1
|
Zheng S, Zhao X, Wu H, Cuan X, Cheng X, He D. Molecular Subtypes and Immune Microenvironment Characterization of the Annulus Fibrosus in Intervertebral Disc Degeneration: Insights From Translation Factor-Related Gene Analysis. JOR Spine 2025; 8:e70064. [PMID: 40196451 PMCID: PMC11974580 DOI: 10.1002/jsp2.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Objective This study aims to examine the role of translation factors (TF) in intervertebral disc degeneration (IVDD) and to evaluate their clinical relevance through unsupervised clustering methods. Methods Gene expression data were retrieved from the GEO database, and the expression levels of translation factor-related genes (TFGs) were extracted for analysis. Results Two distinct molecular clusters were identified based on the differential expression of nine significantly altered TFGs. Immune infiltration was notably higher in Cluster C2 compared to Cluster C1. Subsequently, two gene clusters were identified based on the differentially expressed genes between the clusters. A Sankey diagram illustrated a high degree of consistency between the molecular clusters and the gene clusters. Additionally, four machine learning models were developed and evaluated, with the SVM model being utilized to construct a nomogram for predicting the incidence of IVDD. Validation using external datasets and clinical samples confirmed the low expression of EEF2K, which was further analyzed in a pan-cancer context. Conclusion The identification and comprehensive assessment of the two molecular clusters offer significant insights for the classification and treatment of individuals with IVDD.
Collapse
Affiliation(s)
- Sikuan Zheng
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxi ProvinceChina
- Institute of Orthopedics of Jiangxi ProvinceNanchangJiangxi ProvinceChina
- Institute of Minimally Invasive OrthopedicsNanchang UniversityNanchangJiangxi ProvinceChina
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord DiseaseNanchangJiangxi ProvinceChina
| | - Xiaokun Zhao
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxi ProvinceChina
- Institute of Orthopedics of Jiangxi ProvinceNanchangJiangxi ProvinceChina
- Institute of Minimally Invasive OrthopedicsNanchang UniversityNanchangJiangxi ProvinceChina
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord DiseaseNanchangJiangxi ProvinceChina
| | - Hui Wu
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxi ProvinceChina
- Institute of Orthopedics of Jiangxi ProvinceNanchangJiangxi ProvinceChina
- Institute of Minimally Invasive OrthopedicsNanchang UniversityNanchangJiangxi ProvinceChina
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord DiseaseNanchangJiangxi ProvinceChina
| | - Xuhui Cuan
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxi ProvinceChina
| | - Xigao Cheng
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxi ProvinceChina
- Institute of Orthopedics of Jiangxi ProvinceNanchangJiangxi ProvinceChina
- Institute of Minimally Invasive OrthopedicsNanchang UniversityNanchangJiangxi ProvinceChina
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord DiseaseNanchangJiangxi ProvinceChina
| | - Dingwen He
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxi ProvinceChina
- Institute of Orthopedics of Jiangxi ProvinceNanchangJiangxi ProvinceChina
- Institute of Minimally Invasive OrthopedicsNanchang UniversityNanchangJiangxi ProvinceChina
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord DiseaseNanchangJiangxi ProvinceChina
| |
Collapse
|
2
|
Li H, Kelley J, Ye Y, Ye ZW, Townsend DM, Zhang J, Wu Y. REDOX Imbalance and Oxidative Stress in the Intervertebral Disc: The Effect of Mechanical Stress and Cigarette Smoking on ER Stress and Mitochondrial Dysfunction. Cells 2025; 14:613. [PMID: 40277939 PMCID: PMC12025608 DOI: 10.3390/cells14080613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
Low back pain is a widespread condition that significantly impacts quality of life, with intervertebral disc degeneration (IDD) being a major contributing factor. However, the underlying mechanisms of IDD remain poorly understood, necessitating further investigation. Environmental risk factors, such as mechanical stress and cigarette smoke, elevate reactive oxygen species levels from both endogenous and exogenous sources, leading to redox imbalance and oxidative stress. The endoplasmic reticulum (ER) and mitochondria, two key organelles responsible for protein folding and energy production, respectively, are particularly vulnerable to oxidative stress. Under oxidative stress conditions, ER stress and mitochondrial dysfunction occur, resulting in unfolded protein response activation, impaired biosynthetic processes, and disruptions in the tricarboxylic acid cycle and electron transport chain, ultimately compromising energy metabolism. Prolonged and excessive ER stress can further trigger apoptosis through ER-mitochondrial crosstalk. Given the unique microenvironment of the intervertebral disc (IVD)-characterized by hypoxia, glucose starvation, and region-specific cellular heterogeneity-the differential effects of environmental stressors on distinct IVD cell populations require further investigation. This review explores the potential mechanisms through which environmental risk factors alter IVD cell activities, contributing to IDD progression, and discusses future therapeutic strategies aimed at mitigating disc degeneration.
Collapse
Affiliation(s)
- Hui Li
- Department of Bioengineering, Clemson University, Charleston, SC 29425, USA; (H.L.); (J.K.)
| | - Joshua Kelley
- Department of Bioengineering, Clemson University, Charleston, SC 29425, USA; (H.L.); (J.K.)
| | - Yiqing Ye
- Department of Orthopaedics and Physical Medicine & Rehabilitation, Medical University of South Carolina, Charleston, SC 29425, USA
- Academic Magnet High School, North Charleston, SC 29405, USA
| | - Zhi-Wei Ye
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Danyelle M. Townsend
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jie Zhang
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yongren Wu
- Department of Bioengineering, Clemson University, Charleston, SC 29425, USA; (H.L.); (J.K.)
- Department of Orthopaedics and Physical Medicine & Rehabilitation, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
3
|
Wu F, Hu X, Li X, Huang Y. Identification of KCNQ1 as a diagnostic biomarker related to endoplasmic reticulum stress for intervertebral disc degeneration based on machine learning and experimental evidence. Medicine (Baltimore) 2024; 103:e40661. [PMID: 39612444 PMCID: PMC11608675 DOI: 10.1097/md.0000000000040661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/06/2024] [Indexed: 12/01/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a primary cause of low back pain and disability. Cellular senescence and apoptosis due to endoplasmic reticulum stress (ERS) are key in IDD pathology. Identifying biomarkers linked to ERS in IDD is crucial for diagnosis and treatment. We utilized machine learning on gene expression profiles from the Gene Expression Omnibus database to discover biomarkers associated with ERS in IDD. Gene set enrichment analysis (GSEA) and single-sample GSEA were applied to evaluate the immunological features and biological functions of these biomarkers. The expression of KCNQ1 was experimentally validated. Machine learning identified KCNQ1 as a diagnostic biomarker for ERS in IDD, confirmed by Western blotting. GSEA indicated that KCNQ1 influences IDD primarily through the Notch signaling pathway and by regulating macrophage and monocyte infiltration. KCNQ1, identified as an ERS-associated biomarker in IDD, impacts the Notch signaling pathway and immune cell infiltration, suggesting its potential as a therapeutic target for IDD. Further validation through prospective studies and additional experimental methods is necessary to elucidate the role of KCNQ1 in IDD comprehensively.
Collapse
Affiliation(s)
- Feng Wu
- Department of Orthopaedics, Pingxiang People’s Hospital, Pingxiang, Jiangxi, China
| | - Xin Hu
- Department of Orthopaedics, Pingxiang People’s Hospital, Pingxiang, Jiangxi, China
| | - Xing Li
- Department of Orthopaedics, Pingxiang People’s Hospital, Pingxiang, Jiangxi, China
| | - Yongquan Huang
- Department of Orthopaedics, Pingxiang People’s Hospital, Pingxiang, Jiangxi, China
| |
Collapse
|
4
|
Jeannerat A, Peneveyre C, Jaccoud S, Philippe V, Scaletta C, Hirt-Burri N, Abdel-Sayed P, Martin R, Applegate LA, Pioletti DP, Laurent A. Banked Primary Progenitor Cells for Allogeneic Intervertebral Disc (IVD) Therapy: Preclinical Qualification and Functional Optimization within a Cell Spheroid Formulation Process. Pharmaceutics 2024; 16:1274. [PMID: 39458605 PMCID: PMC11510186 DOI: 10.3390/pharmaceutics16101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Biological products are emerging as therapeutic management options for intervertebral disc (IVD) degenerative affections and lower back pain. Autologous and allogeneic cell therapy protocols have been clinically implemented for IVD repair. Therein, several manufacturing process design considerations were shown to significantly influence clinical outcomes. The primary objective of this study was to preclinically qualify (chondrogenic potential, safety, resistance to hypoxic and inflammatory stimuli) cryopreserved primary progenitor cells (clinical grade FE002-Disc cells) as a potential cell source in IVD repair/regeneration. The secondary objective of this study was to assess the cell source's delivery potential as cell spheroids (optimization of culture conditions, potential storage solutions). Methods/Results: Safety (soft agar transformation, β-galactosidase, telomerase activity) and functionality-related assays (hypoxic and inflammatory challenge) confirmed that the investigated cellular active substance was highly sustainable in defined cell banking workflows, despite possessing a finite in vitro lifespan. Functionality-related assays confirmed that the retained manufacturing process yielded strong collagen II and glycosaminoglycan (GAG) synthesis in the spheroids in 3-week chondrogenic induction. Then, the impacts of various process parameters (induction medium composition, hypoxic incubation, terminal spheroid lyophilization) were studied to gain insights on their criticality. Finally, an optimal set of technical specifications (use of 10 nM dexamethasone for chondrogenic induction, 2% O2 incubation of spheroids) was set forth, based on specific fine tuning of finished product critical functional attributes. Conclusions: Generally, this study qualified the considered FE002-Disc progenitor cell source for further preclinical investigation based on safety, quality, and functionality datasets. The novelty and significance of this study resided in the establishment of defined processes for preparing fresh, off-the-freezer, or off-the-shelf IVD spheroids using a preclinically qualified allogeneic human cell source. Overall, this study underscored the importance of using robust product components and optimal manufacturing process variants for maximization of finished cell-based formulation quality attributes.
Collapse
Affiliation(s)
- Annick Jeannerat
- Development Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland; (A.J.); (C.P.)
| | - Cédric Peneveyre
- Development Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland; (A.J.); (C.P.)
| | - Sandra Jaccoud
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (V.P.); (C.S.); (N.H.-B.); (P.A.-S.); (L.A.A.)
- Laboratory of Biomechanical Orthopedics, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Virginie Philippe
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (V.P.); (C.S.); (N.H.-B.); (P.A.-S.); (L.A.A.)
- Orthopedics and Traumatology Unit, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Corinne Scaletta
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (V.P.); (C.S.); (N.H.-B.); (P.A.-S.); (L.A.A.)
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (V.P.); (C.S.); (N.H.-B.); (P.A.-S.); (L.A.A.)
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (V.P.); (C.S.); (N.H.-B.); (P.A.-S.); (L.A.A.)
- STI School of Engineering, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Robin Martin
- Orthopedics and Traumatology Unit, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (V.P.); (C.S.); (N.H.-B.); (P.A.-S.); (L.A.A.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Dominique P. Pioletti
- Laboratory of Biomechanical Orthopedics, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Alexis Laurent
- Development Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland; (A.J.); (C.P.)
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (V.P.); (C.S.); (N.H.-B.); (P.A.-S.); (L.A.A.)
| |
Collapse
|
5
|
Li X, Huo R, Li L, Cherif H, Lan X, Weber MH, Haglund L, Li J. Composite Hydrogel Sealants for Annulus Fibrosus Repair. ACS Biomater Sci Eng 2024; 10:5094-5107. [PMID: 38979636 DOI: 10.1021/acsbiomaterials.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Intervertebral disc (IVD) herniation is a leading cause of disability and lower back pain, causing enormous socioeconomic burdens. The standard of care for disc herniation is nucleotomy, which alleviates pain but does not repair the annulus fibrosus (AF) defect nor recover the biomechanical function of the disc. Existing bioadhesives for AF repair are limited by insufficient adhesion and significant mechanical and geometrical mismatch with the AF tissue, resulting in the recurrence of protrusion or detachment of bioadhesives. Here, we report a composite hydrogel sealant constructed from a composite of a three-dimensional (3D)-printed thermoplastic polyurethane (TPU) mesh and tough hydrogel. We tailored the fiber angle and volume fraction of the TPU mesh design to match the angle-ply structure and mechanical properties of native AF. Also, we proposed and tested three types of geometrical design of the composite hydrogel sealant to match the defect shape and size. Our results show that the sealant could mimic native AF in terms of the elastic modulus, flexural modulus, and fracture toughness and form strong adhesion with the human AF tissue. The bovine IVD tests show the effectiveness of the composite hydrogel sealant for AF repair and biomechanics recovery and for preventing herniation with its heightened stiffness and superior adhesion. By harnessing the combined capabilities of 3D printing and bioadhesives, these composite hydrogel sealants demonstrate promising potential for diverse applications in tissue repair and regeneration.
