1
|
George J, Thangarasu S, Jayaram A, Jesuraj Periyanayagam J. Materials for Electrocatalysis: Future Prospects in Energy Conversion. CHEM REC 2025; 25:e202400254. [PMID: 40165722 DOI: 10.1002/tcr.202400254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Electrocatalysts play a pivotal role in various energy conversion processes, such as water splitting, batteries, carbon dioxide reduction, and fuel cell reactions, by significantly reducing the energy barrier and enhancing reaction kinetics. This review highlights the potential of earth-abundant electrocatalysts, with a particular focus on their capabilities in critical electrochemical reactions, including oxygen evolution reaction, carbon dioxide reduction reaction, oxygen reduction reaction and hydrogen evolution reaction. Emphasis is also placed on bifunctional, trifunctional, and tetrafunctional performance, showcasing their adaptability and effectiveness across diverse energy applications. Exploration is done on a range of promising materials, including transition metal chalcogenides, MXenes, metal-organic frameworks, covalent organic frameworks, and layered double hydroxides. By examining their intrinsic properties, structural versatility, and surface engineering strategies, this review sheds light on the factors that govern their catalytic efficiency and stability. The integration of experimental advancements with theoretical insights provides a deeper understanding of mechanisms driving their catalytic activity. Additionally, we address the scalability, cost-effectiveness, and environmental impact of these materials, underlining their potential for large-scale deployment. By synthesizing recent progress and identifying challenges, this work delivers a roadmap for the model and application of multifunctional electrocatalysts, fostering innovations that align with the goals of sustainable energy systems.
Collapse
Affiliation(s)
- John George
- Center of Excellence in Materials and Advanced Technologies (CeMAT), Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Potheri, Chengalpattu, 603203, India
| | - Susikumar Thangarasu
- Center of Excellence in Materials and Advanced Technologies (CeMAT), Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Potheri, Chengalpattu, 603203, India
| | - Archana Jayaram
- Center of Excellence in Materials and Advanced Technologies (CeMAT), Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Potheri, Chengalpattu, 603203, India
| | - Justin Jesuraj Periyanayagam
- Center of Excellence in Materials and Advanced Technologies (CeMAT), Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Potheri, Chengalpattu, 603203, India
| |
Collapse
|
2
|
Kaleem Shabbir M, Arif F, Asghar H, Irum Memon S, Khanum U, Akhtar J, Ali A, Ramzan Z, Aziz A, Memon AA, Hussain Thebo K. Two-Dimensional MXene-Based Electrocatalysts: Challenges and Opportunities. CHEM REC 2024; 24:e202400047. [PMID: 39042918 DOI: 10.1002/tcr.202400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/22/2024] [Indexed: 07/25/2024]
Abstract
MXene, regarded as cutting-edge two-dimensional (2D) materials, have been widely explored in various applications due to their remarkable flexibility, high specific surface area, good mechanical strength, and interesting electrical conductivity. Recently, 2D MXene has served as a ideal platform for the design and development of electrocatalysts with high activity, selectivity, and stability. This review article provides a detailed description of the structural engineering of MXene-based electrocatalysts and summarizes the uses of 2D MXene in hydrogen evolution reactions, nitrogen reduction reactions, oxygen evolution reactions, oxygen reduction reactions, and methanol/ethanol oxidation. Then, key issues and prospects for 2D MXene as a next-generation platform in fundamental research and real-world electrocatalysis applications are discussed. Emphasis will be given to material design and enhancement techniques. Finally, future research directions are suggested to improve the efficiency of MXene-based electrocatalysts.
