+ octahedra. A secondary phase was observed in the Ni-based reactions, where reduced Preyssler anions are decorated by Ni4O4 cubane-like units. To understand the electrochemical process, polarization curves of the electrolyte solutions are presented, suggesting an applied potential best suited for crystal growth. The work highlights the effectiveness of an electrochemical pathway where nucleation and simultaneous reduction of POMs can make novel reduced POM solids.
Collapse
Affiliation(s)
- Kirkland Sheriff
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Dino Sulejmanovic
- Enrichment Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jiheon Jun
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - William Cannon
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Lauren Petta
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Johnathan Phillips
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Colin McMillen
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Shiou Jyh Hwu
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
5
|
Shah SS, Aziz MA, Ali M, Hakeem AS, Yamani ZH. Advanced High-Energy All-Solid-State Hybrid Supercapacitor with Nickel-Cobalt-Layered Double Hydroxide Nanoflowers Supported on Jute Stick-Derived Activated Carbon Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306665. [PMID: 38150613 DOI: 10.1002/smll.202306665] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/14/2023] [Indexed: 12/29/2023]
Abstract
Developing efficient, lightweight, and durable all-solid-state supercapacitors is crucial for future energy storage systems. The study focuses on optimizing electrode materials to achieve high capacitance and stability. This study introduces a novel two-step pyrolysis process to synthesize activated carbon nanosheets from jute sticks (JAC), resulting in an optimized JAC-2 material with a high yield (≈24%) and specific surface area (≈2600 m2 g-1). Furthermore, an innovative in situ synthesis approach is employed to synthesize hybrid nanocomposites (NiCoLDH-1@JAC-2) by integrating JAC nanosheets with nickel-cobalt-layered double hydroxide nanoflowers (NiCoLDH). These nanocomposites serve as positive electrode materials and JAC-2 as the negative electrode material in all-solid-state asymmetric hybrid supercapacitors (HSCs), exhibiting remarkable performance metrics. The HSCs achieve a specific capacitance of 750 F g-1, a specific capacity of 209 mAh g-1 (at 0.5 A g-1), and an energy density of 100 Wh kg-1 (at 250 W kg-1) using PVA/KOH solid electrolyte, while maintaining outstanding cyclic stability. Importantly, a density functional theory framework is utilized to validate the experimental findings, underscoring the potential of this novel approach for enhancing HSC performance and enabling the large-scale production of transition metal-based layered double hydroxides.
Collapse
Affiliation(s)
- Syed Shaheen Shah
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Muhammad Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Abbas Saeed Hakeem
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Zain H Yamani
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
6
|
Cho H, Bae G, Hong BH. Engineering functionalization and properties of graphene quantum dots (GQDs) with controllable synthesis for energy and display applications. NANOSCALE 2024; 16:3347-3378. [PMID: 38288500 DOI: 10.1039/d3nr05842e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Graphene quantum dots (GQDs), a new type of 0D nanomaterial, are composed of a graphene lattice with sp2 bonding carbon core and characterized by their abundant edges and wide surface area. This unique structure imparts excellent electrical properties and exceptional physicochemical adsorption capabilities to GQDs. Additionally, the reduction in dimensionality of graphene leads to an open band gap in GQDs, resulting in their unique optical properties. The functional groups and dopants in GQDs are key factors that allow the modulation of these characteristics. So, controlling the functionalization level of GQDs is crucial for understanding their characteristics and further application. This review provides an overview of the properties and structure of GQDs and summarizes recent developments in research that focus on their controllable synthesis, involving functional groups and doping. Additionally, we provide a comprehensive and focused explanation of how GQDs have been advantageously applied in recent years, particularly in the fields of energy storage devices and displays.