Collapse
Affiliation(s)
- Xuan Li
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec H3A 0C3, Canada
| | - Ran Huo
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec H3A 0C3, Canada
| | - Li Li
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A3, Canada
| | - Hosni Cherif
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A3, Canada
| | - Xiaoyi Lan
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec H3A 0C3, Canada
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A3, Canada
| | - Michael H Weber
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A3, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A3, Canada
- Shriners Hospital for Children, 1003 Decarie Blvd, Montreal, Montreal, Quebec H4A 0A9, Canada
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec H3A 0C3, Canada
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A3, Canada
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
6
|
Bu W, Shi Y, Huang X, Wu S, Jiang L, Pan C, Li D, Xu Z, Wang H, Chen H, Du J. Rescue of nucleus pulposus cells from an oxidative stress microenvironment via glutathione-derived carbon dots to alleviate intervertebral disc degeneration. J Nanobiotechnology 2024; 22:412. [PMID: 38997713 PMCID: PMC11241859 DOI: 10.1186/s12951-024-02683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
The senescence of nucleus pulposus (NP) cells (NPCs), which is induced by the anomalous accumulation of reactive oxygen species (ROS), is a major cause of intervertebral disc degeneration (IVDD). In this research, glutathione-doped carbon dots (GSH-CDs), which are novel carbon dot antioxidant nanozymes, were successfully constructed to remove large amounts of ROS for the maintenance of NP tissue at the physical redox level. After significantly scavenging endogenous ROS via exerting antioxidant activities, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and total antioxidant capacity, GSH-CDs with good biocompatibility have been demonstrated to effectively improve mitochondrial dysfunction and rescue NPCs from senescence, catabolism, and inflammatory factors in vivo and in vitro. In vivo imaging data and histomorphological indicators, such as the disc height index (DHI) and Pfirrmann grade, demonstrated prominent improvements in the progression of IVDD after the topical application of GSH-CDs. In summary, this study investigated the GSH-CDs nanozyme, which possesses excellent potential to inhibit the senescence of NPCs with mitochondrial lesions induced by the excessive accumulation of ROS and improve the progression of IVDD, providing potential therapeutic options for clinical treatment.
Collapse
Affiliation(s)
- Wenzhen Bu
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yu Shi
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Xueping Huang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Shang Wu
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Letao Jiang
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Chun Pan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Dandan Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Zhuobin Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Huihui Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, China.
| | - Hao Chen
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China.
| | - Jianwei Du
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
7
|
Feng Y, Su L, Liu L, Chen Z, Ji Y, Hu Y, Zheng D, Chen Z, Lei C, Xu H, Han Y, Shen H. Accurate Spatio-Temporal Delivery of Nitric Oxide Facilitates the Programmable Repair of Avascular Dense Connective Tissues Injury. Adv Healthc Mater 2024; 13:e2303740. [PMID: 38413194 DOI: 10.1002/adhm.202303740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Indexed: 02/29/2024]
Abstract
Avascular dense connective tissues (e.g., the annulus fibrosus (AF) rupture, the meniscus tear, and tendons and ligaments injury) repair remains a challenge due to the "biological barrier" that hinders traditional drug permeation and limits self-healing of the injured tissue. Here, accurate delivery of nitric oxide (NO) to penetrate the "AF biological barrier" is achieved thereby enabling programmable AF repair. NO-loaded BioMOFs are synthesized and mixed in a modified polyvinyl alcohol and PCL-composited electrospun fiber membrane with excellent reactive oxygen species-responsive capability (LN@PM). The results show that LN@PM could respond to the high oxidative stress environment at the injured tissue and realize continuous and substantial NO release. Based on low molecular weight and lipophilicity, NO could penetrate through the "biological barrier" for accurate AF drug delivery. Moreover, the dynamic characteristics of the LN@PM reaction can be matched with the pathological microenvironment to initiate programmable tissue repair including sequential remodeling microenvironment, reprogramming the immune environment, and finally promoting tissue regeneration. This tailored programmable treatment strategy that matches the pathological repair process significantly repairs AF, ultimately alleviating intervertebral disc degeneration. This study highlights a promising approach for avascular dense connective tissue treatment through intelligent NO release, effectively overcoming "AF biological barriers" and programmable treatment.
Collapse
Affiliation(s)
- Yubo Feng
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Lefeng Su
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Lei Liu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Zhanyi Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Yucheng Ji
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Yuwei Hu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Dandan Zheng
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Zhi Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Changbin Lei
- Department of Orthopedics, Affiliated Hospital of Xiangnan University, Chenzhou, 423000, P. R. China
| | - He Xu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Yingchao Han
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| |
Collapse
|
8
|
Xiang H, Zhao W, Jiang K, He J, Chen L, Cui W, Li Y. Progress in regulating inflammatory biomaterials for intervertebral disc regeneration. Bioact Mater 2024; 33:506-531. [PMID: 38162512 PMCID: PMC10755503 DOI: 10.1016/j.bioactmat.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/04/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is rising worldwide and leading to significant health issues and financial strain for patients. Traditional treatments for IVDD can alleviate pain but do not reverse disease progression, and surgical removal of the damaged disc may be required for advanced disease. The inflammatory microenvironment is a key driver in the development of disc degeneration. Suitable anti-inflammatory substances are critical for controlling inflammation in IVDD. Several treatment options, including glucocorticoids, non-steroidal anti-inflammatory drugs, and biotherapy, are being studied for their potential to reduce inflammation. However, anti-inflammatories often have a short half-life when applied directly and are quickly excreted, thus limiting their therapeutic effects. Biomaterial-based platforms are being explored as anti-inflammation therapeutic strategies for IVDD treatment. This review introduces the pathophysiology of IVDD and discusses anti-inflammatory therapeutics and the components of these unique biomaterial platforms as comprehensive treatment systems. We discuss the strengths, shortcomings, and development prospects for various biomaterials platforms used to modulate the inflammatory microenvironment, thus providing guidance for future breakthroughs in IVDD treatment.
Collapse
Affiliation(s)
- Honglin Xiang
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Weikang Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, PR China
| | - Ke Jiang
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Jiangtao He
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Lu Chen
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yuling Li
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| |
Collapse
|
9
|
Wang Y, Wang Z, Tang Y, Chen Y, Fang C, Li Z, Jiao G, Chen X. Diagnostic model based on key autophagy-related genes in intervertebral disc degeneration. BMC Musculoskelet Disord 2023; 24:927. [PMID: 38041088 PMCID: PMC10691083 DOI: 10.1186/s12891-023-06886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/15/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Current research on autophagy is mainly focused on intervertebral disc tissues and cells, while there is few on human peripheral blood sample. therefore, this study constructed a diagnostic model to identify autophagy-related markers of intervertebral disc degeneration (IVDD). METHODS GSE150408 and GSE124272 datasets were acquired from the Gene Expression Omnibus database, and differential expression analysis was performed. The IVDD-autophagy genes were obtained using Weighted Gene Coexpression Network Analysis, and a diagnostic model was constructed and validated, followed by Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA). Meanwhile, miRNA-gene and transcription factor-gene interaction networks were constructed. In addition, drug-gene interactions and target genes of methylprednisolone and glucosamine were analyzed. RESULTS A total of 1,776 differentially expressed genes were identified between IVDD and control samples, and the composition of the four immune cell types was significantly different between the IVDD and control samples. The Meturquoise and Mebrown modules were significantly related to immune cells, with significant differences between the control and IVDD samples. A diagnostic model was constructed using five key IVDD-autophagy genes. The area under the curve values of the model in the training and validation datasets were 0.907 and 0.984, respectively. The enrichment scores of the two pathways were significantly different between the IVDD and healthy groups. Eight pathways in the IVDD and healthy groups had significant differences. A total of 16 miRNAs and 3 transcription factors were predicted to be of great value. In total, 84 significantly related drugs were screened for five key IVDD-autophagy genes in the diagnostic model, and three common autophagy-related target genes of methylprednisolone and glucosamine were predicted. CONCLUSION This study constructs a reliable autophagy-related diagnostic model that is strongly related to the immune microenvironment of IVD. Autophagy-related genes, including PHF23, RAB24, STAT3, TOMM5, and DNAJB9, may participate in IVDD pathogenesis. In addition, methylprednisolone and glucosamine may exert therapeutic effects on IVDD by targeting CTSD, VEGFA, and BAX genes through apoptosis, as well as the sphingolipid and AGE-RAGE signaling pathways in diabetic complications.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Spine Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P.R. China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, P.R. China
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University(Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, P.R. China
| | - Zhiwei Wang
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University(Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, P.R. China
| | - Yifan Tang
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University(Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, P.R. China
| | - Yong Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, P.R. China
| | - Chuanyuan Fang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, P.R. China
| | - Zhihui Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, P.R. China
| | - Genlong Jiao
- Department of Spine Surgery, The Sixth Affiliated Hospital, Jinan University, Dongguan, Guangdong, 523570, P.R. China.
| | - Xiongsheng Chen
- Department of Spine Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P.R. China.
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University(Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, P.R. China.
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20008, P.R. China.
| |
Collapse
|
10
|
Zhou Z, Qin W, Zhang P, He J, Cheng Z, Gong Y, Zhu G, Liang D, Ren H, Jiang X, Sun Y. Potential molecular targets and drugs for basement membranes-related intervertebral disk degeneration through bioinformatics analysis and molecular docking. BMC Musculoskelet Disord 2023; 24:772. [PMID: 37784117 PMCID: PMC10544312 DOI: 10.1186/s12891-023-06891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 09/16/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Through bioinformatics analysis to identify the hub genes of Intervertebral disc degeneration (IVDD) associated with basement membranes (BMs) and find out the potential molecular targets and drugs for BMs-related annulus fibrosus (AF) degeneration based on bioinformatic analysis and molecular approach. METHODS Intervertebral disc degeneration (IVDD) related targets were obtained from GeneCards, DisGenet and OMIM databases. BMs related genes were obtained from Basement membraneBASE database. The intersection targets were identified and subjected to protein-to-protein interaction (PPI) construction via STRING. Hub genes were identified and conducted Gene ontology (GO) and pathway enrichment analysis through MCODE and Clue GO in Cytospace respectively. DSigDB database was retrieved to predict therapeutic drugs and molecular docking was performed through PyMOL, AutoDock 1.5.6 to verify the binding energy between the drug and the different expressed hub genes. Finally, GSE70362 from GEO database was obtained to verify the different expression and correlation of each hub gene for AF degeneration. RESULTS We identified 41 intersection genes between 3 disease targets databases and Basement membraneBASE database. PPI network revealed 25 hub genes and they were mainly enriched in GO terms relating to glycosaminoglycan catabolic process, the TGF-β signaling pathway. 4 core targets were found to be significant via comparison of microarray samples and they showed strong correlation. The molecular docking results showed that the core targets have strong binding energy with predicting drugs including chitosamine and retinoic acid. CONCLUSIONS In this study, we identified hub genes, pathways, potential targets, and drugs for treatment in BMs-related AF degeneration and IVDD.
Collapse
Affiliation(s)
- Zelin Zhou
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Weicheng Qin
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Peng Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Jiahui He
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Zhaojun Cheng
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Yan Gong
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Guangye Zhu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Yuping Sun
- Pingshan General Hospital, Southern Medical University, Shenzhen, Guangdong, P.R. China.
- Pingshan District People's Hospital of Shenzhen, Shenzhen, Guangdong, P.R. China.
- Rehabilitation Department, Pingshan District People's Hospital, Shenzhen, P.R. China.
| |
Collapse
|
11
|
Yao J, Jiang C, Xiang Y, Zhang Z, Chen Z, Zheng R. Tissue Identification of Intervertebral Disc Anatomy Using Forward-oriented Ultrasound Endoscopic System: A Feasibility Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082769 DOI: 10.1109/embc40787.2023.10340823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Minimally invasive surgery is widely used for spine surgery, however the commonly used optical endoscopes cannot identity tissues under surface. In this study, a forward-oriented ultrasound endoscopic system was proposed to detect and identity different types of tissues for surgical approaches. A total of 150 ultrasound image data were collected from 6 types of intervertebral disc tissue using a custom-developed endoscopic probe. The gray-level co-occurrence matrix (GLCM) properties including energy (angular second moment, ASM), contrast, entropy, and homogeneity (inverse difference moment, IDM) were calculated on the acquired ultrasound images, and the single-parameter and combined parameter were applied for tissue classification. The classification accuracies of fibrous ring, nerve roots and bone were 100%, and the overall accuracy for all tissues was 73.33%. The results indicated that the combined parameter method provided more accurate classification output. It demonstrated that the proposed endoscopic ultrasonography system had the potential of identifying different tissues under surface during the endoscopic spine surgery.Clinical Relevance-This study establishes that the forward-oriented ultrasound endoscopic system was feasible to identify different types of tissues under surface during the endoscopic spine surgery.
Collapse
|
12
|
Staszkiewicz R, Ulasavets U, Dobosz P, Drewniak S, Niewiadomska E, Grabarek BO. Assessment of quality of life, pain level and disability outcomes after lumbar discectomy. Sci Rep 2023; 13:6009. [PMID: 37045989 PMCID: PMC10097864 DOI: 10.1038/s41598-023-33267-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/11/2023] [Indexed: 04/14/2023] Open
Abstract
This study aimed to assess the quality of life of 113 Caucasian patients with intervertebral disc (IVD) degeneration of the lumbosacral (L/S) spine who qualified for microdiscectomy during a 12-month period after surgery. Based on magnetic resonance imaging before the surgery, the degree of radiological advancement of the degenerative changes was determined according to the Pfirrmann grading scale from 1 to 5. To assess pain intensity, the Visual Analog Scale (VAS) was used; the Satisfaction with Life Scale (SWLS) was used to evaluate quality of life; and to assess the degree of ability, the Oswestry Low Back Pain Disability Questionnaire (ODI) was employed. The level of pain, assessed using the VAS, significantly changed in the months following the surgery, with the highest values noted before surgery and the lowest a year after. In turn, the results of the SWLS questionnaire revealed a significant increase in satisfaction with life in the subsequent stages of the study. The conducted correlation analysis revealed significant dependencies in terms of quality of life in regard to pain as well as degree of disability. The level of pain and degree of disability were closely related to the degree of radiological advancement of degenerative changes according to the Pfirrmann grading scale.