Collapse
Affiliation(s)
- Muhammad Kaleem Shabbir
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
- Department of Chemistry, University of Kotli, Kotli, AJK 11100, Pakistan
| | - Fozia Arif
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
- Government Graduate College for Women Jhelum, Jhelum, 49600, Pakistan
| | - Haleema Asghar
- Government Graduate College for Women Jhelum, Jhelum, 49600, Pakistan
| | - Sanam Irum Memon
- Department of Textile Engineering, Mehran University of Engineering and Technology, Jamshoro
| | - Urooj Khanum
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
| | - Javeed Akhtar
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
| | - Akbar Ali
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Zeeshan Ramzan
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
| | - Aliya Aziz
- Department of Chemistry, University of Kotli, Kotli, AJK 11100, Pakistan
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Khalid Hussain Thebo
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Wenhua Road, China
| |
Collapse
|
3
|
Jamali AA, Vohra MI, Ali A, Nadeem A, Attia SM, Hyder A, Memon AA, Khan Mahar F, Mahar RB, Yang J, Thebo KH. Highly efficient mica-incorporated graphene oxide-based membranes for water purification and desalination. Phys Chem Chem Phys 2024; 26:16369-16377. [PMID: 38805303 DOI: 10.1039/d4cp01182a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Graphene oxide (GO) has become the most attractive material for membrane technology owing to its potential application as a nanofiller in water treatment, purification, and desalination. In this study, we incorporated mica as a cross-linking reagent to increase the interlayer spacing and stability of GO sheets and fabricated a mica/GO (MGO) membrane for the first time. The MGO membrane (260 ± 10 nm) exhibits 100% rejection for biomolecules such as tannic acid (TA) and bovine serum albumin (BSA) and >99% rejection for multiple probe molecules, such as methylene blue, methyl orange, congo red, and rhodamine B. The high rejection of membranes can be attributed to the surface interaction of mica with GO nanosheets through covalent interaction, which enhances the stability and separation efficiency of the membranes for probe ions and molecules. This ultrathin MGO membrane also exhibits much better water permeability at 870 ± 5 L m-2 h-1 bar-1, which is 10-100 times greater than that reported for pure GO and GO-based composite membranes. Additionally, the membrane shows high rejection for salt ions (70%). Furthermore, the stability of the MGO membranes was evaluated under various conditions, and the membranes demonstrated remarkable stability for up to 60 days in a neutral environment.
Collapse
Affiliation(s)
- Ahmed Ali Jamali
- U.S.-Pakistan Centre for Advanced Studies in Water (USPCAS-W), Mehran University of Engineering and Technology, 76062, Jamshoro, Pakistan
| | | | - Akbar Ali
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China.
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Hyder
- National Center of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Ayaz Ali Memon
- National Center of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Faraz Khan Mahar
- U.S.-Pakistan Centre for Advanced Studies in Water (USPCAS-W), Mehran University of Engineering and Technology, 76062, Jamshoro, Pakistan
| | - Rasool Bux Mahar
- U.S.-Pakistan Centre for Advanced Studies in Water (USPCAS-W), Mehran University of Engineering and Technology, 76062, Jamshoro, Pakistan
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China.
| | - Khalid Hussain Thebo
- Institute of Metal Research (IMR), Chinese Academy of Sciences, Shenyang, China.
| |
Collapse
|
4
|
Xu D, Xie Y, Jin X, Zheng J, Gao Q, Jin P, Zhu X, Zhang Z, Li X, Li G, Liang H, Van der Bruggen B. Polyphenol-mediated defect patching of graphene oxide membranes for sulfonamide contaminants removal and fouling control. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133890. [PMID: 38422736 DOI: 10.1016/j.jhazmat.2024.133890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Graphene oxide (GO)-based laminar membranes are promising candidates for next-generation nanofiltration membranes because of their theoretically frictionless nanochannels. However, nonuniform stacking during the filtration process and the inherent swelling of GO nanosheets generate horizontal and vertical defects, leading to a low selectivity and susceptibility to pore blockage. Herein, both types of defects are simultaneously patching by utilizing tannic acid and FeⅢ. Tannic acid first partially reduced the upper GO framework, and then coordinated with FeⅢ to form a metal-polyphenol network covering horizontal defects. Due to the enhanced steric hindrance, the resulting membrane exhibited a two-fold increase in sulfonamide contaminants exclusion compared to the pristine GO membrane. A non-significant reduction in permeance was observed. In terms of fouling control, shielding defects significantly alleviated the irreversible pore blockage of the membrane. Additionally, the hydrophilic metal-polyphenol network weakened the adhesion force between the membrane and foulants, thereby improving the reversibility of fouling in the cleaning stage. This work opens up a new way to develop GO-based membranes with enhanced separation performance and antifouling ability.
