1
|
Hashemi S, Mohammadi Amirabad L, Farzad-Mohajeri S, Rezai Rad M, Fahimipour F, Ardeshirylajimi A, Dashtimoghadam E, Salehi M, Soleimani M, Dehghan MM, Tayebi L, Khojasteh A. Comparison of osteogenic differentiation potential of induced pluripotent stem cells and buccal fat pad stem cells on 3D-printed HA/β-TCP collagen-coated scaffolds. Cell Tissue Res 2021; 384:403-421. [PMID: 33433691 DOI: 10.1007/s00441-020-03374-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 12/02/2020] [Indexed: 01/18/2023]
Abstract
Production of a 3D bone construct with high-yield differentiated cells using an appropriate cell source provides a reliable strategy for different purposes such as therapeutic screening of the drugs. Although adult stem cells can be a good source, their application is limited due to invasive procedure of their isolation and low yield of differentiation. Patient-specific human-induced pluripotent stem cells (hiPSCs) can be an alternative due to their long-term self-renewal capacity and pluripotency after several passages, resolving the requirement of a large number of progenitor cells. In this study, a new biphasic 3D-printed collagen-coated HA/β-TCP scaffold was fabricated to provide a 3D environment for the cells. The fabricated scaffolds were characterized by the 3D laser scanning digital microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and mechanical test. Then, the osteogenesis potential of the hiPSC-seeded scaffolds was investigated compared to the buccal fat pad stem cell (BFPSC)-seeded scaffolds through in vitro and in vivo studies. In vitro results demonstrated up-regulated expressions of osteogenesis-related genes of RUNX2, ALP, BMP2, and COL1 compared to the BFPSC-seeded scaffolds. In vivo results on calvarial defects in the rats confirmed a higher bone formation in the hiPSC-seeded scaffolds compared to the BFPSC-seeded groups. The immunofluorescence assay also showed higher expression levels of collagen I and osteocalcin proteins in the hiPSC-seeded scaffolds. It can be concluded that using the hiPSC-seeded scaffolds can lead to a high yield of osteogenesis, and the hiPSCs can be used as a superior stem cell source compared to BFPSCs for bone-like construct bioengineering.
Collapse
Affiliation(s)
- Sheida Hashemi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Saeed Farzad-Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Maryam Rezai Rad
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Salehi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zhao Y, Wu Y, Wang J, Liao C, Mi X, Chen F. Circadian transcription factor Dbp promotes rat calvarial osteoprogenitors osteogenic differentiation through Kiss1/GnRH/E2 signaling pathway loop. J Cell Biochem 2020; 122:166-179. [PMID: 32830342 DOI: 10.1002/jcb.29836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 11/06/2022]
Abstract
To determine the mechanism by which D-site-binding protein (Dbp) regulates rat calvarial osteoprogenitors (OPCs) osteogenic differentiation. α-Smooth muscle actin (α-SMA) + rat calvarial OPCs were extracted and purified using immunomagnetic beads. Cells were transduced with Dbp-lentivirus and divided into Dbp knockdown, Dbp overexpression and vehicle groups. After osteogenic induction for 21 days, Alizarin red staining and alkaline phosphatase (ALP) activity were examined. Expression levels of Runx2, Ocn, Osterix, Bmp4, Kiss1, and GnRH were determined using a quantitative real-time polymerase chain reaction. The observed changes in Kisspeptin, GnRH, ERα, and Runx2 were further validated via Western blot analysis. Furthermore, E2 and GnRH secretion levels were detected via an enzyme-linked immunosorbent assay (ELISA). Chromatin immunoprecipitation (ChIP) and luciferase assay were used to assess the effects of Dbp on the Kiss1 gene promoter. The coexpression of Dbp and Kisspeptin or GnRH was also evaluated via immunofluorescence. Following osteogenic induction, Dbp overexpression significantly increased calcium nodule formation and ALP activity, as well as Runx2, Ocn, Osterix, Bmp4, Kiss1, and GnRH messenger RNA expression, while Dbp knockdown presented the opposite results. Western blot analysis and ELISA results showed that Dbp significantly promotes Runx2, E2/ERα, Kisspeptin, and GnRH expression. These findings were confirmed by the ChIP assay, which indicated that the estrogen receptor promotes Kisspeptin expression after binding to the Kiss1 gene promoter, which is regulated by Dbp. Immunofluorescence assay showed that Dbp coexpression with Kisspeptin or GnRH varied depending on Dbp expression levels. Collectively, the circadian transcription factor Dbp promotes α-SMA + rat calvarial OPCs osteoblastic differentiation through Kiss1/GnRH/E2 signaling pathway loop.