Collapse
Affiliation(s)
- Rafał Staszkiewicz
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901, Krakow, Poland.
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, 4-055, Katowice, Poland.
| | - Uladzislau Ulasavets
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901, Krakow, Poland
| | - Paweł Dobosz
- Department of Laryngology, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901, Kraków, Poland
| | - Szymon Drewniak
- Department of Anesthetics, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901, Kraków, Poland
| | - Ewa Niewiadomska
- Department of Epidemiology and Biostatistics, School Health Sciences in Bytom, Medical University of Silesia, 41-902, Bytom, Poland
| | - Beniamin Oskar Grabarek
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901, Krakow, Poland
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, 4-055, Katowice, Poland
- Laboratory of Molecular Biology and Virology, 40-851, Katowice, Poland
| |
Collapse
|
13
|
Lu R, Xu H, Deng X, Wang Y, He Z, Xu S, Liang S, Huang X, You H, Guo F, Cheng P, Chen AM. Physalin A alleviates intervertebral disc degeneration via anti-inflammatory and anti-fibrotic effects. J Orthop Translat 2023; 39:74-87. [PMID: 36788965 PMCID: PMC9898579 DOI: 10.1016/j.jot.2023.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Background The incidence of intervertebral disc degeneration (IVDD) is a common degenerative disease with inflammation, decreased autophagy, and progression of fibrosis as its possible pathogenesis. Physalin A (PA) is a widely studied anti-inflammatory drug. However, its therapeutic effects on IVDD remain unexplored. Therefore, we aimed to explore the therapeutic potential of PA in IVDD progression. Materials and methods In vivo, we investigated PA bioactivity using a puncture-induced IVDD rat model. IVDD signals and height changes were detected using X-ray, micro-CT, and MRI, and structural and molecular lesions using histological staining and immunohistochemistry of intervertebral disc sections. In vivo, interleukin-1 beta (IL-1β) and TGF-β1 were employed to establish inflammation fibrotic nucleus pulposus (NP) cells. The PA effect duration, concentration, influence pathways, and pathological changes in IVDD treatment were elucidated using western blotting, real-time PCR, and immunofluorescence. Results PA exerted significant effects on IVDD remission due to anti-inflammation, fibrosis reduction, and autophagy enhancement. In vitro, PA improved inflammation by blocking the NF-κB and MAPK pathways, whereas it promoted autophagy via the PI3K/AKT/mTOR pathway and affected fibrotic progression by regulating the SMAD2/3 pathway. Moreover, PA improved the disc degeneration process in IVDD model. Conclusions PA exhibited significant anti-inflammatory and anti-fibrotic effects and improved autophagy in vivo and in vitro IVDD models, thus effectively relieving IVDD progression, indicating it is a promising agent for IVDD treatment. The translational potential of this article This study successfully reveals that PA, a natural bioactive withanolide, effectively relieved IVDD progression via inflammation inhibition, fibrosis reduction, and autophagy enhancement, indicating it is a promising agent for IVDD treatment.
Collapse
Affiliation(s)
- Rui Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haoran Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaofeng Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, China
| | - Yingguang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiyi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shimeng Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuang Liang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaojian Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - An-min Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
14
|
Deng R, Kang R, Jin X, Wang Z, Liu X, Wang Q, Xie L. Mechanical stimulation promotes MSCs healing the lesion of intervertebral disc annulus fibrosus. Front Bioeng Biotechnol 2023; 11:1137199. [PMID: 36845186 PMCID: PMC9950411 DOI: 10.3389/fbioe.2023.1137199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Mesenchymal stem cells (MSCs) and scaffolds offer promising perspectives for annulus fibrosus (AF) repair. The repair effect was linked to features of the local mechanical environment related to the differentiation of MSCs. In this study, we established a Fibrinogen-Thrombin-Genipin (Fib-T-G) gel which is sticky and could transfer strain force from AF tissue to the human mesenchymal stem cells (hMSCs) embedded in the gel. After the Fib-T-G biological gel was injected into the AF fissures, the histology scores of intervertebral disc (IVD) and AF tissue showed that Fib-T-G gel could better repair the AF fissure in caudal IVD of rats, and increase the expression of AF-related proteins including Collagen 1 (COL1), Collagen 2 (COL2) as well as mechanotransduction-related proteins including RhoA and ROCK1. To clarify the mechanism that sticky Fib-T-G gel induces the healing of AF fissures and the differentiation of hMSCs, we further investigated the differentiation of hMSCs under mechanical strain in vitro. It was demonstrated that both AF-specific genes, including Mohawk and SOX-9, and ECM markers (COL1, COL2, aggrecan) of hMSCs were up-regulated in the environment of strain force. Moreover, RhoA/ROCK1 proteins were also found to be significantly up-regulated. In addition, we further -demonstrated that the fibrochondroinductive effect of the mechanical microenvironment process could be significantly blocked or up-regulated by inhibiting the RhoA/ROCK1 pathway or overexpressing RhoA in MSCs, respectively. Summarily, this study will provide a therapeutic alternative to repair AF tears and provide evidence that RhoA/ROCK1 is vital for hMSCs response to mechanical strain and AF-like differentiation.
Collapse
Affiliation(s)
- Rongrong Deng
- Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ran Kang
- Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Ran Kang, ; Xin Liu, ; Lin Xie,
| | - Xiaoyu Jin
- Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Zihan Wang
- Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xin Liu
- Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Ran Kang, ; Xin Liu, ; Lin Xie,
| | - Qing Wang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lin Xie
- Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Ran Kang, ; Xin Liu, ; Lin Xie,
| |
Collapse
|
15
|
Velnar T, Gradisnik L. Endplate role in the degenerative disc disease: A brief review. World J Clin Cases 2023; 11:17-29. [PMID: 36687189 PMCID: PMC9846967 DOI: 10.12998/wjcc.v11.i1.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/19/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The degenerative disease of the intervertebral disc is nowadays an important health problem, which has still not been understood and solved adequately. The vertebral endplate is regarded as one of the vital elements in the structure of the intervertebral disc. Its constituent cells, the chondrocytes in the endplate, may also be involved in the process of the intervertebral disc degeneration and their role is central both under physiological and pathological conditions. They main functions include a role in homeostasis of the extracellular environment of the intervertebral disc, metabolic support and nutrition of the discal nucleus and annulus beneath and the preservation of the extracellular matrix. Therefore, it is understandable that the cells in the endplate have been in the centre of research from several viewpoints, such as development, degeneration and growth, reparation and remodelling, as well as treatment strategies. In this article, we briefly review the importance of vertebral endplate, which are often overlooked, in the intervertebral disc degeneration.
Collapse
Affiliation(s)
- Tomaz Velnar
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
- Alma Mater Europaea Maribor, Maribor 2000, Slovenia
| | - Lidija Gradisnik
- Alma Mater Europaea Maribor, Maribor 2000, Slovenia
- Institute of Biomedical Sciences, University of Maribor, University of Maribor, Maribor 2000, Slovenia
| |
Collapse
|
16
|
Zhang F, Cui D, Wang K, Cheng H, Zhai Y, Jiao W, Wang Z, Cui X, Yu H. Identifification and validation of ferroptosis signatures and immune infifiltration characteristics associated with intervertebral disc degeneration. Front Genet 2023; 14:1133615. [PMID: 36911415 PMCID: PMC9992550 DOI: 10.3389/fgene.2023.1133615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Ferroptosis and immune infiltration play an important role in the pathogenesis of intervertebral disc degeneration (IDD). However, there is still a lack of comprehensive analysis on the interaction between ferroptosis-related genes (FRGs) and immune microenvironment in IDD patients. Therefore, this study aims to explore the correlation between FRGs characteristics and immune infiltration in the progression of IDD. The expression profiles (GSE56081 and GSE70362) and FRGs were downloaded from the comprehensive gene expression omnibus (GEO) and FerrDb database, respectively, and the differences were analyzed using R. The intersection of IDD related differential genes (DEGs) and FRGs was taken as differentially expressed FRGs (DE-FRGs) and GO and KEGG enrichment analysis was conducted. Then, we used least absolute shrinkage and selection operator (LASSO) regression algorithm and support vector machine (SVM) algorithm to screen feature genes and draw ROC curve judge the diagnostic value of key DE-FRGs. Then CIBERSORT algorithm is used to evaluate the infiltration of immune cells and analyze the correlation between key DE-FRGs and immune infiltration. Based on the analysis results, we conducted single gene GSEA analysis on key DE-FRGs. RT-PCR and immunohistochemistry further verified the clinical value of the results of biochemical analysis and screening. Seven key DE-FRGs were screened, including the upregulated genes NOX4 and PIR, and the downregulated genes TIMM9, ATF3, ENPP2, FADS2 and TFAP2A. Single gene GSEA analysis further elucidates the role of DE-FRGs in IDD associated with ferroptosis. Correlation analysis showed that seven key DE-FRGs were closely related to immune infiltration in the development of IDD. Finally, RT-PCR and immunohistochemical staining showed that NOX4, ENPP2, FADS2 and TFAP2A were statistically significant differences. In this study, we explored the connection between ferroptosis related characteristics and immune infiltration in IDD, and confirmed that NOX4, ENPP2, FADS2, and TFAP2A may become biomarkers and potential therapeutic targets for IDD.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Orthopedics, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China.,Clinical Research Center for Spinal Deformity of Anhui Province, Fuyang, Anhui, China
| | - Di Cui
- Medical School of Fuyang Normal University, Fuyang, Anhui, China
| | - Kangkang Wang
- Department of Orthopedics, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China.,Clinical Research Center for Spinal Deformity of Anhui Province, Fuyang, Anhui, China
| | - Huimin Cheng
- Medical School of Fuyang Normal University, Fuyang, Anhui, China
| | - Yunlei Zhai
- Department of Orthopedics, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China.,Clinical Research Center for Spinal Deformity of Anhui Province, Fuyang, Anhui, China
| | - Wei Jiao
- Department of Orthopedics, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China.,Clinical Research Center for Spinal Deformity of Anhui Province, Fuyang, Anhui, China
| | - Zhaodong Wang
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, Anhui, China.,Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xilong Cui
- Department of Orthopedics, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China.,Clinical Research Center for Spinal Deformity of Anhui Province, Fuyang, Anhui, China
| | - Haiyang Yu
- Department of Orthopedics, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China.,Clinical Research Center for Spinal Deformity of Anhui Province, Fuyang, Anhui, China
| |
Collapse
|
17
|
Sun K, Jiang J, Wang Y, Sun X, Zhu J, Xu X, Sun J, Shi J. The role of nerve fibers and their neurotransmitters in regulating intervertebral disc degeneration. Ageing Res Rev 2022; 81:101733. [PMID: 36113765 DOI: 10.1016/j.arr.2022.101733] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/11/2022] [Accepted: 09/11/2022] [Indexed: 01/31/2023]
Abstract
Intervertebral disc degeneration (IVDD) has been the major contributor to chronic lower back pain (LBP). Abnormal apoptosis, senescence, and pyroptosis of IVD cells, extracellular matrix (ECM) degradation, and infiltration of immune cells are the major molecular alternations during IVDD. Changes at tissue level frequently occur at advanced IVD tissue. Ectopic ingrowth of nerves within inner annulus fibrosus (AF) and nucleus pulposus (NP) tissue has been considered as the primary cause for LBP. Innervation at IVD tissue mainly included sensory and sympathetic nerves, and many markers for these two types of nerves have been detected since 1940. In fact, in osteoarthritis (OA), beyond pain transmission, the direct regulation of neuropeptides on functions of chondrocytes have attracted researchers' great attention recently. Many physical and pathological similarities between joint and IVD have shed us the light on the neurogenic mechanism involved in IVDD. Here, an overview of the advances in the nervous system within IVD tissue will be performed, with a discussion on in the role of nerve fibers and their neurotransmitters in regulating IVDD. We hope this review can attract more research interest to address neuromodulation and IVDD itself, which will enhance our understanding of the contribution of neuromodulation to the structural changes within IVD tissue and inflammatory responses and will help identify novel therapeutic targets and enable the effective treatment of IVDD disease.
Collapse
Affiliation(s)
- Kaiqiang Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China; Department of Orthopedics, Naval Medical Center of PLA, China
| | - Jialin Jiang
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Yuan Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Xiaofei Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Jian Zhu
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Ximing Xu
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Jingchuan Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China.
| | - Jiangang Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China.
| |
Collapse
|
18
|
Biomechanical Effect of Disc Height on the Components of the Lumbar Column at the Same Axial Load: A Finite-Element Study. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7069448. [PMID: 36330359 PMCID: PMC9626214 DOI: 10.1155/2022/7069448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022]
Abstract
Intervertebral discs are fibrocartilage structures, which play a role in buffering the compression applied to the vertebral bodies evenly while permitting limited movements. According to several previous studies, degenerative changes in the intervertebral disc could be accelerated by factors, such as aging, the female sex, obesity, and smoking. As degenerative change progresses, the disc height could be reduced due to the dehydration of the nucleus pulposus. This study aimed to quantitatively analyze the pressure that each structure of the spine receives according to the change in the disc height and predict the physiological effect of disc height on the spine. We analyzed the biomechanical effect on spinal structures when the disc height was decreased using a finite-element method investigation of the lumbar spine. Using a 3D FE model, the degree and distribution of von-Mises stress according to the disc height change were measured by applying the load of four different motions to the lumbar spine. The height was changed by dividing the anterior and posterior parts of the disc, and analysis was performed in the following four motions: flexion, extension, lateral bending, and axial rotation. Except for a few circumstances, the stress applied to the structure generally increased as the disc height decreased. Such a phenomenon was more pronounced when the direction in which the force was concentrated coincided with the portion where the disc height decreased. This study demonstrated that the degree of stress applied to the spinal structure generally increases as the disc height decreases. The increase in stress was more prominent when the part where the disc height was decreased and the part where the moment was additionally applied coincided. Disc height reduction could accelerate degenerative changes in the spine. Therefore, eliminating the controllable risk factors that cause disc height reduction may be beneficial for spinal health.
