1
|
Nguyen PK, Deng F, Assi S, Paco P, Fink S, Stockwell C, Kuo CK. Phenotype stability, expansion potential, and senescence of embryonic tendon cells in vitro. J Orthop Res 2022; 40:1584-1592. [PMID: 34559908 PMCID: PMC11471017 DOI: 10.1002/jor.25180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/28/2021] [Accepted: 09/07/2021] [Indexed: 02/04/2023]
Abstract
Embryonic tendon cells have been studied in vitro to better understand mechanisms of tendon development. Outcomes of in vitro cell culture studies are easily affected by phenotype instability of embryonic tendon cells during expansion in vitro to achieve desired cell numbers, yet this has not been characterized. In the present study, we characterized phenotype stability, expansion potential, and onset of senescence in chick embryo tendon cells from low to high cell doublings. We focused on cells of Hamburger-Hamilton stages (HH) 40 and HH42, where HH40 is the earliest stage associated with substantial increases in extracellular matrix and mechanical properties during embryonic tendon development. HH40 and HH42 cells both downregulated expression levels of tendon phenotype markers, scleraxis and tenomodulin, and exhibited onset of senescence, based on p16 and p21 expression levels, cell surface area, and percentage of β-galactosidase positive cells, before significant decreases in proliferation rates were detected. These findings showed that embryonic tendon cells destabilize phenotype and become senescent earlier than they begin to decline in proliferation rates in vitro. Additionally, embryonic stage of isolation appears to have no effect on proliferation rates, whereas later stage HH42 cells downregulate phenotype and become susceptible to senescence sooner than earlier stage HH40 cells. Based on our data, we recommend chick embryo tendon cells be used before a maximum cumulative doubling level of 12 (passage 4 in this study) to avoid phenotype destabilization and onset of senescence.
Collapse
Affiliation(s)
- Phong K. Nguyen
- Department of Biomedical Engineering, University of Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Feiyang Deng
- Department of Biomedical Engineering, University of Rochester, New York, USA
| | - Sereen Assi
- Department of Biomedical Engineering, University of Rochester, New York, USA
| | - Paolo Paco
- Department of Biomedical Engineering, University of Rochester, New York, USA
| | - Spencer Fink
- Department of Biomedical Engineering, University of Rochester, New York, USA
| | - Caroline Stockwell
- Department of Biomedical Engineering, University of Rochester, New York, USA
| | - Catherine K. Kuo
- Department of Biomedical Engineering, University of Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Singer AJ. Healing Mechanisms in Cutaneous Wounds: Tipping the Balance. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1151-1167. [PMID: 34915757 PMCID: PMC9587785 DOI: 10.1089/ten.teb.2021.0114] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute and chronic cutaneous wounds pose a significant health and economic burden. Cutaneous wound healing is a complex process that occurs in four distinct, yet overlapping, highly coordinated stages: hemostasis, inflammation, proliferation, and remodeling. Postnatal wound healing is reparative, which can lead to the formation of scar tissue. Regenerative wound healing occurs during fetal development and in restricted postnatal tissues. This process can restore the wound to an uninjured state by producing new skin cells from stem cell reservoirs, resulting in healing with minimal or no scarring. Focusing on the pathophysiology of acute burn wounds, this review highlights reparative and regenerative healing mechanisms (including the role of cells, signaling molecules, and the extracellular matrix) and discusses how components of regenerative healing are being used to drive the development of novel approaches and therapeutics aimed at improving clinical outcomes. Important components of regenerative healing, such as stem cells, growth factors, and decellularized dermal matrices, are all being evaluated to recapitulate more closely the natural regenerative healing process.