Collapse
Affiliation(s)
- Yanhui Zhao
- Department of Orthodontics, School & Hospital of Stomatology, Engineering Researching Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Yanan Wu
- Department of Orthodontics, School & Hospital of Stomatology, Engineering Researching Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Jie Wang
- Department of Orthodontics, School & Hospital of Stomatology, Engineering Researching Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Chongshan Liao
- Department of Orthodontics, School & Hospital of Stomatology, Engineering Researching Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Xiaohui Mi
- Department of Orthodontics, School & Hospital of Stomatology, Engineering Researching Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Fengshan Chen
- Department of Orthodontics, School & Hospital of Stomatology, Engineering Researching Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Yu L, Rowe DW, Perera IP, Zhang J, Suib SL, Xin X, Wei M. Intrafibrillar Mineralized Collagen-Hydroxyapatite-Based Scaffolds for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18235-18249. [PMID: 32212615 DOI: 10.1021/acsami.0c00275] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As one of the major challenges in the field of tissue engineering, large skeletal defects have attracted wide attention from researchers. Collagen (Col) and hydroxyapatite (HA), the most abundant protein and the main component in natural bone, respectively, are usually used as a biomimetic composite material in tissue engineering due to their excellent biocompatibility and biodegradability. In this study, novel intrafibrillar mineralized Col-HA-based scaffolds, constructed in either cellular or lamellar microstructures, were established through a biomimetic method to enhance the new bone-regenerating capability of tissue engineering scaffolds. Moreover, iron (Fe) and manganese (Mn), two of the essential trace elements in the body, were successfully incorporated into the lamellar scaffold to further improve the osteoinductivity of these biomaterials. It was found that the lamellar scaffolds demonstrated better osteogenic abilities compared to both in-house and commercial Col-HA-based cellular scaffolds in vitro and in vivo. Meanwhile, Fe/Mn incorporation further amplified the osteogenic promotion of the lamellar scaffolds. More importantly, a synergistic effect was observed in the Fe and Mn dual-element-incorporated lamellar scaffolds for both in vitro osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and in vivo bone regeneration loaded with fresh bone marrow cells. This study provides a simple but practical strategy for the creation of functional scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
| | - David W Rowe
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut 06032, United States
| | | | | | | | - Xiaonan Xin
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut 06032, United States
| | - Mei Wei
- Department of Mechanical Engineering, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
4
|
Gohi BFCA, Liu XY, Zeng HY, Xu S, Ake KMH, Cao XJ, Zou KM, Namulondo S. Enhanced efficiency in isolation and expansion of hAMSCs via dual enzyme digestion and micro-carrier. Cell Biosci 2020; 10:2. [PMID: 31921407 PMCID: PMC6945441 DOI: 10.1186/s13578-019-0367-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/16/2019] [Indexed: 01/08/2023] Open
Abstract
A two-stage method of obtaining viable human amniotic stem cells (hAMSCs) in large-scale is described. First, human amniotic stem cells are isolated via dual enzyme (collagenase II and DNAase I) digestion. Next, relying on a culture of the cells from porous chitosan-based microspheres in vitro, high purity hAMSCs are obtained in large-scale. Dual enzymatic (collagenase II and DNase I) digestion provides a primary cell culture and first subculture with a lower contamination rate, higher purity and a larger number of isolated cells. The obtained hAMSCs were seeded onto chitosan microspheres (CM), gelatin-chitosan microspheres (GCM) and collagen-chitosan microspheres (CCM) to produce large numbers of hAMSCs for clinical trials. Growth activity measurement and differentiation essays of hAMSCs were realized. Within 2 weeks of culturing, GCMs achieved over 1.28 ± 0.06 × 107 hAMSCs whereas CCMs and CMs achieved 7.86 ± 0.11 × 106 and 1.98 ± 0.86 × 106 respectively within this time. In conclusion, hAMSCs showed excellent attachment and viability on GCM-chitosan microspheres, matching the hAMSCs' normal culture medium. Therefore, dual enzyme (collagenase II and DNAase I) digestion may be a more useful isolation process and culture of hAMSCs on porous GCM in vitro as an ideal environment for the large-scale expansion of highly functional hAMSCs for eventual use in stem cell-based therapy.
Collapse
Affiliation(s)
- Bi Foua Claude Alain Gohi
- Biology and Chemical Engineering School, Panzhihua University, Panzhihua, 617000 Sichuan People’s Republic of China
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| | - Xue-Ying Liu
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Green, Zhuzhou, China
- Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007 Hunan China
| | - Hong-Yan Zeng
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| | - Sheng Xu
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| | - Kouassi Marius Honore Ake
- Faculty of Business Administration, Laval University, Pavillon Palasis-Prince, 2325 Rue de la Terrasse, G1V 0A6 Quebec City, Canada
| | - Xiao-Ju Cao
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| | - Kai-Min Zou
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| | - Sheila Namulondo
- Institute of Comparative Literature and World Literature, College of Literature and Journalism, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| |
Collapse
|
5
|
Clearfield DS, Xin X, Yadav S, Rowe DW, Wei M. Osteochondral Differentiation of Fluorescent Multireporter Cells on Zonally-Organized Biomaterials. Tissue Eng Part A 2019; 25:468-486. [DOI: 10.1089/ten.tea.2018.0135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Drew S. Clearfield
- Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut
- Center for Regenerative Medicine and Skeletal Development and School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - Xiaonan Xin
- Center for Regenerative Medicine and Skeletal Development and School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - Sumit Yadav
- Department of Orthodontics, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - David W. Rowe
- Center for Regenerative Medicine and Skeletal Development and School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - Mei Wei
- Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
6
|
Semyari H, Salehi M, Taleghani F, Ehterami A, Bastami F, Jalayer T, Semyari H, Hamed Nabavi M, Semyari H. Fabrication and characterization of collagen–hydroxyapatite-based composite scaffolds containing doxycycline via freeze-casting method for bone tissue engineering. J Biomater Appl 2018; 33:501-513. [DOI: 10.1177/0885328218805229] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this study, hydroxyapatite nanoparticles containing 10% doxycycline, a structural isomer of tetracycline, was prepared by the co-precipitation method. It was added to collagen solution for the preparation of the scaffold with freeze-casting method in order to develop a composite scaffold with both antibacterial and osteoinductive properties for repairing bone defects. The scaffolds were evaluated regarding their morphology, porosity, degradation and cellular response. The scaffolds for further investigation were added in a rat calvaria defect model. The study showed that after eight weeks, the bone formation was relatively higher in the collagen/nano-hydroxyapatite/doxycycline group with completely filled defect when compared with other groups. Histopathological evaluation showed that the defect in the collagen/nano-hydroxyapatite/doxycycline group was fully replaced by the new bone and connective tissue. Our results provide evidence supporting the possible applicability of doxycycline-containing scaffolds for successful bone regeneration.