Collapse
|
19
|
Wu Z, Liu L. The protective activity of genistein against bone and cartilage diseases. Front Pharmacol 2022; 13:1016981. [PMID: 36160403 PMCID: PMC9492956 DOI: 10.3389/fphar.2022.1016981] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Genistein, a natural isoflavone rich in soybean and leguminous plants, has been shown various biological effects, such as anti-inflammation, anti-oxidation, anti-cancer, and bone/cartilage protection. Due to the structural similarity to estrogen, genistein exhibits estrogen-like activity in protecting against osteoporosis and osteoarthritis. Furthermore, genistein has been considered as an inhibitor of tyrosine kinase, which has been found to be dysregulated in the pathological development of osteoporosis, osteoarthritis, and intervertebral disc degeneration (IDD). Many signaling pathways, such as MAPK, NF-κB, and NRF2/HO-1, are involved in the regulatory activity of genistein in protecting against bone and cartilage diseases. The potential molecular mechanisms of genistein in therapeutic management of bone and cartilage diseases have been investigated, but remain to be fully understood. In this article, we mainly discuss the current knowledge of genistein in protecting against bone and cartilage diseases, such as osteoporosis, osteoarthritis, rheumatoid arthritis (RA), and IDD.
Collapse
Affiliation(s)
- Zhenyu Wu
- First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
- *Correspondence: Zhenyu Wu,
| | - Luying Liu
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
| |
Collapse
|
20
|
Hu MH, Yang KC, Chen CW, Chu PH, Chang YL, Sun YH, Lin FH, Yang SH. Multilayer Electrospun-Aligned Fibroin/Gelatin Implant for Annulus Fibrosus Repair: An In Vitro and In Vivo Evaluation. Biomedicines 2022; 10:biomedicines10092107. [PMID: 36140208 PMCID: PMC9495938 DOI: 10.3390/biomedicines10092107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Annulus fibrosus (AF) damage is proven to prompt intervertebral disc (IVD) degeneration, and unrepaired AF lesions after surgical discectomy may boost herniation of the nucleus pulposus (NP) which may lead to further compression of neural structures. Moreover, vascular and neural ingrowth may occur within the defect which is known as a possible reason for discogenic pain. Due to a limited healing capacity, an effective strategy to repair and close the AF defect is necessary. In this study, using electrospinning technology, two nature polymers, silk fibroin and gelatin, were linked to imitate the unique lamellae structure of native AF. Our findings revealed that a multilayer electrospun-aligned fibroin/gelatin scaffold with mechanical and morphological properties mimicking those of native AF lamellae have been developed. The average diameter of the nanofiber is 162.9 ± 38.8 nm. The young’s modulus is around 6.70 MPa with an ultimate tensile strength of around 1.81 MP along preferred orientation. The in vitro test confirmed its biocompatibility and ability to maintain cell viability and colonization. Using a porcine model, we demonstrated that the multilayer-aligned scaffold offered a crucial microenvironment to induce collagen fibrous tissue production within native AF defect. In the implant-repaired AF, H&E staining showed homogeneous fibroblast-like cell infiltration at the repaired defect with very little vascular ingrowth, which was confirmed by magnetic resonance imaging findings. Picrosirius red staining and immunohistochemical staining against type I collagen revealed positively stained fibrous tissue in an aligned pattern within the implant-integrated site. Relative to the intact control group, the disc height index of the serial X-ray decreased significantly in both the injury control and implant group at 4 weeks and 8 weeks (p < 0.05) which indicated this scaffold may not reverse the degenerative process. However, the results of the discography showed that the effectiveness of annulus repair of the implant group is much superior to that of the untreated group. The scaffold, composed with nature fibroin/gelatin polymers, could potentially enhance AF healing that could prevent IVD recurrent herniation, as well as neural and neovascular ingrowth after discectomy surgeries.
Collapse
Affiliation(s)
- Ming-Hsiao Hu
- Department of Orthopedics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100225, Taiwan
| | - Kai-Chiang Yang
- Department of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Wei Chen
- Department of Orthopedics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100225, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei 106216, Taiwan
| | - Po-Han Chu
- Department of Biomedical Engineering, National Taiwan University, Taipei 106216, Taiwan
| | - Yun-Liang Chang
- Department of Orthopedics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100225, Taiwan
| | - Yuan-Hui Sun
- Department of Orthopedics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100225, Taiwan
| | - Feng-Huei Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei 106216, Taiwan
| | - Shu-Hua Yang
- Department of Orthopedics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100225, Taiwan
- Correspondence: ; Tel.: +886-2-2312-3456 (ext. 63981)
| |
Collapse
|
21
|
A Biodegradable Polymeric Matrix for the Repair of Annulus Fibrosus Defects in Intervertebral Discs. Tissue Eng Regen Med 2022; 19:1311-1320. [PMID: 35816226 PMCID: PMC9679066 DOI: 10.1007/s13770-022-00466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Tissue defects in the annulus fibrosus (AF) due to intervertebral disc (IVD) degeneration or after nucleodiscectomy have little self-healing capacity. To prevent progressive degeneration of the IVD, the AF must be repaired. Biological closure has not yet been achieved and is a challenge for the research community. In this study, a scaffold made of absorbable poly (glycolic acid) (PGA) and hyaluronan (HA) that exhibit excellent biocompatibility and cell colonization properties was used to repair AF defects in an ovine model. METHODS A partial resection was performed in AF in L3/4 or L4/5 of 10 sheep and PGA-HA scaffolds were implanted on the defects (n = 5), while defects in the control group were left untreated (n = 5). Three months post-operation, the lumbar discs were sectioned and stained with hematoxylin and eosin and safranin-O/fast-green. Histological features including proteoglycan content, annular structure, cellular morphology, blood vessel ingrowth and tear/cleft formation were scored using a modified scoring scheme by 3 investigators and evaluated by a pathologist independently. RESULTS The treated AF exhibited significantly enhanced repair tissue structure with signs of proteoglycan formation compared to the untreated group. The median scores were 4.3 for the treated and 9.8 for the untreated group. Cystic degeneration, perivascular infiltration, inflammation and necrosis were only present in the untreated group. Blood vessel ingrowth and tear/cleft formation were increased, though not significant, in the untreated group while cell morphology was comparable in both groups. CONCLUSION PGA-HA scaffolds used for AF closure support repair tissue formation in an ovine lumbar disc defect model.
Collapse
|
22
|
Chen B, Zhu R, Hu H, Zhan M, Wang T, Huang F, Wei F, Chai Y, Ling Z, Zou X. Elimination of Senescent Cells by Senolytics Facilitates Bony Endplate Microvessel Formation and Mitigates Disc Degeneration in Aged Mice. Front Cell Dev Biol 2022; 10:853688. [PMID: 35874831 PMCID: PMC9304574 DOI: 10.3389/fcell.2022.853688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022] Open
Abstract
Senolytics are a class of drugs that selectively eliminate senescent cells and ameliorate senescence-associated disease. Studies have demonstrated the accumulation of senescent disc cells and the production of senescence-associated secretory phenotype decrease the number of functional cells in degenerative tissue. It has been determined that clearance of senescent cell by senolytics rejuvenates various cell types in several human organs, including the largest avascular structure, intervertebral disc (IVD). The microvasculature in the marrow space of bony endplate (BEP) are the structural foundation of nutrient exchange in the IVD, but to date, the anti-senescence effects of senolytics on senescent vascular endothelial cells in the endplate subchondral vasculature remains unclear. In this study, the relationships between endothelial cellular senescence in the marrow space of the BEP and IVD degeneration were investigated using the aged mice model. Immunofluorescence staining was used to evaluate the protein expression of P16, P21, and EMCN in vascular endothelial cells. Senescence-associated β-galactosidase staining was used to investigate the senescence of vascular endothelial cells. Meanwhile, the effects of senolytics on cellular senescence of human umbilical vein endothelial cells were investigated using a cell culture model. Preliminary results showed that senolytics alleviate endothelial cellular senescence in the marrow space of BEP as evidenced by reduced senescence-associated secretory phenotype. In the aged mice model, we found decreased height of IVD accompanied by vertebral bone mass loss and obvious changes to the endplate subchondral vasculature, which may lead to the decrease in nutrition transport into IVD. These findings may provide evidence that senolytics can eliminate the senescent cells and facilitate microvascular formation in the marrow space of the BEP. Targeting senescent cellular clearance mechanism to increase nutrient supply to the avascular disc suggests a potential treatment value of senolytics for IVD degenerative diseases.
Collapse
Affiliation(s)
- Bolin Chen
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Runjiu Zhu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Hu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingbin Zhan
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tingxuan Wang
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fangli Huang
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fuxin Wei
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yu Chai
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yu Chai, ; Zemin Ling,
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Yu Chai, ; Zemin Ling,
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Gradišnik L, Maver U, Gole B, Bunc G, Voršič M, Ravnik J, Šmigoc T, Bošnjak R, Velnar T. The Endplate Role in Degenerative Disc Disease Research: The Isolation of Human Chondrocytes from Vertebral Endplate-An Optimised Protocol. Bioengineering (Basel) 2022; 9:137. [PMID: 35447697 PMCID: PMC9029037 DOI: 10.3390/bioengineering9040137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/12/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Degenerative disc disease is a progressive and chronic disorder with many open questions regarding its pathomorphological mechanisms. In related studies, in vitro organ culture systems are becoming increasingly essential as a replacement option for laboratory animals. Live disc cells are highly appealing to study the possible mechanisms of intervertebral disc (IVD) degeneration. To study the degenerative processes of the endplate chondrocytes in vitro, we established a relatively quick and easy protocol for isolating human chondrocytes from the vertebral endplates. METHODS The fragments of human lumbar endplates following lumbar fusion were collected, cut, ground and partially digested with collagenase I in Advanced DMEM/F12 with 5% foetal bovine serum. The sediment was harvested, and cells were seeded in suspension, supplemented with special media containing high nutrient levels. Morphology was determined with phalloidin staining and the characterisation for collagen I, collagen II and aggrecan with immunostaining. RESULTS The isolated cells retained viability in appropriate laboratory conditions and proliferated quickly. The confluent culture was obtained after 14 days. Six to 8 h after seeding, attachments were observed, and proliferation of the isolated cells followed after 12 h. The cartilaginous endplate chondrocytes were stable with a viability of up to 95%. Pheno- and geno-typic analysis showed chondrocyte-specific expression, which decreased with passages. CONCLUSIONS The reported cell isolation process is simple, economical and quick, allowing establishment of a viable long-term cell culture. The availability of a vertebral endplate cell model will permit the study of cell properties, biochemical aspects, the potential of therapeutic candidates for the treatment of disc degeneration, and toxicology studies in a well-controlled environment.
Collapse
Affiliation(s)
- Lidija Gradišnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia; (L.G.); (U.M.)
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia; (L.G.); (U.M.)
| | - Boris Gole
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia;
| | - Gorazd Bunc
- Department of Neurosurgery, University Medical Centre Maribor, 2000 Maribor, Slovenia; (G.B.); (M.V.); (J.R.); (T.Š.)
| | - Matjaž Voršič
- Department of Neurosurgery, University Medical Centre Maribor, 2000 Maribor, Slovenia; (G.B.); (M.V.); (J.R.); (T.Š.)
| | - Janez Ravnik
- Department of Neurosurgery, University Medical Centre Maribor, 2000 Maribor, Slovenia; (G.B.); (M.V.); (J.R.); (T.Š.)
| | - Tomaž Šmigoc
- Department of Neurosurgery, University Medical Centre Maribor, 2000 Maribor, Slovenia; (G.B.); (M.V.); (J.R.); (T.Š.)
| | - Roman Bošnjak
- Department of Neurosurgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Tomaž Velnar
- Department of Neurosurgery, University Medical Centre Maribor, 2000 Maribor, Slovenia; (G.B.); (M.V.); (J.R.); (T.Š.)
- Department of Neurosurgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
24
|
Zhang Z, Qin F, Feng Y, Zhang S, Xie C, Huang H, Sang C, Hu S, Jiao F, Jiang J, Qin Y. Icariin regulates stem cell migration for endogenous repair of intervertebral disc degeneration by increasing the expression of chemotactic cytokines. BMC Complement Med Ther 2022; 22:63. [PMID: 35272637 PMCID: PMC8915518 DOI: 10.1186/s12906-022-03544-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Icariin (ICA) can promote the migration and bone formation of bone marrow mesenchymal stem cells. This study explored a potential role of ICA in recruiting stem cell niches (SCNs) within the intervertebral disc region (ISN)-derived stem cells (ISN-SCs) to treat intervertebral disc degeneration (IVDD). Materials and methods EdU staining, transwell, and wound healing tests were used to analyze the function of ICA on ISN-SCs proliferation and migration ability. Simultaneously, the IVDD rat model was constructed by the acupuncture and divided into Sham, Sham + ICA, IVDD, and IVDD + ICA groups. H&E and PAS staining were performed to detect the pathological changes of IVDD tissues. Immunofluorescence was performed to discover relevant marker expression on the surface of stem cells in the IVDD tissues. Western blot and qPCR were executed to find the protein and mRNA expression of related cytokines in the IVDD tissues. Results ISN-SCs treated with 1 μM ICA obtained the better ability of proliferation and migration. H&E staining showed that the annulus fibrosus in the IVDD group was obviously hyperplasia with cavities and fissures; the nucleus pulposus was reduced. PAS staining showed that the content of polysaccharides was significantly reduced in the nucleus pulposus of IVDD group. However, the ICA treatment alleviated the pathological trends of the IVDD tissues. Simultaneously, ICA treatment increased significantly the expression of stem cells and IGF-1, TGF-β, SDF-1, CCL-5, Collagen I, Collagen II, Aggrecan, and SOX9 in IVDD tissues. Conclusions ICA treatment promoted the migration of stem cell in IVDD by increasing the expression of chemotactic cytokines, including IGF-1, TGF-β, SDF-1, and CCL-5. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03544-x.