Collapse
Affiliation(s)
- Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yumeng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xinyao Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Junfeng Zheng
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Qieyuan Gao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Pengrui Jin
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Zifeng Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xin Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium; Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|
5
|
Natasha, Khan A, Rahman UU, Sadaf, Yaseen M, Abumousa RA, Khattak R, Rehman N, Bououdina M, Humayun M. Effective Removal of Nile Blue Dye from Wastewater using Silver-Decorated Reduced Graphene Oxide. ACS OMEGA 2024; 9:19461-19480. [PMID: 38708276 PMCID: PMC11064184 DOI: 10.1021/acsomega.4c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Nile blue (NB) dye is a highly toxic substance that when discharged into sewage presents a significant risk to the environment and human health. Carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and their nanocomposites, offer considerable potential for eliminating hazardous pollutants from aqueous systems. In this study, we have successfully fabricated bare GO and rGO, and then, the rGO was decorated with silver (Ag) nanoparticles to develop the Ag-rGO composite. The as-prepared materials were characterized by various techniques, such as UV-visible (UV-vis) and Fourier transform infrared (FTIR) spectroscopies, X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and scanning electron microscopy (SEM) to elucidate their structure, morphology, and chemical composition. The pollutant removal performance of the as-prepared materials was evaluated through a batch approach under the effect of various experimental variables for removal of NB dye from wastewater. As obvious, the Ag-rGO composite revealed exceptional performance for NB dye removal from wastewater, with a maximum removal percentage of 94% within 60 min, which is remarkably higher than those of the rGO (i.e., 59%) and GO (i.e., 22%), under the same experimental conditions. The adsorption data was analyzed with thermodynamics, isotherms, and kinetics models to better understand the physicochemical mechanisms driving the effective removal of the NB dye. The results reveal that Ag-rGO nanocomposite exhibit excellent adsorption ability as well as favorable thermodynamic and kinetic parameters for NB dye removal. It was also found that the presence of light enhanced the adsorptive removal of NB while using Ag-rGO as an adsorbent. The present study noted significant reusability of the Ag-rGO nanocomposite, likely due to minimal Ag leaching and/or the robust stability of the Ag-rGO. It is suggested that Ag-rGO-based hybrid materials could serve as promising candidates for efficiently adsorbing and catalytically removing various toxic pollutants from wastewater.
Collapse
Affiliation(s)
- Natasha
- Department
of Chemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Abbas Khan
- Department
of Chemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
- Energy,
Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Ubaid Ur Rahman
- Department
of Chemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Sadaf
- Department
of Chemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Muhammad Yaseen
- Department
of Chemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Rasha A. Abumousa
- Energy,
Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Rozina Khattak
- Department
of Chemistry, Shaheed Benazir Bhutto Women
University Avenue, Larama Charsadda Road Peshawar, Peshawar 00384,Pakistan
| | - Noor Rehman
- Department
of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir(U), Dir Upper 18000,Pakistan
| | - Mohamed Bououdina
- Energy,
Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Muhammad Humayun
- Energy,
Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
6
|
Goren AY, Gungormus E, Vatanpour V, Yoon Y, Khataee A. Recent Progress on Synthesis and Properties of Black Phosphorus and Phosphorene As New-Age Nanomaterials for Water Decontamination. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38604807 DOI: 10.1021/acsami.3c19230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Concerted efforts have been made in recent years to find solutions to water and wastewater treatment challenges and eliminate the difficulties associated with treatment methods. Various techniques are used to ensure the recycling and reuse of water resources. Owing to their excellent chemical, physical, and biological properties, nanomaterials play an important role when integrated into water/wastewater treatment technologies. Black phosphorus (BP) is a potential nanomaterial candidate for water and wastewater treatment, especially its monolayer 2D derivative called phosphorene. Phosphorene offers relative adjustability in its direct bandgap, high charge carrier mobility, and improved in-plane anisotropy compared to the most extensively studied 2D nanomaterials. In this study, we examined the physical and chemical characteristics and synthetic processes of BP and phosphorene. We provide an overview of the latest advancements in the main applications of BP and phosphorene in water/wastewater treatment, which are categorized as photocatalytic, adsorption, and membrane filtration processes. Additionally, we explore the existing difficulties in the integration of BP and phosphorene into water/wastewater treatment technologies and prospects for future research in this field. In summary, this review highlights the ongoing necessity for significant research efforts on the integration of BP and phosphorene in water and wastewater applications.