Collapse
Affiliation(s)
- Hyeonwoo Cho
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Gaeun Bae
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Byung Hee Hong
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
- Graphene Research Center, Advanced Institute of Convergence Technology, Suwon 16229, Republic of Korea
| |
Collapse
|
7
|
Cong C, Subramanian S, Bodkhe GA, Wang G, Li Z, Wang R, Li X, Kim M, Kim SH. 3D Carbon-Based Conductive Network Printed for Glucose Sensors on Curved and Flexible Substrates. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7543-7553. [PMID: 38297812 DOI: 10.1021/acsami.3c14757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The rising prevalence of diabetes has led to an increased focus on real-time glucose monitoring. Wearable glucose sensor patches allow noninvasive, real-time monitoring, reducing patient discomfort compared to invasive sensors. However, most existing glucose sensor patches rely on complex and contaminating metal vapor deposition technologies, which pose limitations in practical production. In this study, we propose a novel approach for preparing graphite/multiwall carbon nanotubes (MWCNT)/reduced graphene oxide (rGO) using a high-viscosity ink, which can be easily obtained through simple mechanical stirring. To create intricate patterns and enable printing on curved substrates, we employed a 3D printer equipped with an infrared laser ranging system. The ink served as a working electrode, and we developed a three-electrode system patch with a concentric circle structure. Subsequently, the working electrode underwent enzymatic modification with glucose dehydrogenase with flavin adenine dinucleotide (GDH-FAD) using a polymer embedding method. The resulting wearable glucose sensor exhibited a sensitivity of 2.42 μA mM-1 and a linear detection range of 1-12 mM. In addition, the glucose sensor has excellent anti-interference capability and demonstrates good repeatability in simulated real human wear scenarios, which meets the requirements for accurate human detection. These findings provide valuable insights into the development of human health monitoring technologies.
Collapse
Affiliation(s)
- Chenhao Cong
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
- School of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Siva Subramanian
- Department of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Gajanan A Bodkhe
- Department of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Guangwei Wang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Zhijun Li
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rixuan Wang
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Xinlin Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Se Hyun Kim
- School of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Nayem SMA, Islam S, Mohamed M, Shaheen Shah S, Ahammad AJS, Aziz MA. A Mechanistic Overview of the Current Status and Future Challenges of Aluminum Anode and Electrolyte in Aluminum-Air Batteries. CHEM REC 2024; 24:e202300005. [PMID: 36807755 DOI: 10.1002/tcr.202300005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Indexed: 02/20/2023]
Abstract
Aluminum-air batteries (AABs) are regarded as attractive candidates for usage as an electric vehicle power source due to their high theoretical energy density (8100 Wh kg-1 ), which is considerably higher than that of lithium-ion batteries. However, AABs have several issues with commercial applications. In this review, we outline the difficulties and most recent developments in AABs technology, including electrolytes and aluminum anodes, as well as their mechanistic understanding. First, the impact of the Al anode and alloying on battery performance is discussed. Then we focus on the impact of electrolytes on battery performances. The possibility of enhancing electrochemical performances by adding inhibitors to electrolytes is also investigated. Additionally, the use of aqueous and non-aqueous electrolytes in AABs is also discussed. Finally, the challenges and potential future research areas for the advancement of AABs are suggested.
Collapse
Affiliation(s)
- S M Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Mostafa Mohamed
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM, Box 5047, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM, Box 5040, Dhahran, 31261, Saudi Arabia
- K.A.CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
9
|
Ali S, Ahmad Shah SS, Sufyan Javed M, Najam T, Parkash A, Khan S, Bajaber MA, Eldin SMM, Tayeb RA, Rahman MM, Qi J. Recent Advances of Transition Metal Dichalcogenides-Based Materials for Energy Storage Devices, in View of Monovalent to Divalent Ions. CHEM REC 2024; 24:e202300145. [PMID: 37358343 DOI: 10.1002/tcr.202300145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/08/2023] [Indexed: 06/27/2023]
Abstract
The fast growth of electrochemical energy storage (EES) systems necessitates using innovative, high-performance electrode materials. Among the various EES devices, rechargeable batteries (RBs) with potential features like high energy density and extensive lifetime are well suited to meet rapidly increasing energy demands. Layered transition metal dichalcogenides (TMDs), typical two dimensional (2D) nanomaterial, are considered auspicious materials for RBs because of their layered structures and large specific surface areas (SSA) that benefit quick ion transportation. This review summarizes and highlights recent advances in TMDs with improved performance for various RBs. Through novel engineering and functionalization used for high-performance RBs, we briefly discuss the properties, characterizations, and electrochemistry phenomena of TMDs. We summarised that engineering with multiple techniques, like nanocomposites used for TMDs receives special attention. In conclusion, the recent issues and promising upcoming research openings for developing TMDs-based electrodes for RBs are discussed.