Collapse
Affiliation(s)
- Zhaofei Zhang
- Department of Spine and Orthopedics, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, People's Republic of China. .,Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou, Guangdong, People's Republic of China.
| | - Fengwei Qin
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou, Guangdong, People's Republic of China
| | - Yonghui Feng
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou, Guangdong, People's Republic of China
| | - Sineng Zhang
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou, Guangdong, People's Republic of China
| | - Chunliang Xie
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou, Guangdong, People's Republic of China
| | - He Huang
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou, Guangdong, People's Republic of China
| | - Chaohui Sang
- Department of Spine and Orthopedics, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, People's Republic of China
| | - Shaoyu Hu
- Department of Spine and Orthopedics, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, People's Republic of China
| | - Feng Jiao
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou, Guangdong, People's Republic of China
| | - Jie Jiang
- Department of Spine and Orthopedics, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, People's Republic of China
| | - Yi Qin
- Department of Spine and Orthopedics, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, People's Republic of China.
| |
Collapse
|
25
|
Huang J, Zhou Q, Ren Q, Luo L, Ji G, Zheng T. Endoplasmic reticulum stress associates with the development of intervertebral disc degeneration. Front Endocrinol (Lausanne) 2022; 13:1094394. [PMID: 36714579 PMCID: PMC9877331 DOI: 10.3389/fendo.2022.1094394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Endoplasmic reticulum (ER) is an important player in various intracellular signaling pathways that regulate cellular functions in many diseases. Intervertebral disc degeneration (IDD), an age-related degenerative disease, is one of the main clinical causes of low back pain. Although the pathological development of IDD is far from being fully elucidated, many studies have been shown that ER stress (ERS) is involved in IDD development and regulates various processes, such as inflammation, cellular senescence and apoptosis, excessive mechanical loading, metabolic disturbances, oxidative stress, calcium homeostasis imbalance, and extracellular matrix (ECM) dysregulation. This review summarizes the formation of ERS and the potential link between ERS and IDD development. ERS can be a promising new therapeutic target for the clinical management of IDD.
Collapse
Affiliation(s)
- Jishang Huang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qingluo Zhou
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Liliang Luo
- Department of Orthopedics, Shangyou Hospital of traditional Chinese Medicine, Ganzhou, China
| | - Guanglin Ji
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tiansheng Zheng
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tiansheng Zheng,
| |
Collapse
|
26
|
Liu C, Li Y, Zhang Y, Xu H. The experimental study of regeneration of annulus fibrosus using decellularized annulus fibrosus matrix/poly(ether carbonate urethane)urea-blended fibrous scaffolds with varying elastic moduli. J Biomed Mater Res A 2021; 110:991-1003. [PMID: 34918475 DOI: 10.1002/jbm.a.37347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 12/30/2022]
Abstract
Although tissue engineering has attracted increasing attention for the treatment of degenerative intervertebral disc disease, the biochemical properties, structural organization, and mechanical characteristics of annulus fibrosus tissue have restricted progress. Differentiation of annulus fibrosus-derived stem cells (AFSCs) can be regulated by the elasticity of substrates such as poly(ether carbonate urethane)urea (PECUU). Decellularized annulus fibrosus matrix (DAFM) has good biocompatibility and biodegradability, making it suitable for cell adhesion, proliferation, and differentiation. In this study, we used a coaxial electrospinning method to synthesize DAFM/PECUU-blended fibrous scaffolds with elasticities approximating that of native inner and outer annulus fibrosus tissue. AFSCs cultured on DAFM/PECUU-blended fibrous scaffolds exhibited increased collagen type I gene expression with increasing elasticity of the scaffold material; notably, collagen type II and aggrecan gene expression exhibited the opposite trend. Regarding extracellular matrix secretion, collagen type I content gradually increased with substrate elasticity, while collagen type II and aggrecan contents decreased. In vivo evaluations employing magnetic resonance imaging, hematoxylin and eosin staining, and immunohistochemistry indicated that DAFM/PECUU-blended fibrous scaffolds could effectively repair defects of annulus fibrosus tissue. Our findings provide a theoretical and practical basis for the development of bionic annulus fibrosus tissue that closely mimics the biological properties, mechanical function, and matrix composition of native tissue.
Collapse
Affiliation(s)
- Chen Liu
- Spine Research Center of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, China.,Department of Spine Surgery, Yijishan hospital of Wannan Medical College, Wuhu, China
| | - Yu Li
- Spine Research Center of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, China
| | - Yu Zhang
- Spine Research Center of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, China
| | - Hongguang Xu
- Spine Research Center of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, China.,Department of Spine Surgery, Yijishan hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
27
|
Xu H, Wei K, Tu J, Chen Y, He Y, Ding Y, Xu H, Bao X, Xie H, Fang H, Wang H. Reducing Inflammation and Vascular Invasion in Intervertebral Disc Degeneration via Cystathionine-γ-Lyase Inhibitory Effect on E-Selectin. Front Cell Dev Biol 2021; 9:741046. [PMID: 34869327 PMCID: PMC8634256 DOI: 10.3389/fcell.2021.741046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
The incidence of degenerative spinal diseases, such as cervical spondylosis and thoracic and lumbar disc herniation, is increasing. These health problems have adversely affected human life and work. Surgical intervention is effective when intervertebral disc degeneration (IDD) causes nerve compression and/or severely limits daily activity. Early IDD patients generally do not require surgery. However, there is no effective method of impeding IDD progression. Thus, novel approaches to alleviating IDD deterioration are urgently required. Cystathionine-γ-lyase (CSE) and E-selectin (CD62E) are vital factors regulating vascular function and inflammation. However, their effects on IDD and vascular invasion in intervertebral discs (IVDs) are pending further exploration. Here, bioinformatics and human nucleus pulposus (NP) tissues analyses revealed that CSE was significantly downregulated and CD62E was upregulated in the NP tissues of IDD patients. We demonstrated that CSE overexpression, CD62E downregulation, and NF-κB (P65) inhibition mitigate inflammation and recover metabolic function in NP cells. Similarly, CSE attenuated vascular invasion induced by inflammatory irritation. Using a rat IDD model, we showed that CSE improved degeneration, inflammation, and microvascular invasion in NP tissue, whereas CD62E had the opposite effect. Taken together, our results indicated that the CSE/CD62E pathway could effectively improve the inflammatory environment and vascular invasion in IVD. Hence, the findings of this study propose a promising and valuable strategy for the treatment of patients with early IDD as well as postoperative adjuvant therapy in patients with severe IDD.
Collapse
Affiliation(s)
- Haoran Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Wei
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangmengfan Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Ding
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huanhuan Xu
- Department of Obstetrics and Gynecology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyu Bao
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huang Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Stem Cell Therapy and Exercise for Treatment of Intervertebral Disc Degeneration. Stem Cells Int 2021; 2021:7982333. [PMID: 34691192 PMCID: PMC8528633 DOI: 10.1155/2021/7982333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
As part of the motor system, intervertebral disc (IVD) is a complicated tissue with multiple components. The degeneration of IVD may result in low back pain (LBP), which strongly impairs quality of life. Various causes are related to the degeneration of IVD, including cell senescence, hydration lost, and inflammation. Stem cells founded in different tissues have attracted the interest of the researchers and clinicians to study the implication of these cells in the treatment for tissue injury and degeneration. In this report, we will review the study of stem cells in the treatment for IVD degeneration. On the other hand, the effect of exercise on IVD degeneration and the relationship between IVD degeneration and musculoskeletal disorders like sarcopenia are discussed.
Collapse
|
29
|
Mrkovački J, Srzentić Dražilov S, Spasovski V, Fazlagić A, Pavlović S, Nikčević G. Case Report: Successful Therapy of Spontaneously Occurring Canine Degenerative Lumbosacral Stenosis Using Autologous Adipose Tissue-Derived Mesenchymal Stem Cells. Front Vet Sci 2021; 8:732073. [PMID: 34631857 PMCID: PMC8495131 DOI: 10.3389/fvets.2021.732073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/20/2021] [Indexed: 01/08/2023] Open
Abstract
The management of degenerative lumbosacral stenosis (DLSS) in dogs usually requires aggressive, costly surgical treatments that may themselves present complications, while do not fully resolve the symptoms of the disease. In this study, the dog diagnosed with severe DLSS, with hind limb paresis, was treated using a new and least invasive treatment. Cultured autologous adipose tissue-derived mesenchymal stem cells (AT-MSCs) were injected bilaterally at the level of L7-S1, in the vicinity of the external aperture of the intervertebral foramen of DLSS patient. In the previously described treatments of spontaneous intervertebral disc degeneration in dogs, intradiscal injections of MSCs did not lead to positive effects. Here, we report a marked improvement in clinical outcome measures related to the ability of a dog to walk and trot, which were expressed by a numeric rating scale based on a veterinary assessment questionnaire. The improved status persisted throughout the observed time course of 4.5 years after the AT-MSC transplantation. To the best of our knowledge, this is the first case of successful therapy, with long-term positive effect, of spontaneously occurring canine DLSS using presented treatment that, we believe, represents a contribution to current knowledge in this field and may shape both animal and human DLSS treatment options.
Collapse
Affiliation(s)
| | - Sanja Srzentić Dražilov
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Vesna Spasovski
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Amira Fazlagić
- National Association for the Improvement and Development of Regenerative Medicine, Belgrade, Serbia
| | - Sonja Pavlović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Gordana Nikčević
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
30
|
Dou Y, Sun X, Ma X, Zhao X, Yang Q. Intervertebral Disk Degeneration: The Microenvironment and Tissue Engineering Strategies. Front Bioeng Biotechnol 2021; 9:592118. [PMID: 34354983 PMCID: PMC8329559 DOI: 10.3389/fbioe.2021.592118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/18/2021] [Indexed: 12/16/2022] Open
Abstract
Intervertebral disk degeneration (IVDD) is a leading cause of disability. The degeneration is inevitable, and the mechanisms are complex. Current therapeutic strategies mainly focus on the relief of symptoms, not the intrinsic regeneration of the intervertebral disk (IVD). Tissue engineering is a promising strategy for IVDD due to its ability to restore a healthy microenvironment and promote IVD regeneration. This review briefly summarizes the IVD anatomy and composition and then sets out elements of the microenvironment and the interactions. We rationalized different scaffolds based on tissue engineering strategies used recently. To fulfill the complete restoration of a healthy IVD microenvironment, we propose that various tissue engineering strategies should be combined and customized to create personalized therapeutic strategies for each individual.
Collapse
Affiliation(s)
- Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xinlong Ma
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
31
|
Kamdem Tamo A, Doench I, Walter L, Montembault A, Sudre G, David L, Morales-Helguera A, Selig M, Rolauffs B, Bernstein A, Hoenders D, Walther A, Osorio-Madrazo A. Development of Bioinspired Functional Chitosan/Cellulose Nanofiber 3D Hydrogel Constructs by 3D Printing for Application in the Engineering of Mechanically Demanding Tissues. Polymers (Basel) 2021; 13:1663. [PMID: 34065272 PMCID: PMC8160918 DOI: 10.3390/polym13101663] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Soft tissues are commonly fiber-reinforced hydrogel composite structures, distinguishable from hard tissues by their low mineral and high water content. In this work, we proposed the development of 3D printed hydrogel constructs of the biopolymers chitosan (CHI) and cellulose nanofibers (CNFs), both without any chemical modification, which processing did not incorporate any chemical crosslinking. The unique mechanical properties of native cellulose nanofibers offer new strategies for the design of environmentally friendly high mechanical performance composites. In the here proposed 3D printed bioinspired CNF-filled CHI hydrogel biomaterials, the chitosan serves as a biocompatible matrix promoting cell growth with balanced hydrophilic properties, while the CNFs provide mechanical reinforcement to the CHI-based hydrogel. By means of extrusion-based printing (EBB), the design and development of 3D functional hydrogel scaffolds was achieved by using low concentrations of chitosan (2.0-3.0% (w/v)) and cellulose nanofibers (0.2-0.4% (w/v)). CHI/CNF printed hydrogels with good mechanical performance (Young's modulus 3.0 MPa, stress at break 1.5 MPa, and strain at break 75%), anisotropic microstructure and suitable biological response, were achieved. The CHI/CNF composition and processing parameters were optimized in terms of 3D printability, resolution, and quality of the constructs (microstructure and mechanical properties), resulting in good cell viability. This work allows expanding the library of the so far used biopolymer compositions for 3D printing of mechanically performant hydrogel constructs, purely based in the natural polymers chitosan and cellulose, offering new perspectives in the engineering of mechanically demanding hydrogel tissues like intervertebral disc (IVD), cartilage, meniscus, among others.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Laboratory for Sensors, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.); (L.W.)