Collapse
Affiliation(s)
- Adam J Singer
- Department of Emergency Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
3
|
Chu J, Lu M, Pfeifer CG, Alt V, Docheva D. Rebuilding Tendons: A Concise Review on the Potential of Dermal Fibroblasts. Cells 2020; 9:E2047. [PMID: 32911760 PMCID: PMC7563185 DOI: 10.3390/cells9092047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022] Open
Abstract
Tendons are vital to joint movement by connecting muscles to bones. Along with an increasing incidence of tendon injuries, tendon disorders can burden the quality of life of patients or the career of athletes. Current treatments involve surgical reconstruction and conservative therapy. Especially in the elderly population, tendon recovery requires lengthy periods and it may result in unsatisfactory outcome. Cell-mediated tendon engineering is a rapidly progressing experimental and pre-clinical field, which holds great potential for an alternative approach to established medical treatments. The selection of an appropriate cell source is critical and remains under investigation. Dermal fibroblasts exhibit multiple similarities to tendon cells, suggesting they may be a promising cell source for tendon engineering. Hence, the purpose of this review article was in brief, to compare tendon to dermis tissues, and summarize in vitro studies on tenogenic differentiation of dermal fibroblasts. Furthermore, analysis of an open source Gene Expression Omnibus (GEO) data repository was carried out, revealing great overlap in the molecular profiles of both cell types. Lastly, a summary of in vivo studies employing dermal fibroblasts in tendon repair as well as pilot clinical studies in this area is included. Altogether, dermal fibroblasts hold therapeutic potential and are attractive cells for rebuilding injured tendons.
Collapse
Affiliation(s)
- Jin Chu
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany; (J.C.); (C.G.P.); (V.A.)
| | - Ming Lu
- Department of Orthopaedic Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116023, China;
| | - Christian G. Pfeifer
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany; (J.C.); (C.G.P.); (V.A.)
- Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany
| | - Volker Alt
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany; (J.C.); (C.G.P.); (V.A.)
- Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany
| | - Denitsa Docheva
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany; (J.C.); (C.G.P.); (V.A.)
| |
Collapse
|
4
|
Siengdee P, Klinhom S, Thitaram C, Nganvongpanit K. Isolation and culture of primary adult skin fibroblasts from the Asian elephant ( Elephas maximus). PeerJ 2018; 6:e4302. [PMID: 29379691 PMCID: PMC5786883 DOI: 10.7717/peerj.4302] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/09/2018] [Indexed: 11/20/2022] Open
Abstract
Background Primary cultures from Asian elephants (Elephas maximus) allow scientists to obtain representative cells that have conserved most of their original characteristics, function, physiology and biochemistry. This technique has thus gained significant importance as a foundation for further cellular, cell biology and molecular research. Therefore, the aim of this study was to describe conditions for the successful establishment of primary adult fibroblasts from Asian elephant carcasses. Methods Ear tissue sample collection from Asian elephant carcasses and our recommendations are given. We describe here a simple modified protocol for successful isolation and maintenance of primary adult fibroblasts from elephant ear skin. Ear samples from each individual (five 3 × 3 cm2 pieces) were brought to the laboratory within 3 h after collection, kept in transportation medium at 0–4 °C. The ear tissues were prepared by a combination of 10% collagenase type II digestion procedure together with a simple explant procedure. Primary fibroblasts were cultured at 37 °C in Dulbecco’s modified Eagle’s medium (DMEM) with 20% fetal calf serum (FCS) in a humidified atmosphere containing 5% CO2. After the third passage, fibroblasts were routinely trypsinized with 0.25% trypsin/EDTA and cultured in DMEM with 10% FCS at 37 °C and 5% CO2. Traditional cell counting method was used to measure cell viability and growth curve. Long-term storage of cells used freezing medium consisting of 40% FCS (v/v). Results We explored the most suitable conditions during sample collection (post-mortem storage time and sample storage temperature), which is the most important step in determining primary outgrowth. Our study successfully established and cultured primary adult skin fibroblasts obtained from post-mortem E. maximus ear skin tissues from six carcasses, with a success rate of around 83.3%. Outgrowth could be seen 4–12 days after explantation, and epithelial-like cells were found after 4–7 days of culture, while fibroblasts appeared at around day 7–10. The fibroblasts had viability and post-freezing recovery rates of around 97.3 ± 4.3% and 95.5 ± 7.3%, respectively, and doubling time was about 25 h (passage 6). Discussion To our knowledge, this report is the first to describe primary cell cultures derived from adult Asian elephant skin. Future studies should benefit from the information and useful suggestions herein, which may be used as a standard method for establishing primary skin fibroblast cultures in future experiments.