Collapse
Affiliation(s)
- A Yagmur Goren
- Department of Environmental Engineering, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| | - Elif Gungormus
- Department of Chemical Engineering, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- Environmental Engineering Department & National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University, Istanbul 34469, Turkey
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Alireza Khataee
- Department of Chemical Engineering & ITU Synthetic Fuels and Chemicals Technology Center (ITU-SENTEK), Istanbul Technical University, Istanbul 34469, Turkey
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| |
Collapse
|
7
|
Gu P, Liu S, Cheng X, Zhang S, Wu C, Wen T, Wang X. Recent strategies, progress, and prospects of two-dimensional metal carbides (MXenes) materials in wastewater purification: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169533. [PMID: 38154645 DOI: 10.1016/j.scitotenv.2023.169533] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
With the rapid development of industrialization, water pollution directly leads to the serious shortage of fresh water. As reported by the World Water Council, nearly 3.8 billion people will face water scarcity by 2030. Therefore, developing advanced nanomaterials to realize wastewater purification is a major challenge. Two-dimensional (2D) transition metal carbides (MXenes), as the emerging 2D layered nanomaterials, have been investigated for the applications of water purification treatment since first reported in 2011. Over 40 different MXenes have been developed for environmental remediation, and dozens more structures and properties are theoretically predicted. Here, we review the advances from the aspects of synthesis strategies for MXenes, purification mechanism, and their applications in wastewater treatment processes. The major points are 1) the synthesis and modification approaches for MXenes such as multi-layered stacked MXenes and delaminated MXenes 2) a discussion of current water remediation over MXene-based materials, 3) a brief introduction for removal behaviors and deep interaction mechanisms, 4) optimization strategies and key points for boosting the remediation performance of MXenes.
Collapse
Affiliation(s)
- Pengcheng Gu
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China; MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Shengsheng Liu
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Xiangmei Cheng
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Sai Zhang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Chuanying Wu
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Tao Wen
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
8
|
Soomro F, Ali A, Ullah S, Iqbal M, Alshahrani T, Khan F, Yang J, Thebo KH. Highly Efficient Arginine Intercalated Graphene Oxide Composite Membranes for Water Desalination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18447-18457. [PMID: 38055936 DOI: 10.1021/acs.langmuir.3c02699] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Graphene oxide-based composite membranes have received enormous attention for highly efficient water desalination. Herein, we prepare arginine/graphene oxide (Arg/GO) composite membranes by surface functionalizing GO nanosheets with arginine amino acid. Arginine has a unique combination of hydroxyl and amino functional groups that cross-link GO nanosheets through hydrogen bonding and electrostatic interactions. The as-prepared Arg@GO composite membranes with different thicknesses are used to separate the salt and dye molecules. The 900-nm-thick Arg@GO composite membrane shows high rejection of 98% for NaCl and 99.8% for MgCl2, Ni(NO3)2, and Pb(NO3)2 with good water permeance. Such a membrane also shows a high separation efficiency (100%) for methylene blue, rhodamine B, and Evans blue dyes. At the same time, the ultrathin Arg@GO composite membrane (220 ± 10 nm) exhibits high water permeance of up to 2100 ± 10 L m-2 h-1 bar-1. Furthermore, the 900-nm-thick Arg@GO composite membrane is stable in an aqueous environment for 40 days with significantly less swelling. Therefore, these membranes can be utilized in future desalination and separation applications.