Collapse
Affiliation(s)
- Salamat Ali
- School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology Lanzhou University, Lanzhou, 730000, China
| | - Tayyaba Najam
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Anand Parkash
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Shaukat Khan
- Department of Chemical Engineering, College of Engineering, Dhofar University, 400021, Salalah 211, Sultanate of Oman
| | - Majed A Bajaber
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Sayed M M Eldin
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt
| | - Roaa A Tayeb
- Department of Chemistry, College of Science, University of Jeddah, Alfaisaliah, Jeddah, Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR)&Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jing Qi
- School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| |
Collapse
|
10
|
Islam S, Nayem SMA, Anjum A, Shaheen Shah S, Ahammad AJS, Aziz MA. A Mechanistic Overview of the Current Status and Future Challenges in Air Cathode for Aluminum Air Batteries. CHEM REC 2024; 24:e202300017. [PMID: 37010435 DOI: 10.1002/tcr.202300017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/16/2023] [Indexed: 04/04/2023]
Abstract
Aluminum air batteries (AABs) are a desirable option for portable electronic devices and electric vehicles (EVs) due to their high theoretical energy density (8100 Wh K-1 ), low cost, and high safety compared to state-of-the-art lithium-ion batteries (LIBs). However, numerous unresolved technological and scientific issues are preventing AABs from expanding further. One of the key issues is the catalytic reaction kinetics of the air cathode as the fuel (oxygen) for AAB is reduced there. Additionally, the performance and price of an AAB are directly influenced by an air electrode integrated with an oxygen electrocatalyst, which is thought to be the most crucial element. In this study, we covered the oxygen chemistry of the air cathode as well as a brief discussion of the mechanistic insights of active catalysts and how they catalyze and enhance oxygen chemistry reactions. There is also extensive discussion of research into electrocatalytic materials that outperform Pt/C such as nonprecious metal catalysts, metal oxide, perovskites, metal-organic framework, carbonaceous materials, and their composites. Finally, we provide an overview of the present state, and possible future direction for air cathodes in AABs.
Collapse
Affiliation(s)
- Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - S M Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Ahtisham Anjum
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM, Box 5047, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
- K.A.CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
11
|
Koventhan C, Pandiyarajan S, Chen SM, Selvan CS. Novel Design of Perovskite-Structured Neodymium Cobalt Oxide Nanoparticle-Embedded Graphene Oxide Nanocomposites as Efficient Active Materials of Energy Storage Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44876-44886. [PMID: 37712759 DOI: 10.1021/acsami.3c07836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
In recent years, electrochemical supercapacitors are expected to represent the future of energy storage device technology. Specifically, the excellent electrochemical performance with long cycle life, high energy, and power density is considered an essential criterion for commercial applications. Herein, we constructed a novel composite of neodymium cobalt oxide-encapsulated graphene oxide nanocomposite (NCO/GO) via a simple and robust method for a symmetric supercapacitor (SSC) device. The prepared samples were securitized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and Brunauer-Emmett-Teller analysis. The as-synthesized NCO/GO is deposited on nickel foam (NF) and used as a supercapacitor electrode (NCO/GO/NF), which exhibits superior specific capacitance (Cs) of 1080.92 F g-1 at 1 A g-1 and fantastic cycling life with ∼89.42% retention after 10,000 cycles at 10 A g-1 in 1.0 M KOH aqueous electrolyte. A tremendous electrochemical performance of the hybrid nanocomposite electrode is obtained from the good redox activity and synergistic effects of the NCO spherical-like nanoparticles combined with the GO nanosheets. Furthermore, the assembled SSC device delivers significantly enhanced power density (932.93 Wh kg-1) and energy density (210.42 mWh kg-1). Moreover, the SSCs exhibit excellent cycling stability with ∼82.19% capacity retaining over 10,000 charge/discharge cycles. Remarkably, a 1.8 V red light-emitting diode (LED) can be lit up for more than 10 min by series connection SSCs. Thus, the obtained results indicated that the NCO/GO/NF//NCO/GO/NF symmetric device has a robust and cost-effective electrode material for high-performance supercapacitor systems.