Collapse
Affiliation(s)
- Puntita Siengdee
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sarisa Klinhom
- Center of Excellence in Elephant and Wildlife Research, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchote Thitaram
- Center of Excellence in Elephant and Wildlife Research, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Korakot Nganvongpanit
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Excellence Center in Veterinary Bioscience, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Hannan RT, Peirce SM, Barker TH. Fibroblasts: Diverse Cells Critical to Biomaterials Integration. ACS Biomater Sci Eng 2017; 4:1223-1232. [PMID: 31440581 DOI: 10.1021/acsbiomaterials.7b00244] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fibroblasts are key participants in wound healing and inflammation, and are capable of driving the progression of tissue repair to fully functional tissue or pathologic scar, or fibrosis, depending on the specific mechanical and biochemical cues with which they are presented. Thus, understanding and modulating the fibroblastic response to implanted materials is paramount to achieving desirable outcomes, such as long-term implant function or tissue regeneration. However, fibroblasts are remarkably heterogeneous and can differ vastly in their contributions to regeneration and fibrosis. This heterogeneity exists between tissues and within tissues, down to the level of individual cells. This review will discuss the role of fibroblasts, the pitfalls of describing them as a collective, the specifics of their function, and potential future directions to better understand and organize their highly variable biology.
Collapse
Affiliation(s)
- Riley T Hannan
- Department of Pathology, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States.,Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States
| | - Shayn M Peirce
- Department of Pathology, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States.,Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States
| |
Collapse
|
6
|
A combination of biomolecules enhances expression of E-cadherin and peroxisome proliferator-activated receptor gene leading to increased cell proliferation in primary human meniscal cells: an in vitro study. Cytotechnology 2015; 68:1747-61. [PMID: 26511364 DOI: 10.1007/s10616-015-9926-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/15/2015] [Indexed: 12/29/2022] Open
Abstract
The present study investigates the impact of biomolecules (biotin, glucose, chondroitin sulphate, proline) as supplement, (individual and in combination) on primary human meniscus cell proliferation. Primary human meniscus cells isolated from patients undergoing meniscectomy were maintained in Dulbecco's Modified Eagle's Medium (DMEM). The isolated cells were treated with above mentioned biomolecules as individual (0-100 µg/ml) and in combinations, as a supplement to DMEM. Based on the individual biomolecule study, a unique combination of biomolecules (UCM) was finalized using one way ANOVA analysis. With the addition of UCM as supplement to DMEM, meniscal cells reached 100 % confluency within 4 days in 60 mm culture plate; whereas the cells in medium devoid of UCM, required 36 days for reaching confluency. The impact of UCM on cell viability, doubling time, histology, gene expression, biomarkers expression, extra cellular matrix synthesis, meniscus cell proliferation with respect to passages and donor's age were investigated. The gene expression studies for E-cadherin and peroxisome proliferator-activated receptor (PPAR∆) using RT-qPCR and immunohistochemical analysis for Ki67, CD34 and Vimentin confirmed that UCM has significant impact on cell proliferation. The extracellular collagen and glycosaminoglycan secretion in cells supplemented with UCM were found to increase by 31 and 37 fold respectively, when compared to control on the 4th day. The cell doubling time was reduced significantly when supplemented with UCM. The addition of UCM showed positive influence on different passages and age groups. Hence, this optimized UCM can be used as an effective supplement for meniscal tissue engineering.