Collapse
Affiliation(s)
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and stem cells research center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ferial Taleghani
- Department of Periodontology, Dental School, Shahed University, Tehran, Iran
| | - Arian Ehterami
- Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farshid Bastami
- Dental research center, research institute of dental Science, school of dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Oral and maxillofacial surgery department, school of dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hadis Semyari
- Dental student, faculty of dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
7
|
Clearfield D, Nguyen A, Wei M. Biomimetic multidirectional scaffolds for zonal osteochondral tissue engineering via a lyophilization bonding approach. J Biomed Mater Res A 2017; 106:948-958. [PMID: 29115031 DOI: 10.1002/jbm.a.36288] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/14/2017] [Accepted: 11/02/2017] [Indexed: 01/12/2023]
Abstract
The zonal organization of osteochondral tissue underlies its long term function. Despite this, tissue engineering strategies targeted for osteochondral repair commonly rely on the use of isotropic biomaterials for tissue reconstruction. There exists a need for a new class of highly biomimetic, anisotropic scaffolds that may allow for the engineering of new tissue with zonal properties. To address this need, we report the facile production of monolithic multidirectional collagen-based scaffolds that recapitulate the zonal structure and composition of osteochondral tissue. First, superficial and osseous zone-mimicking scaffolds were fabricated by unidirectional freeze casting collagen-hyaluronic acid and collagen-hydroxyapatite-containing suspensions, respectively. Following their production, a lyophilization bonding process was used to conjoin these scaffolds with a distinct collagen-hyaluronic acid suspension mimicking the composition of the transition zone. Resulting matrices contained a thin, highly aligned superficial zone that interfaced with a cellular transition zone and vertically oriented calcified cartilage and osseous zones. Confocal microscopy confirmed a zone-specific localization of hyaluronic acid, reflecting the depth-dependent increase of glycosaminoglycans in the native tissue. Poorly crystalline, carbonated hydroxyapatite was localized to the calcified cartilage and osseous zones and bordered the transition zone. Compressive testing of hydrated scaffold zones confirmed an increase of stiffness with scaffold depth, where compressive moduli of chondral and osseous zones fell within or near ranges conducive for chondrogenesis or osteogenesis of mesenchymal stem cells. With the combination of these biomimetic architectural and compositional cues, these multidirectional scaffolds hold great promise for the engineering of zonal osteochondral tissue. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 948-958, 2018.
Collapse
Affiliation(s)
- Drew Clearfield
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut, 06269.,Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, 06269
| | - Andrew Nguyen
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, 06269
| | - Mei Wei
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut, 06269.,Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, 06269
| |
Collapse
|
8
|
Hu C, Yu L, Wei M. Biomimetic intrafibrillar silicification of collagen fibrils through a one-step collagen self-assembly/silicification approach. RSC Adv 2017. [DOI: 10.1039/c7ra02935g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intrafibrillar silicified collagen fibrils are successfully fabricated using a one-step collagen self-assembly/silicification approach, which better support osteoblast activities.
