1
|
Akhlaghipour I, Fanoodi A, Zangouei AS, Taghehchian N, Khalili-Tanha G, Moghbeli M. MicroRNAs as the Critical Regulators of Forkhead Box Protein Family in Pancreatic, Thyroid, and Liver Cancers. Biochem Genet 2023; 61:1645-1674. [PMID: 36781813 DOI: 10.1007/s10528-023-10346-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
The metabolism of human body is mainly regulated by the pancreas, liver, and thyroid using the hormones or exocrine secretions that affect the metabolic processes from food digestion to intracellular metabolism. Therefore, metabolic organ disorders have wide clinical symptoms that severely affect the quality of patient's life. The pancreatic, liver, and thyroid cancers as the main malignancies of the metabolic system have always been considered as one of the serious health challenges worldwide. Despite the novel therapeutic modalities, there are still significant high mortality and recurrence rates, especially in liver and pancreatic cancer patients which are mainly related to the late diagnosis. Therefore, it is required to assess the molecular bases of tumor progressions to introduce novel early detection and therapeutic markers in these malignancies. Forkhead box (FOX) protein family is a group of transcription factors that have pivotal roles in regulation of cell proliferation, migration, and apoptosis. They function as oncogene or tumor suppressor during tumor progression. MicroRNAs (miRNAs) are also involved in regulation of cellular processes. Therefore, in the present review, we discussed the role of miRNAs during pancreatic, thyroid, and liver tumor progressions through FOX regulation. It has been shown that miRNAs were mainly involved in tumor progression via FOXM and FOXO targeting. This review paves the way for the introduction of miR/FOX axis as an efficient early detection marker and therapeutic target in pancreatic, thyroid, and liver tumors.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Fanoodi
- Student Research Committee, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Xu J, Wang K, Zhang Z, Xue D, Li W, Pan Z. The Role of Forkhead Box Family in Bone Metabolism and Diseases. Front Pharmacol 2021; 12:772237. [PMID: 35153742 PMCID: PMC8832510 DOI: 10.3389/fphar.2021.772237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Forkhead box (Fox) family, an evolutionarily conserved family of transcription factors carrying the "Forkhead" motif, plays an indispensable role in human health and disease. Fox family genes are involved in cell differentiation, proliferation and apoptosis, embryonic development, aging, glucose and lipid metabolism, and immune regulation. The regulatory role of the Fox family in the context of bone metabolism and orthopedic diseases is an emerging research hotspot. In this review, we highlight the major molecular mechanisms underlying the regulatory role of Fox factors in bone metabolism, bone development, bone homeostasis, and bone diseases associated with inhibition or upregulation of Fox factors. In addition, we discuss the emerging evidence in the realm of Fox factor-based therapeutics.
Collapse
Affiliation(s)
- Jianxiang Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Kanbin Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Department of Orthopedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Zengjie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Deting Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- *Correspondence: Deting Xue, ; Weixu Li, ; Zhijun Pan,
| | - Weixu Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- *Correspondence: Deting Xue, ; Weixu Li, ; Zhijun Pan,
| | - Zhijun Pan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- *Correspondence: Deting Xue, ; Weixu Li, ; Zhijun Pan,
| |
Collapse
|
3
|
Lin CH, Lee HH, Chang WM, Lee FP, Chen LC, Lu LS, Lin YF. FOXD1 Repression Potentiates Radiation Effectiveness by Downregulating G3BP2 Expression and Promoting the Activation of TXNIP-Related Pathways in Oral Cancer. Cancers (Basel) 2020; 12:cancers12092690. [PMID: 32967107 PMCID: PMC7563336 DOI: 10.3390/cancers12092690] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Radioresistance remains a critical issue in treating oral cancer patients. This study was thus aimed to identify a potential drug target for enhancing the therapeutic effectiveness of irradiation and uncover a possible mechanism for radioresistance in oral cancer. Here we show that FOXD1, a gene encoding forkhead box d1 (Foxd1), is significantly upregulated in primary tumors compared to normal tissues and serves as a poor prognostic marker in oral cancer patients receiving radiotherapy. FOXD1 repression by a gene knockdown experiment dramatically enhanced the cytotoxic efficacy of irradiation probably via activating the p53-related DNA repairing pathways and reinforcing the T cell-mediated immune responses in oral cancer cells. Our findings demonstrate that FOXD1 may play a pivotal role in conferring radioresistance, which might provide a new strategy to combat the irradiation-insensitive oral cancer cells via therapeutically targeting FOXD1 activity. Abstract Radiotherapy is commonly used to treat oral cancer patients in the current clinics; however, a subpopulation of patients shows poor radiosensitivity. Therefore, the aim of this study is to identify a biomarker or druggable target to enhance the effectiveness of radiotherapy on oral cancer patients. By performing an in silico analysis against public databases, we found that the upregulation of FOXD1, a gene encoding forkhead box d1 (Foxd1), is extensively detected in primary tumors compared to normal tissues and associated with a poor outcome in oral cancer patients receiving irradiation treatment. Moreover, our data showed that the level of FOXD1 transcript is causally relevant to the effective dosage of irradiation in a panel of oral cancer cell lines. The FOXD1 knockdown (FOXD1-KD) dramatically suppressed the colony-forming ability of oral cancer cells after irradiation treatment. Differentially expressed genes analysis showed that G3BP2, a negative regulator of p53, is predominantly repressed after FOXD1-KD and transcriptionally regulated by Foxd1, as judged by a luciferase-based promoter assay in oral cancer cells. Gene set enrichment analysis significantly predicted the inhibition of E2F-related signaling pathway but the activation of the interferons (IFNs) and p53-associated cellular functions, which were further validated by luciferase reporter assays in the FOXD1-KD oral cancer cells. Robustly, our data showed that FOXD1-KD fosters the expression of TXNIP, a downstream effector of IFN signaling and activator of p53, in oral cancer cells. These findings suggest that FOXD1 targeting might potentiate the anti-cancer effectiveness of radiotherapy and promote immune surveillance on oral cancer.
Collapse
Affiliation(s)
- Che-Hsuan Lin
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.L.); (F.-P.L.); (L.-C.C.)
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsun-Hua Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Neurology, Vertigo and Balance Impairment Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Fei-Peng Lee
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.L.); (F.-P.L.); (L.-C.C.)
- Department of Otolaryngology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Lung-Che Chen
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.L.); (F.-P.L.); (L.-C.C.)
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Long-Sheng Lu
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 3106)
| |
Collapse
|