Collapse
|
7
|
Gaspar D, Spanoudes K, Holladay C, Pandit A, Zeugolis D. Progress in cell-based therapies for tendon repair. Adv Drug Deliv Rev 2015; 84:240-56. [PMID: 25543005 DOI: 10.1016/j.addr.2014.11.023] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/08/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
The last decade has seen significant developments in cell therapies, based on permanently differentiated, reprogrammed or engineered stem cells, for tendon injuries and degenerative conditions. In vitro studies assess the influence of biophysical, biochemical and biological signals on tenogenic phenotype maintenance and/or differentiation towards tenogenic lineage. However, the ideal culture environment has yet to be identified due to the lack of standardised experimental setup and readout system. Bone marrow mesenchymal stem cells and tenocytes/dermal fibroblasts appear to be the cell populations of choice for clinical translation in equine and human patients respectively based on circumstantial, rather than on hard evidence. Collaborative, inter- and multi-disciplinary efforts are expected to provide clinically relevant and commercially viable cell-based therapies for tendon repair and regeneration in the years to come.
Collapse
Affiliation(s)
- Diana Gaspar
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Kyriakos Spanoudes
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Carolyn Holladay
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Dimitrios Zeugolis
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
8
|
Tang QM, Chen JL, Shen WL, Yin Z, Liu HH, Fang Z, Heng BC, Ouyang HW, Chen X. Fetal and adult fibroblasts display intrinsic differences in tendon tissue engineering and regeneration. Sci Rep 2014; 4:5515. [PMID: 24992450 PMCID: PMC4080701 DOI: 10.1038/srep05515] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 06/12/2014] [Indexed: 12/14/2022] Open
Abstract
Injured adult tendons do not exhibit optimal healing through a regenerative process, whereas fetal tendons can heal in a regenerative fashion without scar formation. Hence, we compared FFs (mouse fetal fibroblasts) and AFs (mouse adult fibroblasts) as seed cells for the fabrication of scaffold-free engineered tendons. Our results demonstrated that FFs had more potential for tendon tissue engineering, as shown by higher levels of tendon-related gene expression. In the in situ AT injury model, the FFs group also demonstrated much better structural and functional properties after healing, with higher levels of collagen deposition and better microstructure repair. Moreover, fetal fibroblasts could increase the recruitment of fibroblast-like cells and reduce the infiltration of inflammatory cells to the injury site during the regeneration process. Our results suggest that the underlying mechanisms of better regeneration with FFs should be elucidated and be used to enhance adult tendon healing. This may assist in the development of future strategies to treat tendon injuries.
Collapse
Affiliation(s)
- Qiao-Mei Tang
- 1] Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, China, 310058 [2] Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine School of Medicine, Zhejiang University, Hangzhou China. 310058
| | - Jia Lin Chen
- 1] Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, China, 310058 [2] Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine School of Medicine, Zhejiang University, Hangzhou China. 310058
| | - Wei Liang Shen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, Zhejiang University, Hangzhou, China, 310058
| | - Zi Yin
- 1] Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, China, 310058 [2] Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine School of Medicine, Zhejiang University, Hangzhou China. 310058
| | - Huan Huan Liu
- 1] Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, China, 310058 [2] Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine School of Medicine, Zhejiang University, Hangzhou China. 310058
| | - Zhi Fang
- 1] Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, China, 310058 [2] Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine School of Medicine, Zhejiang University, Hangzhou China. 310058
| | - Boon Chin Heng
- Department of Biosystems Science & Engineering (D-BSSE), ETH-Zurich, Mattenstrasse 26, Basel 4058, Switzerland
| | - Hong Wei Ouyang
- 1] Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, China, 310058 [2] Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine School of Medicine, Zhejiang University, Hangzhou China. 310058