Collapse
Affiliation(s)
- Faheeda Soomro
- Department of Human and Rehabilitation Sciences, Faculty of Education, Linguists and Sciences, The Begum Nusrat Bhutto Women University, Rohri Bypass, Sukkur 65200, Pakistan
| | - Akbar Ali
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Sami Ullah
- K.A.CARE Energy Research & Innovation Centre (ERIC), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur 22620 KPK, Pakistan
| | - Thamraa Alshahrani
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Firoz Khan
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Jun Yang
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Khalid Hussain Thebo
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
9
|
Jia F, Yang L, Sun L, Yu D, Song Y, Wang Y, Kipper MJ, Tang J, Huang L. Efficient separation of dyes using two-dimensional heterogeneous composite membranes. WATER RESEARCH 2023; 247:120693. [PMID: 37976627 DOI: 10.1016/j.watres.2023.120693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 11/19/2023]
Abstract
Two-dimensional materials are widely used in membrane separation, but the loose distribution and severe expansion between graphene oxide (GO) nanosheets limit its application. Here, we introduce a two-dimensional MOF material into the GO membrane to enhance its water permeance and separation performance. The MOF/GO composite membrane was prepared by vacuum filtration. The MOF and GO nanosheets were tightly stacked through the π-π effect, and the shortened transmission path and enhanced pore structure greatly improved the water permeance of the composite membrane. The MOF/GO membrane exhibited a high water permeance of 56.94 L m-2 h-1 bar-1. The rejection rates of methylene blue and was as methyl orange dyes were as high as 99.79% and 99.11%, respectively. At increased dye concentration, the rejection rate of methylene blue was still maintained greater than 99%. Dye rejection after 18 h of continuous operation remains above 90%. This work provides new ideas for improving membrane separation materials. The combination of two-dimensional heterogeneous materials can result in synergistic advantages for the development of composite membranes with high water permeance and high rejection rate.
Collapse
Affiliation(s)
- Fengchun Jia
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science and Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Liu Yang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science and Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Liyue Sun
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science and Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Dehao Yu
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science and Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yu Song
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science and Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yanxin Wang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science and Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Matt J Kipper
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science and Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Linjun Huang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science and Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
10
|
Alsulaim GM. Effective Reinforcement of Visible Light Photocatalytic and Gas Sensing Characteristics of Nanocrystalline TiO 2: Gd-Based Nb and Mo Dopants. Molecules 2023; 28:7239. [PMID: 37959663 PMCID: PMC10648698 DOI: 10.3390/molecules28217239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Efficient compositions for the selective detection of ethanol gas and the removal of organic contaminants were realized by codoping of (Gd, Nb) and (Gd, Mo) ions into TiO2. TiO2, Ti0.96Gd0.01Nb0.03O2, and Ti0.96Gd0.01Mo0.03O2 samples were prepared by a coprecipitation method. For all compositions, a crystalline anatase phase of TiO2 was detected. Compared to pure TiO2, the absorption edges of Ti0.96Gd0.01Nb0.03O2 and Ti0.96Gd0.01Mo0.03O2 samples were red-shifted, further broadening towards visible light. The morphological studies demonstrate that the grains of TiO2 were more refined after (Gd, Nb) and (Gd, Mo) codoping. The photocatalytic efficiency of the Ti0.96Gd0.01Mo0.03O2 catalyst for degrading 20 mg/L reactive yellow 145, brilliant green, and amoxicillin was 98, 95, and 93% in 90 min, respectively. The reusability experiments indicate that the Ti0.96Gd0.01Mo0.03O2 catalyst had high stability during reuse. The high photocatalytic activity of the Ti0.96Gd0.01Mo0.03O2 catalyst was correlated to the broad visible-light absorption and effective separation of electron-hole pairs by Gd3+ and Mo6+ cations. The gas sensing characteristic is reflected by the high sensitivity of the Ti0.96Gd0.01Nb0.03O2 sensor to ethanol gas in the presence of different gases at 275 °C. The obtained results indicated that the (Gd, Mo) mixture could more effectively induce the photocatalytic properties of TiO2 while (Gd, Nb) dopants were the best for reinforcing its sensing characteristics.