Collapse
Affiliation(s)
- Changmin Hu
- Institute of Materials Science
- University of Connecticut
- Storrs
- USA
| | - Le Yu
- Department of Materials Science and Engineering
- University of Connecticut
- Storrs
- USA
| | - Mei Wei
- Department of Materials Science and Engineering
- University of Connecticut
- Storrs
- USA
- Institute of Materials Science
| |
Collapse
|
9
|
Zhang ML, Cheng J, Xiao YC, Yin RF, Feng X. Raloxifene microsphere-embedded collagen/chitosan/β-tricalcium phosphate scaffold for effective bone tissue engineering. Int J Pharm 2016; 518:80-85. [PMID: 27988379 DOI: 10.1016/j.ijpharm.2016.12.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/16/2022]
Abstract
Engineering novel scaffolds that can mimic the functional extracellular matrix (ECM) would be a great achievement in bone tissue engineering. This paper reports the fabrication of novel collagen/chitosan/β-tricalcium phosphate (CCTP) based tissue engineering scaffold. In order to improve the regeneration ability of scaffold, we have embedded raloxifene (RLX)-loaded PLGA microsphere in the CCTP scaffold. The average pore of scaffold was in the range of 150-200μm with ideal mechanical strength and swelling/degradation characteristics. The release rate of RLX from the microsphere (MS) embedded scaffold was gradual and controlled. Also a significantly enhanced cell proliferation was observed in RLX-MS exposed cell group suggesting that microsphere/scaffold could be an ideal biomaterial for bone tissue engineering. Specifically, RLX-MS showed a significantly higher Alizarin red staining indicating the higher mineralization capacity of this group. Furthermore, a high alkaline phosphatase (ALP) activity for RLX-MS exposed group after 15days incubation indicates the bone regeneration capacity of MC3T3-E1 cells. Overall, present study showed that RLX-loaded microsphere embedded scaffold has the promising potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Ming-Lei Zhang
- Depatrment of Orthopaedics, China-Japan Union Hospital, Jilin University, China
| | - Ji Cheng
- Depatrment Obstetrics and Gynecology, China-Japan Union Hospital, Jilin University, China
| | - Ye-Chen Xiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, China
| | - Ruo-Feng Yin
- Depatrment of Orthopaedics, China-Japan Union Hospital, Jilin University, China.
| | - Xu Feng
- Department of Spine Surgery, 1st Hospital of Jilin University No. 71 Xinmin St, Changchun, China.
| |
Collapse
|
10
|
Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K. Carbohydr Polym 2016; 152:566-574. [DOI: 10.1016/j.carbpol.2016.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 11/21/2022]
|
11
|
Hu C, Zilm M, Wei M. Fabrication of intrafibrillar and extrafibrillar mineralized collagen/apatite scaffolds with a hierarchical structure. J Biomed Mater Res A 2016; 104:1153-61. [PMID: 26748775 DOI: 10.1002/jbm.a.35649] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/08/2016] [Indexed: 12/23/2022]
Abstract
A biomimetic collagen-apatite (Col-Ap) scaffold resembling the composition and structure of natural bone from the nanoscale to the macroscale has been successfully prepared for bone tissue engineering. We have developed a bottom-up approach to fabricate hierarchically biomimetic Col-Ap scaffolds with both intrafibrillar and extrafibrillar mineralization. To achieve intrafibrillar mineralization, polyacrylic acid (PAA) was used as a sequestrating analog of noncollagenous proteins (NCPs) to form a fluidic amorphous calcium phosphate (ACP) nanoprecursor through attraction of calcium and phosphate ions. Sodium tripolyphosphate was used as a templating analog to regulate orderly deposition of apatite within collagen fibrils. Both X-ray diffraction and Fourier transform infrared spectroscopy suggest that the mineral phase was apatite. Field emission scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction confirmed that hierarchical collagen-Ap scaffolds were produced with both intrafibrillar and extrafibrillar mineralization. Biomimetic Col-Ap scaffolds with both intrafibrillar and extrafibrillar mineralization (IE-Col-Ap) were compared with Col-Ap scaffolds with extrafibrillar mineralization only (E-Col-Ap) as well as pure collagen scaffolds in vitro for cellular proliferation using MC3T3-E1 cells. Pure collagen scaffolds had the highest rate of proliferation, while there was no statistically significant difference between IE-Col-Ap and E-Col-Ap scaffolds. Thus, the bottom-up biomimetic fabrication approach has rendered a group of promising Col-Ap scaffolds, which bear high resemblance to natural bone in terms of composition and structure.