| | - Xiao Chen
- 1] Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, China, 310058 [2] Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine School of Medicine, Zhejiang University, Hangzhou China. 310058
| |
Collapse
|
9
|
Fang Z, Zhu T, Shen WL, Tang QM, Chen JL, Yin Z, Ji JF, Heng BC, Ouyang HW, Chen X. Transplantation of fetal instead of adult fibroblasts reduces the probability of ectopic ossification during tendon repair. Tissue Eng Part A 2014; 20:1815-26. [PMID: 24410299 DOI: 10.1089/ten.tea.2013.0296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although cell transplantation therapy can effectively promote functional tendon repair, occasional ectopic ossification during tendon regeneration undermines its efficacy. The effect of transplanted cell types on ectopic ossification has not yet been systematically evaluated. This study compared the rate of ectopic ossification during tendon repair upon transplantation with mouse fetal fibroblasts (FFs) and their adult counterparts (adult fibroblasts [AFs]). Alkaline phosphatase (ALP) staining, immunofluorescence, and gene expression analysis were used to compare the spontaneous osteogenic differentiation of FFs and AFs in vitro. X-ray, histology, and gene expression analysis were used to investigate the ectopic ossification in a mouse Achilles tendon repair model in vivo. ALP staining and immunofluorescence data in vitro showed that FFs had less spontaneous osteogenic differentiation capacity, and lower expression of runt-related transcription factor 2 (runx2). For the in vivo study, the FFs transplant group displayed reduced ectopic ossification (2/7 vs. 7/7, Mann-Whitney test p<0.01) at 14 weeks post-transplantation and enhanced tendon repair (general histological score at week 6, 7.53 vs. 10.56, p<0.05). More chondrocytes formed at 6 weeks, and all mice developed bone marrow at 14 weeks post-transplantation in the AFs transplant group. Gene expression analysis of the regenerated tissue showed significantly higher expression levels of transforming growth factor beta1 (TGF-β1) and transforming growth factor beta3 (TGF-β3) in the AFs group during the early stages of tendon repair. Our study demonstrates that transplantation of fetal instead of AFs is more promising for tendon repair, underscoring the importance of the origin of seed cells for tendon repair.
Collapse
Affiliation(s)
- Zhi Fang
- 1 Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine , Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Efficacy of tendon stem cells in fibroblast-derived matrix for tendon tissue engineering. Cytotherapy 2013; 16:662-73. [PMID: 24095259 DOI: 10.1016/j.jcyt.2013.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/20/2013] [Accepted: 07/29/2013] [Indexed: 01/17/2023]
Abstract
BACKGROUND AIMS After injury, tendons often heal with poor tissue quality and inferior mechanical properties. Tissue engineering using tendon stem cells (TSCs) is a promising approach in the repair of injured tendon. Tenogenic differentiation of TSCs needs an appropriate environment. More recently, the acellular extracellular matrix (ECM) generated from fibroblasts has been used to construct various engineering tissues. In this study, we successfully developed an engineered tendon tissue formed by seeding TSCs in de-cellularized fibroblast-derived matrix (dFM). METHODS Patellar TSCs and dermal fibroblast were isolated and cultured. Using the method of osmotic shock, dFM was obtained from dermal fibroblast. ECM proteins in dFM were examined. TSCs at passage 3 were seeded in dFM for 1 week. Proliferative capacity and characterization of TSCs cultured in dFM were determined by population doubling time, immunofluorescence staining and quantitative reverse transcriptase polymerase chain reaction. Engineered tendon tissue was prepared with dFM and TSCs. Its potentials for neo-tendon formation and promoting tendon healing were investigated. RESULTS dFM is suitable for growth and tenogenic differentiation of TSCs in vitro. Neo-tendon tissue was formed with tendon-specific protein expression when TSCs were implanted together with dFM. In a patellar tendon injury model, implantation of engineered tendon tissue significantly improved the histologic and mechanical properties of injured tendon. CONCLUSIONS The findings obtained from our study provide a basis for potential use of engineered tendon tissue containing dFM and TSCs in tendon repair and regeneration.