Collapse
Affiliation(s)
- Ghayah M Alsulaim
- Department of Chemistry, Faculty of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
11
|
Jatoi AH, Kim KH, Khan MA, Memon FH, Iqbal M, Janwery D, Phulpoto SN, Samantasinghar A, Choi KH, Thebo KH. Functionalized graphene oxide-based lamellar membranes for organic solvent nanofiltration applications. RSC Adv 2023; 13:12695-12702. [PMID: 37114023 PMCID: PMC10126819 DOI: 10.1039/d3ra00223c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
In this study, two-dimensional graphene oxide-based novel membranes were fabricated by modifying the surface of graphene oxide nanosheets with six-armed poly(ethylene glycol) (PEG) at room conditions. The as-modified PEGylated graphene oxide (PGO) membranes with unique layered structures and large interlayer spacing (∼1.12 nm) were utilized for organic solvent nanofiltration applications. The as-prepared 350 nm-thick PGO membrane offers a superior separation (>99%) against evans blue, methylene blue and rhodamine B dyes along with high methanol permeance ∼ 155 ± 10 L m-2 h-1, which is 10-100 times high compared to pristine GO membranes. Additionally, these membranes are stable for up to 20 days in organic solvent. Hence the results suggested that the as-synthesized PGO membranes with superior separation efficiency for dye molecules in organic solvent can be used in future for organic solvent nanofiltration application.
Collapse
Affiliation(s)
- Ashique Hussain Jatoi
- Department of Chemistry, Shaheed Benazir Bhutto University Shaheed Benazirabad 67480 Pakistan
| | | | - Muhammad Ali Khan
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Fida Hussain Memon
- Department of Mechatronics Engineering, Jeju National University Jeju 63243 Republic of Korea
- Department of Electrical Engineering, Sukkur IBA University Sukkur 65200 Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur KPK 22620 Pakistan
| | - Dahar Janwery
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro Pakistan
| | - Shah Nawaz Phulpoto
- Department of Molecular Biology & Genetics, Shaheed Benazir University Shaheed Benazirabad 67480 Pakistan
| | - Anupama Samantasinghar
- Department of Mechatronics Engineering, Jeju National University Jeju 63243 Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University Jeju 63243 Republic of Korea
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences (CAS) Shenyang 110016 China
| |
Collapse
|
12
|
Soomro F, Memon FH, Khan MA, Iqbal M, Ibrar A, Memon AA, Lim JH, Choi KH, Thebo KH. Ultrathin Graphene Oxide-Based Nanocomposite Membranes for Water Purification. MEMBRANES 2023; 13:membranes13010064. [PMID: 36676871 PMCID: PMC9863712 DOI: 10.3390/membranes13010064] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 05/14/2023]
Abstract
Two-dimensional graphene oxide (GO)-based lamellar membranes have been widely developed for desalination, water purification, gas separation, and pervaporation. However, membranes with a well-organized multilayer structure and controlled pore size remain a challenge. Herein, an easy and efficient method is used to fabricate MoO2@GO and WO3@GO nanocomposite membranes with controlled structure and interlayer spacing. Such membranes show good separation for salt and heavy metal ions due to the intensive stacking interaction and electrostatic attraction. The as-prepared composite membranes showed high rejection rates (˃70%) toward small metal ions such as sodium (Na+) and magnesium (Mg2+) ions. In addition, both membranes also showed high rejection rates ˃99% for nickel (Ni2+) and lead (Pb2+) ions with good water permeability of 275 ± 10 L m-2 h-1 bar-1. We believe that our fabricated membranes will have a bright future in next generation desalination and water purification membranes.
Collapse
Affiliation(s)
- Faheeda Soomro
- Department of Human and Rehabilitation Sciences, Faculty of Education, Linguists and Sciences, The Begum Nusrat Bhutto Women University, Rohri Bypass, Sukkur 65200, Pakistan
| | - Fida Hussain Memon
- Department of Mechatronics Engineering, Jeju National University, Jeju 63243, Republic of Korea
- Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan
| | - Muhammad Ali Khan
- Institute of Chemical Sciences, Bahauddin Zakriya University, Multan 60800, Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur KPK, Haripur 22620, Pakistan
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur KPK, Haripur 22620, Pakistan
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Jong Hwan Lim
- Department of Mechatronics Engineering, Jeju National University, Jeju 63243, Republic of Korea
- Correspondence: (J.H.L.); (K.H.C.); (K.H.T.)
| | - Kyung Hyon Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju 63243, Republic of Korea
- Correspondence: (J.H.L.); (K.H.C.); (K.H.T.)
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences (CAS), Shenyang 110016, China
- Correspondence: (J.H.L.); (K.H.C.); (K.H.T.)
| |
Collapse
|