Collapse
Affiliation(s)
- Changmin Hu
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Rd, Unit 3136, Storrs, Connecticut, 06269
| | - Michael Zilm
- Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Rd, Unit 3136, Storrs, Connecticut, 06269
| | - Mei Wei
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Rd, Unit 3136, Storrs, Connecticut, 06269.,Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Rd, Unit 3136, Storrs, Connecticut, 06269
| |
Collapse
|
12
|
Gohil SV, Kuo C, Adams DJ, Maye P, Rowe DW, Nair LS. Evaluation of the donor cell contribution in rh
BMP
‐2 mediated bone formation with chitosan thermogels using fluorescent protein reporter mice. J Biomed Mater Res A 2016; 104:928-41. [DOI: 10.1002/jbm.a.35634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/18/2015] [Accepted: 12/18/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Shalini V. Gohil
- Department of Orthopaedic SurgeryUConn HealthFarmington Connecticut06030
- Institute for Regenerative Engineering, The Raymond Beverly Sackler Center for Biomedical, Biological, Physical and Engineering SciencesUConn HealthFarmington Connecticut06030
| | - Chia‐Ling Kuo
- Connecticut Institute for Clinical and Translational Science, Institute for Systems Genomics, University of ConnecticutFarmington Connecticut06030
| | - Douglas J. Adams
- Department of Orthopaedic SurgeryUConn HealthFarmington Connecticut06030
| | - Peter Maye
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, School of Dental MedicineUConn HealthFarmington Connecticut06030
| | - David W. Rowe
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, School of Dental MedicineUConn HealthFarmington Connecticut06030
| | - Lakshmi S. Nair
- Department of Orthopaedic SurgeryUConn HealthFarmington Connecticut06030
- Institute for Regenerative Engineering, The Raymond Beverly Sackler Center for Biomedical, Biological, Physical and Engineering SciencesUConn HealthFarmington Connecticut06030
- Departments of Material Science and Engineering, Biomedical Engineering and Institute of Material ScienceUniversity of ConnecticutStorrs Connecticut06269
| |
Collapse
|
13
|
Wang D, Gilbert JR, Shaw MA, Shakir S, Losee JE, Billiar TR, Cooper GM. Toll-like receptor 4 mediates the regenerative effects of bone grafts for calvarial bone repair. Tissue Eng Part A 2016; 21:1299-308. [PMID: 25603990 DOI: 10.1089/ten.tea.2014.0215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Craniofacial trauma is difficult to repair and presents a significant burden to the healthcare system. The inflammatory response following bone trauma is critical to initiate healing, serving to recruit inflammatory and progenitor cells and to promote angiogenesis. A role for inflammation in graft-induced bone regeneration has been suggested, but is still not well understood. The current study assessed the impact of Toll-like receptor (TLR4) signaling on calvarial repair in the presence of morselized bone components. Calvarial defects in wild-type and global TLR4(-/-) knockout mouse strains were treated with fractionated bone components in the presence or absence of a TLR4 neutralizing peptide. Defect healing was subsequently evaluated over 28 days by microcomputed tomography and histology. The matrix-enriched fraction of morselized bone stimulated calvarial bone repair comparably with intact bone graft, although the capacity for grafts to induce calvarial bone repair was significantly diminished by inhibition or genetic ablation of TLR4. Overall, our findings suggest that the matrix component of bone graft stimulates calvarial bone repair in a TLR4-dependent manner. These results support the need to better understand the role of inflammation in the design and implementation of strategies to improve bone healing.
Collapse
Affiliation(s)
- Dan Wang
- 1 Department of Stomatology, Tenth People's Hospital of Tongji University , Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Villa MM, Wang L, Huang J, Rowe DW, Wei M. Improving the permeability of lyophilized collagen-hydroxyapatite scaffolds for cell-based bone regeneration with a gelatin porogen. J Biomed Mater Res B Appl Biomater 2015; 104:1580-1590. [PMID: 26305733 DOI: 10.1002/jbm.b.33387] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/14/2014] [Accepted: 01/09/2015] [Indexed: 11/08/2022]
Abstract
Bone tissue engineering using biomaterial scaffolds and culture-expanded osteoprogenitor cells has been demonstrated in several studies; however, it is not yet a clinical reality. One challenge is the optimal design of scaffolds for cell delivery and the identification of scaffold parameters that can delineate success and failure in vivo. Motivated by a previous experiment in which a batch of lyophilized collagen-hydroxyapatite (HA) scaffolds displayed modest bone formation in vivo, despite having large pores and high porosity, we began to investigate the effect of scaffold permeability on bone formation. Herein, we fabricated scaffolds with a permeability of 2.17 ± 1.63 × 10-9 m4 /(N s) and fourfold higher using a sacrificial gelatin porogen. Scaffolds were seeded with mouse bone marrow stromal cells carrying a fluorescent reporter for osteoblast differentiation and implanted into critical-size calvarial defects in immunodeficient mice. The porogen scaffold group containing a 1:1 ratio of solids to beads was significantly more radiopaque than the scaffold group without the bead porogen 3 weeks after implantation. Quantitative histomorphometry uncovered the same trend between the 1:1 group and scaffolds without porogen found in the radiographic data; however, this was not statistically significant here. Taken together, the X-ray and histology suggest that the 1:1 ratio of porogen to scaffold solids, resulting in a fourfold increase in permeability, may enhance bone formation when compared to scaffolds without porogen. Scaffold permeability can be a useful quality control measure before implantation and this practice should improve the consistency and efficacy of cell-based bone tissue engineering. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1580-1590, 2016.
Collapse
Affiliation(s)
- Max M Villa
- Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut, 06269
| | - Liping Wang
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut, 06030
| | - Jianping Huang
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut, 06030
| | - David W Rowe
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut, 06030
| | - Mei Wei
- Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut, 06269.