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Ingo Doench
- Laboratory for Sensors, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.); (L.W.)
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Lukas Walter
- Laboratory for Sensors, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.); (L.W.)
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Alexandra Montembault
- Ingénierie des Matériaux Polymères IMP UMR 5223—CNRS, Université Claude Bernard Lyon 1, Université de Lyon, CEDEX, 69622 Villeurbanne, France; (A.M.); (G.S.); (L.D.)
| | - Guillaume Sudre
- Ingénierie des Matériaux Polymères IMP UMR 5223—CNRS, Université Claude Bernard Lyon 1, Université de Lyon, CEDEX, 69622 Villeurbanne, France; (A.M.); (G.S.); (L.D.)
| | - Laurent David
- Ingénierie des Matériaux Polymères IMP UMR 5223—CNRS, Université Claude Bernard Lyon 1, Université de Lyon, CEDEX, 69622 Villeurbanne, France; (A.M.); (G.S.); (L.D.)
| | - Aliuska Morales-Helguera
- Chemical Bioactive Center CBQ, Molecular Simulation and Drug Design Group, Central University of Las Villas, Santa Clara 50400, Cuba;
| | - Mischa Selig
- Center for Tissue Replacement, Regeneration & Neogenesis—G.E.R.N., Department of Orthopedics and Trauma Surgery, University of Freiburg, 79108 Freiburg, Germany; (M.S.); (B.R.); (A.B.)
| | - Bernd Rolauffs
- Center for Tissue Replacement, Regeneration & Neogenesis—G.E.R.N., Department of Orthopedics and Trauma Surgery, University of Freiburg, 79108 Freiburg, Germany; (M.S.); (B.R.); (A.B.)
| | - Anke Bernstein
- Center for Tissue Replacement, Regeneration & Neogenesis—G.E.R.N., Department of Orthopedics and Trauma Surgery, University of Freiburg, 79108 Freiburg, Germany; (M.S.); (B.R.); (A.B.)
| | - Daniel Hoenders
- Department of Chemistry, University Mainz, 55128 Mainz, Germany; (D.H.); (A.W.)
| | - Andreas Walther
- Department of Chemistry, University Mainz, 55128 Mainz, Germany; (D.H.); (A.W.)
| | - Anayancy Osorio-Madrazo
- Laboratory for Sensors, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.); (L.W.)
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
32
|
Zheng K, Du D. Recent advances of hydrogel-based biomaterials for intervertebral disc tissue treatment: A literature review. J Tissue Eng Regen Med 2021; 15:299-321. [PMID: 33660950 DOI: 10.1002/term.3172] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Low back pain is an increasingly prevalent symptom mainly associated with intervertebral disc (IVD) degeneration. It is highly correlated with aging, as the nucleus pulposus (NP) dehydrates and annulus fibrosus fissure formatting, which finally results in the IVD herniation and related clinical symptoms. Hydrogels have been drawing increasing attention as the ideal candidates for IVD degeneration because of their unique properties such as biocompatibility, highly tunable mechanical properties, and especially the water absorption and retention ability resembling the normal NP tissue. Numerous innovative hydrogel polymers have been generated in the most recent years. This review article will first briefly describe the anatomy and pathophysiology of IVDs and current therapies with their limitations. Following that, the article introduces the hydrogel materials in the classification of their origins. Next, it reviews the recent hydrogel polymers explored for IVD regeneration and analyses what efforts have been made to overcome the existing limitations. Finally, the challenges and prospects of hydrogel-based treatments for IVD tissue are also discussed. We believe that these novel hydrogel-based strategies may shed light on new possibilities in IVD degeneration disease.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
33
|
A New Hope in Spinal Degenerative Diseases: Piezo1. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6645193. [PMID: 33575334 PMCID: PMC7857891 DOI: 10.1155/2021/6645193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/09/2021] [Indexed: 12/19/2022]
Abstract
As a newly discovered mechanosensitive ion channel protein, the piezo1 protein participates in the transmission of mechanical signals on the cell membrane and plays a vital role in mammalian biomechanics. Piezo1 has attracted widespread attention since it was discovered in 2010. In recent years, studies on piezo1 have gradually increased and deepened. In addition to the discovery that piezo1 is expressed in the respiratory, cardiovascular, gastrointestinal, and urinary systems, it is also stably expressed in cells such as mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, chondrocytes, and nucleus pulposus cells that constitute vertebral bodies and intervertebral discs. They can all receive external mechanical stimulation through the piezo1 protein channel to affect cell proliferation, differentiation, migration, and apoptosis to promote the occurrence and development of lumbar degenerative diseases. Through reviewing the relevant literature of piezo1 in the abovementioned cells, this paper discusses the effect of piezo1 protein expression under mechanical stress stimuli on spinal degenerative disease, providing the molecular basis for the pathological mechanism of spinal degenerative disease and also a new basis, ideas, and methods for the prevention and treatment of this degenerative disease.
Collapse
|
34
|
Hondke S, Cabraja M, Krüger JP, Stich S, Hartwig T, Sittinger M, Endres M. Proliferation, Migration, and ECM Formation Potential of Human Annulus Fibrosus Cells Is Independent of Degeneration Status. Cartilage 2020; 11:192-202. [PMID: 29577749 PMCID: PMC7097975 DOI: 10.1177/1947603518764265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The objective was to evaluate the proliferating, migratory and extracellular matrix (ECM) forming potential of annulus fibrosus cells derived from early (edAFC) or advanced (adAFC) degenerative tissue and their usability as a possible cell source for regenerative approaches for AF closure. DESIGN EdAFC (n = 5 Pfirrman score of 2-3) and adAFC (n = 5 Pfirrman score of 4-5) were isolated from tissue of patients undergoing spine stabilizing surgery. Cell migration on stimulation with human serum (HS), platelet-rich plasma (PRP), and transforming growth factor β-3 (TGFB3) was assessed by migration assay and proliferation was assessed on stimulation with HS. Induction of ECM synthesis was evaluated by gene expression analysis of AF-related genes in three-dimensional scaffold cultures that have been stimulated with 5% PRP or 10 ng/mL TGFB3 and histologically by collagen type I, type II, alcian blue, and safranin-O staining. RESULTS EdAFC and adAFC were significantly attracted by 10% HS and 5% PRP. Additionally, both cell groups proliferated under stimulation with HS. Stimulation with 10 ng/mL TGFB3 showed significant induction of gene expression of collagen type II and aggrecan, while 5% PRP decreased the expression of collagen type I. Both cell groups showed formation of AF-like ECM after stimulation with TGFB3, whereas stimulation with PRP did not. CONCLUSIONS Our study demonstrated that AF cells retain their potential for proliferation, migration, and ECM formation independent of the degeneration status of the tissue. Proliferation, migration, and ECM synthesis of the endogenous AF cells can be supported by different supplements. Hence, endogenous AF cells might be a suitable cell source for a regenerative repair approaches.
Collapse
Affiliation(s)
| | - Mario Cabraja
- Department of Spinal Surgery, Vivantes Auguste-Viktoria-Hospital, Berlin, Germany
| | | | - Stefan Stich
- Department of Rheumatology and Clinical Immunology, Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies and Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | - Tony Hartwig
- Department of Spinal Surgery, Vivantes Hospital Spandau, Berlin, Germany
| | - Michael Sittinger
- Department of Rheumatology and Clinical Immunology, Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies and Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | | |
Collapse
|
35
|
Degeneration of Lumbar Intervertebral Discs: Characterization of Anulus Fibrosus Tissue and Cells of Different Degeneration Grades. Int J Mol Sci 2020; 21:ijms21062165. [PMID: 32245213 PMCID: PMC7139657 DOI: 10.3390/ijms21062165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/16/2023] Open
Abstract
Intervertebral disc (IVD) herniation and degeneration is a major source of back pain. In order to regenerate a herniated and degenerated disc, closure of the anulus fibrosus (AF) is of crucial importance. For molecular characterization of AF, genome-wide Affymetrix HG-U133plus2.0 microarrays of native AF and cultured cells were investigated. To evaluate if cells derived from degenerated AF are able to initiate gene expression of a regenerative pattern of extracellular matrix (ECM) molecules, cultivated cells were stimulated with bone morphogenetic protein 2 (BMP2), transforming growth factor β1 (TGFβ1) or tumor necrosis factor-α (TNFα) for 24 h. Comparative microarray analysis of native AF tissues showed 788 genes with a significantly different gene expression with 213 genes more highly expressed in mild and 575 genes in severe degenerated AF tissue. Mild degenerated native AF tissues showed a higher gene expression of common cartilage ECM genes, whereas severe degenerated AF tissues expressed genes known from degenerative processes, including matrix metalloproteinases (MMP) and bone associated genes. During monolayer cultivation, only 164 differentially expressed genes were found. The cells dedifferentiated and altered their gene expression profile. RTD-PCR analyses of BMP2- and TGFβ1-stimulated cells from mild and severe degenerated AF tissue after 24 h showed an increased expression of cartilage associated genes. TNFα stimulation increased MMP1, 3, and 13 expression. Cells derived from mild and severe degenerated tissues could be stimulated to a comparable extent. These results give hope that regeneration of mildly but also strongly degenerated disc tissue is possible.
Collapse
|
36
|
Huebner P, Warren PB, Chester D, Spang JT, Brown AC, Fisher MB, Shirwaiker RA. Mechanical properties of tissue formed in vivo are affected by 3D-bioplotted scaffold microarchitecture and correlate with ECM collagen fiber alignment. Connect Tissue Res 2020; 61:190-204. [PMID: 31345062 DOI: 10.1080/03008207.2019.1624733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Musculoskeletal soft tissues possess highly aligned extracellular collagenous networks that provide structure and strength. Such an organization dictates tissue-specific mechanical properties but can be difficult to replicate by engineered biological substitutes. Nanofibrous electrospun scaffolds have demonstrated the ability to control cell-secreted collagen alignment, but concerns exist regarding their scalability for larger and anatomically relevant applications. Additive manufacturing processes, such as melt extrusion-based 3D-Bioplotting, allow fabrication of structurally relevant scaffolds featuring highly controllable porous microarchitectures.Materials and Methods: In this study, we investigate the effects of 3D-bioplotted scaffold design on the compressive elastic modulus of neotissue formed in vivo in a subcutaneous rat model and its correlation with the alignment of ECM collagen fibers. Polycaprolactone scaffolds featuring either 100 or 400 µm interstrand spacing were implanted for 4 or 12 weeks, harvested, cryosectioned, and characterized using atomic-force-microscopy-based force mapping.Results: The compressive elastic modulus of the neotissue formed within the 100 µm design was significantly higher at 4 weeks (p < 0.05), but no differences were observed at 12 weeks. In general, the tissue stiffness was within the same order of magnitude and range of values measured in native musculoskeletal soft tissues including the porcine meniscus and anterior cruciate ligament. Finally, a significant positive correlation was noted between tissue stiffness and the degree of ECM collagen fiber alignment (p < 0.05) resulting from contact guidance provided by scaffold strands.Conclusion: These findings demonstrate the significant effects of 3D-bioplotted scaffold microarchitectures in the organization and sub-tissue-level mechanical properties of ECM in vivo.
Collapse
Affiliation(s)
- Pedro Huebner
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Paul B Warren
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - Daniel Chester
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - Jeffrey T Spang
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ashley C Brown
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - Matthew B Fisher
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA.,Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rohan A Shirwaiker
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| |
Collapse
|
37
|
Wang S, He Y, Ma J, Yu L, Wen J, Ye X. Dynamic Bioreactor Culture for Infiltration of Bone Mesenchymal Stem Cells within Electrospun Nanofibrous Scaffolds for Annulus Fibrosus Repair. Orthop Surg 2020; 12:304-311. [PMID: 31944618 PMCID: PMC7031622 DOI: 10.1111/os.12615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/17/2019] [Accepted: 12/22/2019] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE To compare the ability of three culture strategies of static culture, intermittent centrifugal culture and dynamic bioreactor culture in promoting the infiltration of bone marrow mesenchymal stem cells (BMSCs) throughout electrospun nanoporous aligned nanoyarn scaffold (AYS). METHODS AYS was constructed by the method of conjugated electrospinning, using the blended solution of poly (L-lactide-co-caprolactone) (P (LLA-CL)) and gelatin. Then the bone marrow mesenchymal stem cells (BMSCs) were transplanted on the scaffolds. Culture the scaffold-cells using three methods of static culture, intermittent centrifugal culture and dynamic bioreactor culture. After 7 and 14 days in culture, the infiltration depth of the cells were observed and measured by hematoxylin and eosin (HE) or 4', 6-diamidino-2-phenylindole (DAPI) staining. RESULT In the current study, on the 7th day, the BMSCs in the scaffolds of static culture group, intermittent centrifugal culture group, and dynamic bioreactor culture group infiltrated to an average depth of 11.88 ± 1.82 μm, 21.17 ± 13.17 μm, and 26.27 ± 7.42 μm, respectively. There were differences between the bioreactor culture group with the static culture group and the intermittent centrifugal culture group. On the time point of 14 days, the depth of infiltration of BMSCs in dynamic bioreactor culture was the most (115.13 ± 25.44 μm, P < 0.05), and the infiltration of the cells in the intermittent centrifugal culture group was 42.53 ± 13.07 μm, deeper than that of the static culture group (24.53 ± 6.06, P < 0.05). CONCLUSION Dynamic bioreactor culture may be a preferred method for tissue engineering approaches involving scaffolds with a low porosity, such as those needed for repair of the annulus fibrosus (AF).