Collapse
|
11
|
Qutachi O, Shakesheff KM, Buttery LD. Delivery of definable number of drug or growth factor loaded poly(dl-lactic acid-co-glycolic acid) microparticles within human embryonic stem cell derived aggregates. J Control Release 2013; 168:18-27. [DOI: 10.1016/j.jconrel.2013.02.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/14/2013] [Accepted: 02/24/2013] [Indexed: 10/27/2022]
|
12
|
Wulff BC, Yu L, Parent AE, Wilgus TA. Novel differences in the expression of inflammation-associated genes between mid- and late-gestational dermal fibroblasts. Wound Repair Regen 2012; 21:103-12. [PMID: 23126606 DOI: 10.1111/j.1524-475x.2012.00860.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 08/21/2012] [Indexed: 01/11/2023]
Abstract
While cutaneous wounds of late-gestational fetuses and on through adulthood result in scar formation, wounds incurred early in gestation have been shown to heal scarlessly. Unique properties of fetal fibroblasts are believed to mediate this scarless healing process. In this study, microarray analysis was used to identify differences in the gene expression profiles of cultured fibroblasts from embryonic day 15 (E15; midgestation) and embryonic day 18 (E18; late-gestation) skin. Sixty-two genes were differentially expressed and 12 of those genes are associated with inflammation, a process that correlates with scar formation in fetal wounds. One of the differentially expressed inflammatory genes was cyclooxygenase-1 (COX-1). COX-1 was more highly expressed in E18 fibroblasts than in E15 fibroblasts, and these differences were confirmed at the gene and protein level. Differences in COX-1 protein expression were also observed in fetal skin by immunohistochemical and immunofluorescence staining. The baseline differences in gene expression found in mid- and late-gestational fetal fibroblasts suggest that developmental alterations in fibroblasts could be involved in the transition from scarless to fibrotic fetal wound healing. Furthermore, baseline differences in the expression of inflammatory genes by fibroblasts in E15 and E18 skin may contribute to inflammation and scar formation late in gestation.
Collapse
Affiliation(s)
- Brian C Wulff
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
13
|
Is macroporosity absolutely required for preliminary in vitro bone biomaterial study? A comparison between porous materials and flat materials. J Funct Biomater 2011; 2:308-37. [PMID: 24956447 PMCID: PMC4030915 DOI: 10.3390/jfb2040308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/19/2011] [Accepted: 10/26/2011] [Indexed: 12/16/2022] Open
Abstract
Porous materials are highly preferred for bone tissue engineering due to space for blood vessel ingrowth, but this may introduce extra experimental variations because of the difficulty in precise control of porosity. In order to decide whether it is absolutely necessary to use porous materials in in vitro comparative osteogenesis study of materials with different chemistries, we carried out osteoinductivity study using C3H/10T1/2 cells, pluripotent mesenchymal stem cells (MSCs), on seven material types: hydroxyapatite (HA), α-tricalcium phosphate (α-TCP) and b-tricalcium phosphate (β-TCP) in both porous and dense forms and tissue culture plastic. For all materials under test, dense materials give higher alkaline phosphatase gene (Alp) expression compared with porous materials. In addition, the cell density effects on the 10T1/2 cells were assessed through alkaline phosphatase protein (ALP) enzymatic assay. The ALP expression was higher for higher initial cell plating density and this explains the greater osteoinductivity of dense materials compared with porous materials for in vitro study as porous materials would have higher surface area. On the other hand, the same trend of Alp mRNA level (HA > β-TCP > α-TCP) was observed for both porous and dense materials, validating the use of dense flat materials for comparative study of materials with different chemistries for more reliable comparison when well-defined porous materials are not available. The avoidance of porosity variation would probably facilitate more reproducible results. This study does not suggest porosity is not required for experiments related to bone regeneration application, but emphasizes that there is often a tradeoff between higher clinical relevance, and less variation in a less complex set up, which facilitates a statistically significant conclusion. Technically, we also show that the base of normalization for ALP activity may influence the conclusion and there may be ALP activity from serum, necessitating the inclusion of "no cell" control in ALP activity assay with materials. These explain the opposite conclusions drawn by different groups on the effect of porosity.