| |
Collapse
|
15
|
Hu C, Zhang L, Wei M. Development of Biomimetic Scaffolds with Both Intrafibrillar and Extrafibrillar Mineralization. ACS Biomater Sci Eng 2015; 1:669-676. [PMID: 33435090 DOI: 10.1021/acsbiomaterials.5b00088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bone is an organic-inorganic hierarchical biocomposite. Its basic building block is mineralized collagen fibers with both intrafibrillar and extrafibrillar mineralization, which is believed to be regulated by noncollagenous proteins (NCPs) with polyanionic domains. In this study, collagen fibrils with both intrafibrillar and extrafibrillar mineralization were successfully prepared and the mechanism of biomineralization was proposed. Building on this success, a unique biomimetic lamellar scaffold composed of collagen fibrils with both intrafibrillar and extrafibrillar mineralization was fabricated using a combination of self-compression and unidirectional freeze-drying approach. To achieve intrafibrillar mineralization, we used poly(acrylic acid) (PAA) to sequester calcium and phosphate ions to form fluidic PAA-amorphous calcium phosphate (PAA-ACP) nanoprecursors. At the presence of sodium tripolyphosphate (TPP), PAA-ACP nanoprecursors were modulated to orderly deposit within the gap zone of collagen fibrils. The effect of PAA concentration on the intrafibrillar and extrafibrillar mineralization of reconstituted collagen fibrils was investigated. It was found that with the decrease in PAA concentration, the inhibitory effect of PAA on mineralization and the stability of ACP nanoprecursors decreased. As a result, more minerals were deposited both within and on the surface of the collagen fibrils. Moreover, with the ability to reproduce biomineralization of collagen fibrils, it allowed us to fabricate biomimetic hierarchical collagen/hydroxyapatite scaffolds composed of both intrafibrillar and extrafibrillar minerals using a bottom-up approach. This technique renders a promising biomimetic scaffold, which will be suitable for bone repair and regeneration.
Collapse
Affiliation(s)
- Changmin Hu
- Department of Materials Science and Engineering and ‡Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Lichun Zhang
- Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Mei Wei
- Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
16
|
Villa MM, Wang L, Huang J, Rowe DW, Wei M. Bone tissue engineering with a collagen-hydroxyapatite scaffold and culture expanded bone marrow stromal cells. J Biomed Mater Res B Appl Biomater 2014; 103:243-53. [PMID: 24909953 DOI: 10.1002/jbm.b.33225] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 05/06/2014] [Accepted: 05/17/2014] [Indexed: 01/18/2023]
Abstract
Osteoprogenitor cells combined with supportive biomaterials represent a promising approach to advance the standard of care for bone grafting procedures. However, this approach faces challenges, including inconsistent bone formation, cell survival in the implant, and appropriate biomaterial degradation. We have developed a collagen-hydroxyapatite (HA) scaffold that supports consistent osteogenesis by donor-derived osteoprogenitors, and is more easily degraded than a pure ceramic scaffold. Herein, the material properties are characterized as well as cell attachment, viability, and progenitor distribution in vitro. Furthermore, we examined the biological performance in vivo in a critical-size mouse calvarial defect. To aid in the evaluation of the in-house collagen-HA scaffold, the in vivo performance was compared with a commercial collagen-HA scaffold (Healos(®) , Depuy). The in-house collagen-HA scaffold supported consistent bone formation by predominantly donor-derived osteoblasts, nearly completely filling a 3.5 mm calvarial defect with bone in all samples (n = 5) after 3 weeks of implantation. In terms of bone formation and donor cell retention at 3 weeks postimplantation, no statistical difference was found between the in-house and commercial scaffold following quantitative histomorphometry. The collagen-HA scaffold presented here is an open and well-defined platform that supports robust bone formation and should facilitate the further development of collagen-hydroxyapatite biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Max M Villa
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, 06269-3136
| | | | | | | | | |
Collapse
|
17
|
Xia Z, Villa MM, Wei M. A Biomimetic Collagen-Apatite Scaffold with a Multi-Level Lamellar Structure for Bone Tissue Engineering. J Mater Chem B 2014; 2:1998-2007. [PMID: 24999428 PMCID: PMC4078891 DOI: 10.1039/c3tb21595d] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Collagen-apatite (Col-Ap) scaffolds have been widely employed for bone tissue engineering. We fabricated a Col-Ap scaffold with a unique multi-level lamellar structure consisting of co-aligned micro and macro pores. The basic building blocks of this scaffold are bone-like mineralized collagen fibers developed via a biomimetic self-assembly process in a collagen-containing modified simulated body fluid (m-SBF). This biomimetic method preserves the structural integrity and great tensile strength of collagen by reinforcing the collagen hydrogel with apatite nano-particles. Unidirectional aligned macro pores with a size of 63.8 to 344 μm are created by controlling the freezing rate and direction. The thickness of Col-Ap lamellae can be adjusted in the range 3.6 to 23 μm depending on the self-compression time. Furthermore, the multi-level lamellar structure has led to a twelve-fold increase in Young's modulus and a two-fold increase in the compression modulus along the aligned direction compared to a scaffold of the same composition with an isotropic equiaxed pore structure. Moreover, this novel lamellar scaffold supports the attachment and spreading of MC3T3-E1osteoblasts. Therefore, owing to the biomimetic composition, tunable structure, improved mechanical strength, and good biocompatibility of this novel scaffold, it has great potential to be used in bone tissue engineering applications.