Collapse
Affiliation(s)
- Shuang Wang
- Department of Spinal Surgery, Changzheng HospitalSecond Military Medical UniversityShanghaiChina
| | - Yun‐Fei He
- Department of OrthopedicsThe 940th Hospital of Joint Logistics Support Force of the Chinese People's Liberation ArmyLanzhouChina
| | - Jun Ma
- Department of OrthopedicsCentral Theater Command General Hospital of the Chinese People's Liberation ArmyWuhanChina
| | - Lei Yu
- Department of Spinal Surgery, Changzheng HospitalSecond Military Medical UniversityShanghaiChina
| | - Jian‐Kun Wen
- Department of Spinal Surgery, Changzheng HospitalSecond Military Medical UniversityShanghaiChina
| | - Xiao‐Jian Ye
- Department of Spinal Surgery, Changzheng HospitalSecond Military Medical UniversityShanghaiChina
| |
Collapse
|
38
|
Jiang EY, Sloan SR, Wipplinger C, Kirnaz S, Härtl R, Bonassar LJ. Proteoglycan removal by chondroitinase ABC improves injectable collagen gel adhesion to annulus fibrosus. Acta Biomater 2019; 97:428-436. [PMID: 31425894 DOI: 10.1016/j.actbio.2019.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Intervertebral disc (IVD) herniations are currently treated with interventions that leave the IVD with persistent lesions prone to further herniations. Annulus fibrosus (AF) repair has become of interest as a method to seal defects in the IVD and prevent reherniation, but this requires strong adhesion of the implanted biomaterial to the native AF tissue. Our group has previously developed a high-density collagen (HDC) gel for AF repair and tested its efficacy in vivo, but its adhesion to the AF could be improved. Increased cell adhesion to cartilage has previously been reported through chondroitinase ABC (ChABC) digestion, which removes proteoglycans and increases access to cell binding motifs. Such approaches could also increase biomaterial adhesion to tissue, but the effects of ChABC digestion on AF have yet to be investigated. In this study, ovine AF tissue was digested with either 10 U/mL ChABC or saline for up to 10 min and the effect of this treatment on collagen adhesion between AF tissue samples was investigated by histology and mechanical testing in a lap-shear configuration. ChABC digestion removed proteoglycans within the AF in a time-dependent fashion and enhanced adhesion of the HDC gel to the AF. ChABC digestion increased the elastic toughness and total shear energy of the HDC gel-AF interface by 88% and 46% respectively. ChABC treatment enhanced the adhesion of the HDC gel to the AF without significantly decreasing native AF cell viability. Thus, ChABC digestion is a viable method to improve adhesion of biomaterials for AF repair. STATEMENT OF SIGNIFICANCE: Intervertebral disc herniations are currently treated with interventions that leave persistent lesions in the annulus fibrosus that are prone to further herniations. Annular repair is a promising method to seal lesions and prevent reherniation, but requires strong adhesion of the implanted biomaterial to native annulus fibrosus. Since large proteoglycans like aggrecan occupy regions of the extracellular matrix between collagen fibers in the annulus fibrosus, we hypothesized that removing proteoglycans via chondroitinase digestion would increase the adhesion of annular repair hydrogels. This investigation demonstrated that chondroitinase removed proteoglycans within annulus fibrosus tissue, enhanced the interaction of an injected collagen gel with the native tissue, and mechanically improved adhesion between the collagen gel and annulus fibrosus. This is the first study of its kind to evaluate the biochemical and mechanical effects of short-term chondroitinase digestion on annulus fibrosus tissue.
Collapse
|
39
|
Borem R, Madeline A, Vela R, Gill S, Mercuri J. Multi-laminate annulus fibrosus repair scaffold with an interlamellar matrix enhances impact resistance, prevents herniation and assists in restoring spinal kinematics. J Mech Behav Biomed Mater 2019; 95:41-52. [PMID: 30953808 PMCID: PMC6510600 DOI: 10.1016/j.jmbbm.2019.03.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/03/2019] [Accepted: 03/29/2019] [Indexed: 12/19/2022]
Abstract
Focal defects in the annulus fibrosus (AF) of the intervertebral disc (IVD) arising from herniation have detrimental impacts on the IVD's mechanical function. Thus, biomimetic-based repair strategies must restore the mechanical integrity of the AF to help support and restore native spinal loading and motion. Accordingly, an annulus fibrosus repair patch (AFRP); a collagen-based multi-laminate scaffold with an angle-ply architecture has been previously developed, which demonstrates similar mechanical properties to native outer AF (oAF). To further enhance the mimetic nature of the AFRP, interlamellar (ILM) glycosaminoglycan (GAG) was incorporated into the scaffolds. The ability of the scaffolds to withstand simulated impact loading and resist herniation of native IVD tissue while contributing to the restoration of spinal kinematics were assessed separately. The results demonstrate that incorporation of a GAG-based ILM significantly increased (p < 0.001) the impact strength of the AFRP (2.57 ± 0.04 MPa) compared to scaffolds without (1.51 ± 0.13 MPa). Additionally, repair of injured functional spinal units (FSUs) with an AFRP in combination with sequestering native NP tissue and a full-thickness AF tissue plug enabled the restoration of creep displacement (p = 0.134), short-term viscous damping coefficient (p = 0.538), the long-term viscous (p = 0.058) and elastic (p = 0.751) damping coefficients, axial neutral zone (p = 0.908), and axial range of motion (p = 0.476) to an intact state. Lastly, the AFRP scaffolds were able to prevent native IVD tissue herniation upon application of supraphysiologic loads (5.28 ± 1.24 MPa). Together, these results suggest that the AFRP has the strength to sequester native NP and AF tissue and/or implants, and thus, can be used in a composite repair strategy for IVDs with focal annular defects thereby assisting in the restoration of spinal kinematics.
Collapse
Affiliation(s)
- Ryan Borem
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Allison Madeline
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Ricardo Vela
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Sanjitpal Gill
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA; Department of Orthopaedic Surgery, Medical Group of the Carolinas-Pelham, Spartanburg Regional Healthcare System, Greer, SC, USA
| | - Jeremy Mercuri
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
40
|
Nukaga T, Sakai D, Schol J, Sato M, Watanabe M. Annulus fibrosus cell sheets limit disc degeneration in a rat annulus fibrosus injury model. JOR Spine 2019; 2:e1050. [PMID: 31463464 PMCID: PMC6686811 DOI: 10.1002/jsp2.1050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/18/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022] Open
Abstract
In recent years, studies have explored novel approaches for cell transplantation to enable annulus fibrosus (AF) regeneration of the intervertebral disc in particular for lumbar disc herniation. Nevertheless, successful engraftment of cells is structurally challenging, and no definitive method has yet been established. This study investigated the potential of cell sheet technology to facilitate cell engraftment for AF repair. AF injury was induced by a 1 × 1 mm defect in rat tails after which AF cell sheets were transplanted. Its regenerative effects were compared to a nondegenerated and degeneration only conditions. Degenerative changes of the entire intervertebral disc were examined by disc height measurements, histology, and immunohistochemistry for 4-, 8-, and 12-weeks post-transplantation. Cell engraftment was confirmed by tracing PKH26 fluorescent dyed AF cells. In the transplant group, disc degeneration was significantly suppressed after 4, 8, and 12 weeks when compared with the degenerative group, as indicated by histological scoring and DHI observations. At 2 and 4 weeks after transplant, PKH26 positive cells could be detected in defect region and surrounding AF. The results suggest cell engraftment into AF tissue could be established by the cell sheet technology without additional scaffolding or adhesives. In short, AF cell sheets appear to be an effective and accessible tool for AF repair and to support intervertebral disc regeneration.
Collapse
Affiliation(s)
- Tadashi Nukaga
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaKanagawaJapan
| | - Daisuke Sakai
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaKanagawaJapan
| | - Jordy Schol
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaKanagawaJapan
| | - Masato Sato
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaKanagawaJapan
| | - Masahiko Watanabe
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaKanagawaJapan
| |
Collapse
|
41
|
Hom WW, Tschopp M, Lin HA, Nasser P, Laudier DM, Hecht AC, Nicoll SB, Iatridis JC. Composite biomaterial repair strategy to restore biomechanical function and reduce herniation risk in an ex vivo large animal model of intervertebral disc herniation with varying injury severity. PLoS One 2019; 14:e0217357. [PMID: 31136604 PMCID: PMC6538241 DOI: 10.1371/journal.pone.0217357] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022] Open
Abstract
Back pain commonly arises from intervertebral disc (IVD) damage including annulus fibrosus (AF) defects and nucleus pulposus (NP) loss. Poor IVD healing motivates developing tissue engineering repair strategies. This study evaluated a composite injectable IVD biomaterial repair strategy using carboxymethylcellulose-methylcellulose (CMC-MC) and genipin-crosslinked fibrin (FibGen) that mimic NP and AF properties, respectively. Bovine ex vivo caudal IVDs were evaluated in cyclic compression-tension, torsion, and compression-to-failure tests to determine IVD biomechanical properties, height loss, and herniation risk following experimentally-induced severe herniation injury and discectomy (4 mm biopsy defect with 20% NP removed). FibGen with and without CMC-MC had failure strength similar to discectomy injury suggesting no increased risk compared to surgical procedures, yet no biomaterials improved axial or torsional biomechanical properties suggesting they were incapable of adequately restoring AF tension. FibGen had the largest failure strength and was further evaluated in additional discectomy injury models with varying AF defect types (2 mm biopsy, 4 mm cruciate, 4 mm biopsy) and NP removal volume (0%, 20%). All simulated discectomy defects significantly compromised failure strength and biomechanical properties. The 0% NP removal group had mean values of axial biomechanical properties closer to intact levels than defects with 20% NP removed but they were not statistically different and 0% NP removal also decreased failure strength. FibGen with and without CMC-MC failed at super-physiological stress levels above simulated discectomy suggesting repair with these tissue engineered biomaterials may perform better than discectomy alone, although restored biomechanical function may require additional healing with the potential application of these biomaterials as sealants and cell/drug delivery carriers.
Collapse
Affiliation(s)
- Warren W. Hom
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Melanie Tschopp
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Huizi A. Lin
- Department of Biomedical Engineering, The City College of New York, New York, New York, United States of America
| | - Philip Nasser
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Damien M. Laudier
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Andrew C. Hecht
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Steven B. Nicoll
- Department of Biomedical Engineering, The City College of New York, New York, New York, United States of America
| | - James C. Iatridis
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
42
|
Stergar J, Gradisnik L, Velnar T, Maver U. Intervertebral disc tissue engineering: A brief review. Bosn J Basic Med Sci 2019; 19:130-137. [PMID: 30726701 DOI: 10.17305/bjbms.2019.3778] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 07/29/2018] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is associated with low back pain and significantly affects the patient's quality of life. Degeneration of the IVD alters disk height and the mechanics of the spine, leading to chronic segmental spinal instability. The pathophysiology of IVD disease is still not well understood. Current therapies for IDD include conservative and invasive approaches, but none of those treatments are able to restore the disc structure and function. Recently, tissue engineering techniques emerged as a possible approach to treat IDD, by replacing a damaged IVD with scaffolds and appropriate cells. Advances in manufacturing techniques, material processing and development, surface functionalization, drug delivery systems and cell incorporation furthered the development of tissue engineering therapies. In this review, biomaterial scaffolds and cell-based therapies for IVD regeneration are briefly discussed.
Collapse
Affiliation(s)
- Janja Stergar
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia Laboratory of Inorganic Chemistry, Faculty of Chemistry and Chemical Technology, University of Maribor, Maribor, Slovenia.
| | | | | | | |
Collapse
|
43
|
Tissue Engineering Strategies for Intervertebral Disc Treatment Using Functional Polymers. Polymers (Basel) 2019; 11:polym11050872. [PMID: 31086085 PMCID: PMC6572548 DOI: 10.3390/polym11050872] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc (IVD) is the fibrocartilage between the vertebrae, allowing the spine to move steadily by bearing multidirectional complex loads. Aging or injury usually causes degeneration of IVD, which is one of the main reasons for low back pain prevalent worldwide and reduced quality of life. While various treatment strategies for degenerative IVD have been studied using in vitro studies, animal experiments, and clinical trials, there are unsolved limitations for endogenous regeneration of degenerative IVD. In this respect, several tissue engineering strategies that are based on the cell and scaffolds have been extensively researched with positive outcomes for regeneration of IVD tissues. Scaffolds made of functional polymers and their diverse forms mimicking the macro- and micro-structure of native IVD enhance the biological and mechanical properties of the scaffolds for IVD regeneration. In this review, we discuss diverse morphological and functional polymers and tissue engineering strategies for endogenous regeneration of degenerative IVD. Tissue engineering strategies using functional polymers are promising therapeutics for fundamental and endogenous regeneration of degenerative IVD.