Collapse
Affiliation(s)
- Chelliah Koventhan
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 10608, Republic of China
| | - Sabarison Pandiyarajan
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 10608, Republic of China
- Department of Mechanical Engineering, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 10608, Republic of China
| | - Shen Ming Chen
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 10608, Republic of China
| | - Chelliah Senthamil Selvan
- Department of Radio Diagnosis, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pillaiyarkuppam, Pondicherry 607402, India
| |
Collapse
|
12
|
Lefdhil C, Polat S, Zengin H. Synthesis of Zinc Oxide Nanorods from Zinc Borate Precursor and Characterization of Supercapacitor Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2423. [PMID: 37686931 PMCID: PMC10490104 DOI: 10.3390/nano13172423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
The synthesis of zinc oxide (ZnO) was accomplished from zinc borate (Zn3B2O6) minerals to be used as electrodes in supercapacitor applications. The concentrations of obtained zinc (Zn) metal after treatment with hydrochloric acid (HCl) were determined by atomic absorption spectroscopy (AAS). Direct synthesis of ZnO on a nickel (Ni) foam surface was conducted by employing the hydrothermal technique using a solution with the highest Zn content. The results showed the successful synthesis of ZnO nanorods on the surface of Ni foam with an average wall size of approximately 358 nm. Cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) measurements revealed that the synthesized electrode exhibited battery-type charge storage characteristics, reaching a maximum specific capacitance of approximately 867 mF·cm-² at a current density of 2 mA·cm-². Additionally, the energy and power densities of the electrode at a current density of 2 mA·cm-² were calculated as 19.3 mWh·cm-² and 200 mW·cm-², respectively. These results exhibited promising performance of the single-component electrode, outperforming the existing counterparts reported in the literature.
Collapse
Affiliation(s)
- Chikh Lefdhil
- Material Research and Development Centre, Karabuk University, 78050 Karabük, Turkey
- Nano Energy Laboratory, Karabuk University, 78050 Karabük, Turkey
- Metallurgy and Materials Engineering, Karabuk University, 78050 Karabük, Turkey
| | - Safa Polat
- Material Research and Development Centre, Karabuk University, 78050 Karabük, Turkey
- Nano Energy Laboratory, Karabuk University, 78050 Karabük, Turkey
- Metallurgy and Materials Engineering, Karabuk University, 78050 Karabük, Turkey
| | - Hüseyin Zengin
- Institute of Chemical Technology of Inorganic Materials (TIM), Johannes Kepler University, 4040 Linz, Austria
| |
Collapse
|
13
|
Lee NE, Cheon SU, Lee J, Cho SO. Tin Oxide/Vertically Aligned Graphene Hybrid Electrodes Prepared by Sonication-Assisted Sequential Chemical Bath Deposition for High-Performance Supercapacitors. ACS OMEGA 2023; 8:6621-6631. [PMID: 36844528 PMCID: PMC9948212 DOI: 10.1021/acsomega.2c07075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Hybrid electrodes comprising metal oxides and vertically aligned graphene (VAG) are promising for high-performance supercapacitor applications because they enhance the synergistic effect owing to the large contact area between the two constituent materials. However, it is difficult to form metal oxides (MOs) up to the inner surface of a VAG electrode with a narrow inlet using conventional synthesis methods. Herein, we report a facile approach to fabricate SnO2 nanoparticle-decorated VAG electrodes (SnO2@VAG) with excellent areal capacitance and cyclic stability using sonication-assisted sequential chemical bath deposition (S-SCBD). The sonication treatment during the MO decoration process induced a cavitation effect at the narrow inlet of the VAG electrode, allowing the precursor solution to reach the inside of the VAG surface. Furthermore, the sonication treatment promoted MO nucleation on the entire VAG surface. Thus, the SnO2 nanoparticles uniformly covered the entire electrode surface after the S-SCBD process. SnO2@VAG exhibited an outstanding areal capacitance (4.40 F cm-2) up to 58% higher than that of VAG electrodes. The symmetric supercapacitor with SnO2@VAG electrodes showed an excellent areal capacitance (2.13 F cm-2) and a cyclic stability of 90% after 2000 cycles. These results suggest a new avenue for sonication-assisted fabrication of hybrid electrodes in the field of energy storage.
Collapse
|
14
|
High-sensitivity integrated detector with nanostructured hydrogel electrode for ascorbic acid determination. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
15
|
Ul Hoque MI, Holze R. Intrinsically Conducting Polymer Composites as Active Masses in Supercapacitors. Polymers (Basel) 2023; 15:730. [PMID: 36772032 PMCID: PMC9920322 DOI: 10.3390/polym15030730] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Intrinsically conducting polymers ICPs can be combined with further electrochemically active materials into composites for use as active masses in supercapacitor electrodes. Typical examples are inspected with particular attention to the various roles played by the constituents of the composites and to conceivable synergistic effects. Stability of composite electrode materials, as an essential property for practical application, is addressed, taking into account the observed causes and effects of materials degradation.