Collapse
Affiliation(s)
- Z Xia
- Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Road, U-3136, Storrs, CT, 06269
| | - M M Villa
- Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Road, U-3136, Storrs, CT, 06269
| | - M Wei
- Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Road, U-3136, Storrs, CT, 06269
| |
Collapse
|
18
|
Gohil SV, Adams DJ, Maye P, Rowe DW, Nair LS. Evaluation of rhBMP-2 and bone marrow derived stromal cell mediated bone regeneration using transgenic fluorescent protein reporter mice. J Biomed Mater Res A 2014; 102:4568-80. [PMID: 24677665 DOI: 10.1002/jbm.a.35122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/17/2014] [Accepted: 02/10/2014] [Indexed: 01/08/2023]
Abstract
The aim of the study is use of transgenic fluorescent protein reporter mouse models to understand the cellular processes in recombinant human bone morphogenetic protein-2 (rhBMP-2) mediated bone formation. Bilateral parietal calvarial bone defects in Col3.6Topaz transgenic fluorescent osteoblast reporter mouse were used to understand the bone formation in the presence and absence of rhBMP2 and/or Col3.6Cyan bone marrow derived stromal cells (BMSCs), using collagen-hydroxyapatite matrix (Healos) as a biomaterial. The bone regeneration was not confined to the site of BMP-2 implantation and significant bone formation was observed in the neighboring defect site. Osteogenic cellular activity with overlying alizarin complexone staining was observed in both the defects indicating host cell induced mineralization. However, implantation of BMSCs along with rhBMP-2 demonstrated a donor cell derived bone formation. The presence of rhBMP-2 did not support host cell recruitment in the presence of donor cells. This study demonstrates the potential of multiple fluorescent reporters to understand the cellular processes involved in the bone regeneration process using biomaterials, growth factors, and/or stem cells.
Collapse
Affiliation(s)
- Shalini V Gohil
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, 06032; Institute for Regenerative Engineering, The Raymond Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut, 06032
| | | | | | | | | |
Collapse
|
19
|
Yu X, Wang L, Xia Z, Chen L, Jiang X, Rowe D, Wei M. Modulation of Host Osseointegration during Bone Regeneration by Controlling Exogenous Stem Cells Differentiation Using a Material Approach. Biomater Sci 2014; 2:242-251. [PMID: 24999385 PMCID: PMC4078879 DOI: 10.1039/c3bm60173k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cell-based tissue engineering for large bone defect healing has attracted enormous attention in regenerative medicine. However, sufficient osseointegration of the grafts combined with exogenous stem cells still remains a major challenge. Here we developed a material approach to modulate the integration of the grafts to the host tissue when exogenous bone marrow stromal cells (BMSCs) were used as donor cells. Distinctive osseointegration of bone grafts was observed as we varied the content of hydroxyapatite (HA) in the tissue scaffolds implanted in a mouse femur model. More than 80% of new bone was formed in the first two weeks of implantation in high HA content scaffold but lack of host integration while only less than 5% of the new bone was formed during this time period in the no HA group but with much stronger host integration. Cell origin analysis leveraging GFP reporter indicates new bone in HA containing groups was mainly derived from donor BMSCs. In comparison, both host and donor cells were found on new bone surface in the no HA groups which led to seamless bridging between host tissue and the scaffold. Most importantly, host integration during bone formation is closely dictated to the content of HA present in the scaffolds. Taken together, we demonstrate a material approach to modulate the osseointegration of bone grafts in the context of exogenous stem cell-based bone healing strategy which might lead to fully functional bone tissue regeneration.
Collapse
Affiliation(s)
- Xiaohua Yu
- Department of Materials Science and Engineering, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA, University of Connecticut, Storrs, CT 06269, USA
| | - Liping Wang
- Department of Materials Science and Engineering, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA, University of Connecticut, Storrs, CT 06269, USA
| | - Zengmin Xia
- Department of Materials Science and Engineering, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA, University of Connecticut, Storrs, CT 06269, USA
| | - Li Chen
- Department of Materials Science and Engineering, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA, University of Connecticut, Storrs, CT 06269, USA
| | - Xi Jiang
- Department of Materials Science and Engineering, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA, University of Connecticut, Storrs, CT 06269, USA
| | - David Rowe
- Department of Materials Science and Engineering, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA, University of Connecticut, Storrs, CT 06269, USA
| | - Mei Wei
- Department of Materials Science and Engineering, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
20
|
Cellular performance comparison of biomimetic calcium phosphate coating and alkaline-treated titanium surface. BIOMED RESEARCH INTERNATIONAL 2013; 2013:832790. [PMID: 24455730 PMCID: PMC3884630 DOI: 10.1155/2013/832790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/28/2013] [Indexed: 01/22/2023]
Abstract
The influence of biomimetic calcium phosphate coating on osteoblasts behavior in vitro is not well established yet. In this study, we investigated the behavior of osteoblastic rat osteosarcoma 17/2.8 cells (ROS17/2.8) on two groups of biomaterial surfaces: alkaline-treated titanium surface (ATT) and biomimetic calcium phosphate coated ATT (CaP). The cell attachment, proliferation, differentiation, and morphology on these surfaces were extensively evaluated to reveal the impact of substrate surface on osteoblastic cell responses. It was found that the ROS17/2.8 cells cultured on the ATT surface had higher attachment and proliferation rates compared to those on the CaP surface. Our results also showed that the calcium phosphate coatings generated in this work have an inhibiting effect on osteoblast adhesion and further influenced the proliferation and differentiation of osteoblast compared to the ATT surface in vitro. Cells on the ATT surface also exhibited a higher alkaline phosphatase activity than on the CaP surface after two weeks of culture. Immunofluorescence staining and scanning electron microscopy results showed that the cells adhered and spread faster on the ATT surface than on the CaP surface. These results collectively suggested that substrate surface properties directly influence cell adhesion on different biomaterials, which would result in further influence on the cell proliferation and differentiation.