Collapse
|
44
|
Fujii K, Yamazaki M, Kang JD, Risbud MV, Cho SK, Qureshi SA, Hecht AC, Iatridis JC. Discogenic Back Pain: Literature Review of Definition, Diagnosis, and Treatment. JBMR Plus 2019; 3:e10180. [PMID: 31131347 PMCID: PMC6524679 DOI: 10.1002/jbm4.10180] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/21/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
Discogenic back pain is multifactorial; hence, physicians often struggle to identify the underlying source of the pain. As a result, discogenic back pain is often hard to treat—even more so when clinical treatment strategies are of questionable efficacy. Based on a broad literature review, our aim was to define discogenic back pain into a series of more specific and interacting pathologies, and to highlight the need to develop novel approaches and treatment strategies for this challenging and unmet clinical need. Discogenic pain involves degenerative changes of the intervertebral disc, including structural defects that result in biomechanical instability and inflammation. These degenerative changes in intervertebral discs closely intersect with the peripheral and central nervous systems to cause nerve sensitization and ingrowth; eventually central sensitization results in a chronic pain condition. Existing imaging modalities are nonspecific to pain symptoms, whereas discography methods that are more specific have known comorbidities based on intervertebral disc puncture and injection. As a result, alternative noninvasive and specific diagnostic methods are needed to better diagnose and identify specific conditions and sources of pain that can be more directly treated. Currently, there are many treatments/interventions for discogenic back pain. Nevertheless, many surgical approaches for discogenic pain have limited efficacy, thus accentuating the need for the development of novel treatments. Regenerative therapies, such as biologics, cell‐based therapy, intervertebral disc repair, and gene‐based therapy, offer the most promise and have many advantages over current therapies. © 2019 The Authors. JBMR Plus Published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research
Collapse
Affiliation(s)
- Kengo Fujii
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York NY USA.,Department of Orthopaedic Surgery University of Tsukuba Tsukuba Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery University of Tsukuba Tsukuba Japan
| | - James D Kang
- Department of Orthopaedic Surgery Brigham and Women's Hospital Harvard Medical School Boston MA USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery Sidney Kimmel Medical College Thomas Jefferson University Philadelphia PA USA
| | - Samuel K Cho
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York NY USA
| | - Sheeraz A Qureshi
- Department of Orthopaedic Surgery Hospital for Special Surgery New York NY USA
| | - Andrew C Hecht
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York NY USA
| | - James C Iatridis
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York NY USA
| |
Collapse
|
45
|
Hodgkinson T, Shen B, Diwan A, Hoyland JA, Richardson SM. Therapeutic potential of growth differentiation factors in the treatment of degenerative disc diseases. JOR Spine 2019; 2:e1045. [PMID: 31463459 PMCID: PMC6686806 DOI: 10.1002/jsp2.1045] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is a major contributing factor to chronic low back pain and disability, leading to imbalance between anabolic and catabolic processes, altered extracellular matrix composition, loss of tissue hydration, inflammation, and impaired mechanical functionality. Current treatments aim to manage symptoms rather than treat underlying pathology. Therefore, IVD degeneration is a target for regenerative medicine strategies. Research has focused on understanding the molecular process of degeneration and the identification of various factors that may have the ability to halt and even reverse the degenerative process. One such family of growth factors, the growth differentiation factor (GDF) family, have shown particular promise for disc regeneration in in vitro and in vivo models of IVD degeneration. This review outlines our current understanding of IVD degeneration, and in this context, aims to discuss recent advancements in the use of GDF family members as anabolic factors for disc regeneration. An increasing body of evidence indicates that GDF family members are central to IVD homeostatic processes and are able to upregulate healthy nucleus pulposus cell marker genes in degenerative cells, induce mesenchymal stem cells to differentiate into nucleus pulposus cells and even act as chemotactic signals mobilizing resident cell populations during disc injury repair. The understanding of GDF signaling and its interplay with inflammatory and catabolic processes may be critical for the future development of effective IVD regeneration therapies.
Collapse
Affiliation(s)
- Tom Hodgkinson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchester Academic Health Sciences CentreManchesterUK
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Bojiang Shen
- St. George Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Ashish Diwan
- St. George Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Judith A. Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchester Academic Health Sciences CentreManchesterUK
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation TrustManchester Academic Health Sciences CentreManchesterUK
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchester Academic Health Sciences CentreManchesterUK
| |
Collapse
|
46
|
Doench I, Ahn Tran T, David L, Montembault A, Viguier E, Gorzelanny C, Sudre G, Cachon T, Louback-Mohamed M, Horbelt N, Peniche-Covas C, Osorio-Madrazo A. Cellulose Nanofiber-Reinforced Chitosan Hydrogel Composites for Intervertebral Disc Tissue Repair. Biomimetics (Basel) 2019; 4:E19. [PMID: 31105204 PMCID: PMC6477598 DOI: 10.3390/biomimetics4010019] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 11/18/2022] Open
Abstract
The development of non-cellularized composites of chitosan (CHI) hydrogels, filled with cellulose nanofibers (CNFs) of the type nanofibrillated cellulose, was proposed for the repair and regeneration of the intervertebral disc (IVD) annulus fibrosus (AF) tissue. With the achievement of CNF-filled CHI hydrogels, biomaterial-based implants were designed to restore damaged/degenerated discs. The structural, mechanical and biological properties of the developed hydrogel composites were investigated. The neutralization of weakly acidic aqueous CNF/CHI viscous suspensions in NaOH yielded composites of physical hydrogels in which the cellulose nanofibers reinforced the CHI matrix, as investigated by means of microtensile testing under controlled humidity. We assessed the suitability of the achieved biomaterials for intervertebral disc tissue engineering in ex vivo experiments using spine pig models. Cellulose nanofiber-filled chitosan hydrogels can be used as implants in AF tissue defects to restore IVD biomechanics and constitute contention patches against disc nucleus protrusion while serving as support for IVD regeneration.
Collapse
Affiliation(s)
- Ingo Doench
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany.
| | - Tuan Ahn Tran
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany.
| | - Laurent David
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne CEDEX, France.
| | - Alexandra Montembault
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne CEDEX, France.
| | - Eric Viguier
- Interaction Cells Environment (ICE), VetAgro Sup, Université de Lyon, 69280 Marcy l'Etoile, France.
| | - Christian Gorzelanny
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Guillaume Sudre
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne CEDEX, France.
| | - Thibaut Cachon
- Interaction Cells Environment (ICE), VetAgro Sup, Université de Lyon, 69280 Marcy l'Etoile, France.
| | - Malika Louback-Mohamed
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany.
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne CEDEX, France.
| | - Niels Horbelt
- Max-Planck Institute of Colloids and Interfaces, Biomaterials Department, Science Park Golm, 14476 Potsdam, Germany.
| | | | - Anayancy Osorio-Madrazo
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
47
|
Huang YC, Hu Y, Li Z, Luk KDK. Biomaterials for intervertebral disc regeneration: Current status and looming challenges. J Tissue Eng Regen Med 2018; 12:2188-2202. [PMID: 30095863 DOI: 10.1002/term.2750] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/21/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022]
Abstract
A biomaterial-based strategy is employed to regenerate the degenerated intervertebral disc, which is considered a major generator of neck and back pain. Although encouraging enhancements in the anatomy and kinematics of the degenerative disc have been gained by biomaterials with various formulations in animals, the number of biomaterials tested in humans is rare. At present, most studies that involve the use of newly developed biomaterials focus on regeneration of the degenerative disc, but not pain relief. In this review, we summarise the current state of the art in the field of biomaterial-based regeneration or repair for the nucleus pulposus, annulus fibrosus, and total disc transplantation in animals and humans, and we then provide essential suggestions for the development and clinical translation of biomaterials for disc regeneration. It is important for researchers to consider the commonly neglected issues instead of concentrating solely on biomaterial development and fabrication.
Collapse
Affiliation(s)
- Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Orthopaedic Research Center, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yong Hu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| | - Keith D K Luk
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
48
|
Doench I, Torres-Ramos MEW, Montembault A, Nunes de Oliveira P, Halimi C, Viguier E, Heux L, Siadous R, Thiré RMSM, Osorio-Madrazo A. Injectable and Gellable Chitosan Formulations Filled with Cellulose Nanofibers for Intervertebral Disc Tissue Engineering. Polymers (Basel) 2018; 10:E1202. [PMID: 30961127 PMCID: PMC6290636 DOI: 10.3390/polym10111202] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
Abstract
The development of non-cellularized injectable suspensions of viscous chitosan (CHI) solutions (1.7⁻3.3% (w/w)), filled with cellulose nanofibers (CNF) (0.02⁻0.6% (w/w)) of the type nanofibrillated cellulose, was proposed for viscosupplementation of the intervertebral disc nucleus pulposus tissue. The achievement of CNF/CHI formulations which can gel in situ at the disc injection site constitutes a minimally-invasive approach to restore damaged/degenerated discs. We studied physico-chemical aspects of the sol and gel states of the CNF/CHI formulations, including the rheological behavior in relation to injectability (sol state) and fiber mechanical reinforcement (gel state). CNF-CHI interactions could be evidenced by a double flow behavior due to the relaxation of the CHI polymer chains and those interacting with the CNFs. At high shear rates resembling the injection conditions with needles commonly used in surgical treatments, both the reference CHI viscous solutions and those filled with CNFs exhibited similar rheological behavior. The neutralization of the flowing and weakly acidic CNF/CHI suspensions yielded composite hydrogels in which the nanofibers reinforced the CHI matrix. We performed evaluations in relation to the biomedical application, such as the effect of the intradiscal injection of the CNF/CHI formulation in pig and rabbit spine models on disc biomechanics. We showed that the injectable formulations became hydrogels in situ after intradiscal gelation, due to CHI neutralization occurring in contact with the body fluids. No leakage of the injectate through the injection canal was observed and the gelled formulation restored the disc height and loss of mechanical properties, which is commonly related to disc degeneration.
Collapse
Affiliation(s)
- Ingo Doench
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany.
| | - Maria E W Torres-Ramos
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany.
| | - Alexandra Montembault
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne Cedex, France.
| | - Paula Nunes de Oliveira
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne Cedex, France.
| | - Celia Halimi
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne Cedex, France.
| | - Eric Viguier
- VetAgro Sup, Veterinary School, University of Lyon, 69280 Marcy l'Etoile, France.
| | - Laurent Heux
- Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS UPR 5301 Université Grenoble-Alpes, 38041 Grenoble, France.
| | - Robin Siadous
- INSERM U1026 Bioingénierie tissulaire, Université Bordeaux, 33000 Bordeaux, France.
| | - Rossana M S M Thiré
- COPPE/Program of Metallurgical and Materials Engineering, Federal University of Rio de Janeiro, P.O. Box 68505, 21941-972 Rio de Janeiro, Brazil.
| | - Anayancy Osorio-Madrazo
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
49
|
Buckley CT, Hoyland JA, Fujii K, Pandit A, Iatridis JC, Grad S. Critical aspects and challenges for intervertebral disc repair and regeneration-Harnessing advances in tissue engineering. JOR Spine 2018; 1:e1029. [PMID: 30895276 PMCID: PMC6400108 DOI: 10.1002/jsp2.1029] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Abstract
Low back pain represents the highest burden of musculoskeletal diseases worldwide and intervertebral disc degeneration is frequently associated with this painful condition. Even though it remains challenging to clearly recognize generators of discogenic pain, tissue regeneration has been accepted as an effective treatment option with significant potential. Tissue engineering and regenerative medicine offer a plethora of exploratory pathways for functional repair or prevention of tissue breakdown. However, the intervertebral disc has extraordinary biological and mechanical demands that must be met to assure sustained success. This concise perspective review highlights the role of the disc microenvironment, mechanical and clinical design considerations, function vs mimicry in biomaterial‐based and cell engineering strategies, and potential constraints for clinical translation of regenerative therapies for the intervertebral disc.
Collapse
Affiliation(s)
- Conor T Buckley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute Trinity College Dublin, The University of Dublin Dublin Ireland.,School of Engineering, Trinity College Dublin The University of Dublin Dublin Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre Royal College of Surgeons in Ireland & Trinity College Dublin, The University of Dublin Dublin Ireland
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine University of Manchester Manchester UK.,NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester Foundation Trust Manchester Academic Health Science Centre Manchester UK
| | - Kengo Fujii
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York New York USA.,Department of Orthopaedic Surgery University of Tsukuba Tsukuba Japan
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM) National University of Ireland Galway Ireland
| | - James C Iatridis
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York New York USA
| | | |
Collapse
|
50
|
Chu G, Shi C, Wang H, Zhang W, Yang H, Li B. Strategies for Annulus Fibrosus Regeneration: From Biological Therapies to Tissue Engineering. Front Bioeng Biotechnol 2018; 6:90. [PMID: 30042942 PMCID: PMC6048238 DOI: 10.3389/fbioe.2018.00090] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) is an avascular tissue which contributes to the weight bearing, motion, and flexibility of spine. However, IVD is susceptible to damage and even failure due to injury, pathology, and aging. Annulus fibrosus (AF), the structural and functional integrity of which is critically essential to confine nucleus pulpous (NP) and maintain physiological intradiscal pressure under mechanical loading, plays a critical role in the biomechanical properties of IVD. AF degeneration commonly results in substantial deterioration of IVD. During this process, the biomechanical properties of AF and the balance between anabolism and catabolism in IVD are progressively disrupted, leading to chronic back pain, and even disability of individuals. Therefore, repairing and regenerating AF are effective treatments to degeneration-associated pains. However, they remain highly challenging due to the complexity of natural AF tissue in the aspects of cell phenotype, biochemical composition, microstructure, and mechanical properties. Tissue engineering (TE), by combining biological science and materials engineering, shed lights on AF regeneration. In this article, we review recent advances in the pro-anabolic approaches in the form of cell delivery, bioactive factors delivery, gene therapy, and TE strategies for achieving AF regeneration.
Collapse
Affiliation(s)
- Genglei Chu
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Chen Shi
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Huan Wang
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Weidong Zhang
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Huilin Yang
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Bin Li
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, First Affiliated Hospital, Soochow University, Suzhou, China
- China Orthopaedic Regenerative Medicine Group, Hangzhou, China
| |
Collapse
|