Collapse
Affiliation(s)
- Md. Ikram Ul Hoque
- Discipline of Chemistry, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rudolf Holze
- Department of Electrochemistry, Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
- Institut für Chemie, Chemnitz University of Technology, D-09107 Chemnitz, Germany
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
16
|
Fawad Khan M, Ali Marwat M, Abdullah, Shaheen Shah S, Abdul Karim R, Abdul Aziz M, Ud Din Z, Saad, Muhammad Adam K. Novel MoS2-Sputtered NiCoMg MOFs for High-Performance Hybrid Supercapacitor Applications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Parveen N, Ansari MO, Ansari SA, Kumar P. Nanostructured Titanium Nitride and Its Composites as High-Performance Supercapacitor Electrode Material. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:105. [PMID: 36616015 PMCID: PMC9824492 DOI: 10.3390/nano13010105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Electrochemical supercapacitors as an energy storage device have become trademark in current electronic, medical and industrial applications, as they are sources of impressive power output. Supercapacitors supply fast power output, suitable to cover the energy demand of future electronic devices. Electrode material design is a subject of intense research in the area of energy development and advancement, due to its essential role in the electrochemical process of charge storage and the cost of capacitors. The nano-dimensions allow for more electroactive sites, different pore size distributions, and a large specific surface area, making nanostructured electrode materials more promising. Electrode materials based on metal oxides, metal nitrides, and metal carbides are considered ideal for highly efficient electrochemical supercapacitors. Recently, much effort has been devoted to metal nitride-based electrodes and their diverse compositions as they possess higher electrical conductivity and better corrosion resistance, electrochemical stability, and chemical reactivity. Among these, titanium nitride (TiN), possesses high electrochemical stability, outstanding electrical conductivity, and a unique electronic structure. Nanocomposites based on titanium nitrides are known to deliver higher electrochemical performance than pristine nanostructured TiNs due to potential synergetic effects from both the materials. In this paper, recent advancements made in the field of nanostructural TiN electrode materials for SCs are reviewed along with their challenges and future opportunities. Additionally, some of the major techniques involved in the synthesis process are discussed, along with some basic concepts.
Collapse
Affiliation(s)
- Nazish Parveen
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | | | - Sajid Ali Ansari
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | - Pramod Kumar
- Functional Materials Laboratory, Department of Chemistry Prof Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, V. B. S. Purvanchal University, Jaunpur 222003, Uttar Pradesh, India
| |
Collapse
|
18
|
Ishii C, Asatani K, Sakata I. Obtaining interactions among science, technology, and research policy for developing an innovation strategy: A case study of supercapacitors. Heliyon 2022; 8:e10721. [PMID: 36193537 PMCID: PMC9526165 DOI: 10.1016/j.heliyon.2022.e10721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/19/2022] [Accepted: 09/15/2022] [Indexed: 12/01/2022] Open
Abstract
Comprehensive observations of science, technology, and research policy transactions are important for developing an innovation strategy. We propose a new method that combines the academic landscape and matrix analysis to understand the relationships among activities of three aspects of the technological landscape: science, technology, and research policy. First, we divided academic research into 28 knowledge domains by clustering a citation network of scientific papers. Next, we developed a new matrix classifying them into three groups: “mature technology,” “intermediate technology,” and “emerging technology.” The results showed that research domains in “emerging technology” showed a high rate of patent increase, indicating that they were commercializing rapidly. Finally, we identified the group that each country focused on, and this result reflected the countries' research policies. China and Singapore showed high rates, whereas Japan, France, and Germany had low values. This result reflects countries’ research policies and implies that specialty research areas differed by country. As above, our research result implies that academia, industry, and government have paid attention to knowledge domains in “emerging technology” and these are important for creating innovation. A supercapacitor, also known as an electric double layer capacitor or ultracapacitor, was selected as an example in our method. This research could help academic researchers, industrial companies, and policymakers in developing innovation strategies.
Collapse
Affiliation(s)
| | - Kimitaka Asatani
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ichiro Sakata
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|