Collapse
|
21
|
Yu X, Walsh J, Wei M. Covalent Immobilization of Collagen on Titanium through Polydopamine Coating to Improve Cellular Performances of MC3T3-E1 Cells. RSC Adv 2013; 4:7185-7192. [PMID: 24932406 PMCID: PMC4053246 DOI: 10.1039/c3ra44137g] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Surface modification of orthopedic implants is critical for improving the clinical performance of these medical devices. Herein, collagen was covalently immobilized onto a titanium implant surface via a novel adherent polydopamine coating inspired by mussel adhesive proteins. The formation and composition of the collagen coating was characterized using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Fluorescent labeled collagen was also used to examine the formation and uniformity of the collagen coating. The resultant collagen coating with a polydopamine supporting substrate demonstrated better uniformity and distribution on the titanium surface compared to a physical adsorption of collagen. The covalent immobilized collagen coating is biologically active, as evidenced by its ability to enhance MC3T3-E1 cell adhesion, support cell proliferation and promote early stage osteogenic differentiation of pre-osteoblasts. Our study suggests covalent immobilization of collagen through the polydopamine coating might be an efficient way to improve the cellular performance of implant surfaces.
Collapse
Affiliation(s)
- Xiaohua Yu
- Department of Materials Science and Engineering, University of Connecticut Storrs, CT, 06269, USA
| | - John Walsh
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Mei Wei
- Department of Materials Science and Engineering, University of Connecticut Storrs, CT, 06269, USA
| |
Collapse
|
22
|
Fabrication and characterization of biomimetic collagen-apatite scaffolds with tunable structures for bone tissue engineering. Acta Biomater 2013; 9:7308-19. [PMID: 23567944 DOI: 10.1016/j.actbio.2013.03.038] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 12/23/2022]
Abstract
The objective of the current study is to prepare a biomimetic collagen-apatite scaffold for improved bone repair and regeneration. A novel bottom-up approach has been developed, which combines a biomimetic self-assembly method with a controllable freeze-casting technology. In this study, the mineralized collagen fibers were generated using a simple one-step co-precipitation method which involved collagen self-assembly and in situ apatite precipitation in a collagen-containing modified simulated body fluid (m-SBF). The precipitates were then subjected to controllable freeze casting, forming scaffolds with either an isotropic equiaxed structure or a unidirectional lamellar structure. These scaffolds were comprised of collagen fibers and poorly crystalline bone-like carbonated apatite nanoparticles. The mineral content in the scaffold could be tailored in the range 0-54wt.% by simply adjusting the collagen content in the m-SBF. Further, the mechanisms of the formation of both the equiaxed and the lamellar scaffolds were investigated, and freezing regimes for equiaxed and lamellar solidification were established. Finally, the bone-forming capability of such prepared scaffolds was evaluated in vivo in a mouse calvarial defect model. It was confirmed that the scaffolds well support new bone formation.
Collapse
|
23
|
Villa MM, Wang L, Huang J, Rowe DW, Wei M. Visualizing osteogenesis in vivo within a cell-scaffold construct for bone tissue engineering using two-photon microscopy. Tissue Eng Part C Methods 2013; 19:839-49. [PMID: 23641794 DOI: 10.1089/ten.tec.2012.0490] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Tissue-engineering therapies have shown early success in the clinic, however, the cell-biomaterial interactions that result in successful outcomes are not yet well understood and are difficult to observe. Here we describe a method for visualizing bone formation within a tissue-engineered construct in vivo, at a single-cell resolution, and in situ in three dimensions using two-photon microscopy. First, two-photon microscopy and histological perspectives were spatially linked using fluorescent reporters for cells in the skeletal lineage. In the process, the tissue microenvironment that precedes a repair-focused study was described. The distribution and organization of type I collagen in the calvarial microenvironment was also described using its second harmonic signal. Second, this platform was used to observe in vivo, for the first time, host cells, donor cells, scaffold, and new bone formation within cell-seeded constructs in a bone defect. We examined constructs during bone repair 4 and 6 weeks after implantation. New bone formed on scaffolds, primarily by donor cells. Host cells formed a new periosteal layer that covered the implant. Scaffold resorption appeared to be site specific, where areas near the top were removed and deeper areas were completely embedded in new mineral. Visualizing the in vivo progression of the cell and scaffold microenvironment will contribute to our understanding of tissue-engineered regeneration and should lead to the development of more streamlined and therapeutically powerful approaches.
Collapse
Affiliation(s)
- Max M Villa
- 1 Department of Materials Science and Engineering, University of Connecticut , Storrs, Connecticut
| | | | | | | | | |
Collapse
|
24
|
Yu X, Xia Z, Wang L, Peng F, Jiang X, Huang J, Rowe D, Wei M. Controlling the structural organization of regenerated bone by tailoring tissue engineering scaffold architecture. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm30332a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|