Collapse
|
14
|
Wulff BC, Parent AE, Meleski MA, DiPietro LA, Schrementi ME, Wilgus TA. Mast cells contribute to scar formation during fetal wound healing. J Invest Dermatol 2011; 132:458-65. [PMID: 21993557 PMCID: PMC3258379 DOI: 10.1038/jid.2011.324] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Scar formation is a potentially detrimental process of tissue restoration in adults, affecting organ form and function. During fetal development, cutaneous wounds heal without inflammation or scarring at early stages of development, but begin to heal with significant inflammation and scarring as the skin becomes more mature. One possible cell type that could regulate the change from scarless to fibrotic healing is the mast cell. We show here that dermal mast cells in scarless wounds generated at embryonic day 15 (E15) are fewer in number, less mature and do not degranulate in response to wounding as effectively as mast cells of fibrotic wounds made at embryonic day 18 (E18). Differences were also observed between cultured mast cells from E15 and E18 skin with regard to degranulation and preformed cytokine levels. Injection of mast cell lysates into E15 wounds disrupted scarless healing, suggesting that mast cells interfere with scarless repair. Finally, wounds produced at E18, which normally heal with a scar, healed with significantly smaller scars in mast cell-deficient KitW/W-v mice compared to Kit+/+ littermates. Together, these data suggest that mast cells enhance scar formation, and that these cells may mediate the transition from scarless to fibrotic healing during fetal development.
Collapse
Affiliation(s)
- Brian C Wulff
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
15
|
Theisen C, Fuchs-Winkelmann S, Knappstein K, Efe T, Schmitt J, Paletta JRJ, Schofer MD. Influence of nanofibers on growth and gene expression of human tendon derived fibroblast. Biomed Eng Online 2010; 9:9. [PMID: 20163724 PMCID: PMC2837661 DOI: 10.1186/1475-925x-9-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 02/17/2010] [Indexed: 01/02/2023] Open
Abstract
Background Rotator cuff tears are a common and frequent lesion especially in older patients. The mechanisms of tendon repair are not fully understood. Common therapy options for tendon repair include mini-open or arthroscopic surgery. The use of growth factors in experimental studies is mentioned in the literature. Nanofiber scaffolds, which provide several criteria for the healing process, might be a suitable therapy option for operative treatment. The aim of this study was to explore the effects of nanofiber scaffolds on human tendon derived fibroblasts (TDF's), as well as the gene expression and matrix deposition of these fibroblasts. Methods Nanofibers composed of PLLA and PLLA/Col-I were seeded with human tendon derived fibroblasts and cultivated over a period of 22 days under growth-inductive conditions, and analyzed during the course of culture, with respect to gene expression of different extra cellular matrix components such as collagens, bigylcan and decorin. Furthermore, we measured cell densities and proliferation by using fluorescene microscopy. Results PLLA nanofibers possessed a growth inhibitory effect on TDF's. Furthermore, no meaningful influence on the gene expression of collagen I, collagen III and decorin could be observed, while the expression of collagen X increased during the course of cultivation. On the other hand, PLLA/Col-I blend nanofibers had no negative influence on the growth of TDF's. Furthermore, blending PLLA nanofibers with collagen had a positive effect on the gene expression of collagen I, III, X and decorin. Here, gene expression indicated that focal adherence kinases might be involved. Conclusion This study indicates that the use of nanofibers influence expression of genes associated with the extra cellular matrix formation. The composition of the nanofibers plays a critical role. While PLLA/Col-I blend nanofibers enhance the collagen I and III formation, their expression on PLLA nanofibers was more comparable to controls. However, irrespective of the chemical composition of the fibres, the collagen deposition was altered, an effect which might be associated with a decreased expression of biglycanes.
Collapse
Affiliation(s)
- Christina Theisen
- Department of Orthopaedics and Rheumatology, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | | | | | | | | | | | | |
Collapse
|