1
|
Pulat G, Bilgiç E, Ercan UK, Karaman O. Enhanced Osteogenic Differentiation via Collagen and BMP-2 Mimetic Peptide Conjugation to β-TCP Scaffolds Using a Cold Atmospheric Plasma-Assisted Strategy. ACS APPLIED BIO MATERIALS 2025; 8:2569-2579. [PMID: 40032828 DOI: 10.1021/acsabm.5c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Bone defects arising from trauma, disease, or surgical intervention represent significant challenges. Developing effective bone tissue engineering strategies to address these issues and promote repair is crucial. β-Tricalcium phosphate (β-TCP) has emerged as a promising synthetic graft due to its porous, degradable structure and excellent biocompatibility. However, the lack of biological cues in β-TCP limits its functionality, requiring different surface modification strategies. Bone morphogenetic protein-2 mimetic peptide (BMP; NSVNSKIPKACCVPTELSAI) and collagen mimetic peptide (CMP; GTPGPQGIAGQRGVV) have a known significant therapeutic potential due to their ability to enhance cell attachment and osteogenic differentiation. Herein, a peptide functionalization strategy for β-TCP scaffolds was introduced. Briefly, β-TCP was treated with cold atmospheric plasma (CAP) to create functional hydroxyl groups on the surface of the β-TCP. Subsequently, peptides were conjugated by using a three-step method: (1) silanization with APTES, (2) EDC activation, and (3) peptide conjugation. The successful surface modification with CAP and peptide conjugation was confirmed via XRD, FTIR, and Raman analysis. Furthermore, the effects of BMP and CMP peptides on osteogenic differentiation after CAP treatment were investigated in human mesenchymal stem cells (hMSCs). Both β-TCP/BMP and β-TCP/CMP scaffolds demonstrated excellent biocompatibility with hMSCs, enhancing cell proliferation and promoting osteogenic differentiation. Remarkably, β-TCP/CMP showed better results in terms of proliferation and differentiation compared with β-TCP/BMP. These findings highlight the clinical potential of peptide-functionalized β-TCP scaffolds for bone tissue engineering while also providing a promising methodology for β-TCP functionalization.
Collapse
Affiliation(s)
- Günnur Pulat
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir 35620, Turkey
| | - Eda Bilgiç
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir 35620, Turkey
| | - Utku Kürşat Ercan
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir 35620, Turkey
| | - Ozan Karaman
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir 35620, Turkey
| |
Collapse
|
2
|
Shenoy D, Chivukula S, Erdogan N, Chiesa E, Pellegrino S, Reches M, Genta I. Self-assembled peptide-based nanofibers for cardiovascular tissue regeneration. J Mater Chem B 2025; 13:844-857. [PMID: 39655843 DOI: 10.1039/d4tb01235f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cardiovascular diseases are the leading cause of death worldwide, claiming millions of lives every year. Cardiac tissue engineering has emerged as a versatile option for repairing cardiac tissue and helping its regeneration. The use of nanomaterials, particularly nanofiber-based scaffolds combined with biomolecular cues like peptides, has significantly improved the compatibility and efficacy of the scaffolds for cardiac tissue regeneration. By utilising the self-assembly properties of peptides to create nanofiber scaffolds, we can achieve stability that closely mimics the natural components of cardiac tissue, making them perfect for cardiac tissue regeneration. In this review, we highlighted the dynamic process of self-assembly into nanofibers and the use of various self-assembled nanofibers for cardiovascular tissue regeneration, focusing on their roles in antithrombotic, angiogenic, differentiation, proliferation, and anti-atherosclerotic interventions.
Collapse
Affiliation(s)
- Dhriti Shenoy
- DISFARM, Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milan, Italy.
| | - Sowmya Chivukula
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
- Dipartimento di Scienze del Farmaco, Pharmaceutical Technology and Law Laboratory, Università di Pavia, Via Torquato Taramelli 12, Pavia, Italy.
| | - Nursu Erdogan
- Dipartimento di Scienze del Farmaco, Pharmaceutical Technology and Law Laboratory, Università di Pavia, Via Torquato Taramelli 12, Pavia, Italy.
- Physics of Nanostructures and Advanced Materials, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
- CIC nanoGUNE BRTA, Donostia-San Sebastián, 20018, Spain
| | - Enrica Chiesa
- Dipartimento di Scienze del Farmaco, Pharmaceutical Technology and Law Laboratory, Università di Pavia, Via Torquato Taramelli 12, Pavia, Italy.
| | - Sara Pellegrino
- DISFARM, Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milan, Italy.
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Ida Genta
- Dipartimento di Scienze del Farmaco, Pharmaceutical Technology and Law Laboratory, Università di Pavia, Via Torquato Taramelli 12, Pavia, Italy.
| |
Collapse
|
3
|
Liu Y, Zhang X, Xiao C, Liu B. Engineered hydrogels for peripheral nerve repair. Mater Today Bio 2023; 20:100668. [PMID: 37273791 PMCID: PMC10232914 DOI: 10.1016/j.mtbio.2023.100668] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Peripheral nerve injury (PNI) is a complex disease that often appears in young adults. It is characterized by a high incidence, limited treatment options, and poor clinical outcomes. This disease not only causes dysfunction and psychological disorders in patients but also brings a heavy burden to the society. Currently, autologous nerve grafting is the gold standard in clinical treatment, but complications, such as the limited source of donor tissue and scar tissue formation, often further limit the therapeutic effect. Recently, a growing number of studies have used tissue-engineered materials to create a natural microenvironment similar to the nervous system and thus promote the regeneration of neural tissue and the recovery of impaired neural function with promising results. Hydrogels are often used as materials for the culture and differentiation of neurogenic cells due to their unique physical and chemical properties. Hydrogels can provide three-dimensional hydration networks that can be integrated into a variety of sizes and shapes to suit the morphology of neural tissues. In this review, we discuss the recent advances of engineered hydrogels for peripheral nerve repair and analyze the role of several different therapeutic strategies of hydrogels in PNI through the application characteristics of hydrogels in nerve tissue engineering (NTE). Furthermore, the prospects and challenges of the application of hydrogels in the treatment of PNI are also discussed.
Collapse
Affiliation(s)
- Yao Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| | - Xiaonong Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Bin Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| |
Collapse
|
4
|
Hao Z, Li H, Wang Y, Hu Y, Chen T, Zhang S, Guo X, Cai L, Li J. Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103820. [PMID: 35128831 PMCID: PMC9008438 DOI: 10.1002/advs.202103820] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/02/2022] [Indexed: 05/03/2023]
Abstract
Bone tissue engineering is becoming an ideal strategy to replace autologous bone grafts for surgical bone repair, but the multihierarchical complexity of natural bone is still difficult to emulate due to the lack of suitable biomaterials. Supramolecular peptide nanofiber hydrogels (SPNHs) are emerging biomaterials because of their inherent biocompatibility, satisfied biodegradability, high purity, facile functionalization, and tunable mechanical properties. This review initially focuses on the multihierarchical fabrications by SPNHs to emulate natural bony extracellular matrix. Structurally, supramolecular peptides based on distinctive building blocks can assemble into nanofiber hydrogels, which can be used as nanomorphology-mimetic scaffolds for tissue engineering. Biochemically, bioactive motifs and bioactive factors can be covalently tethered or physically absorbed to SPNHs to endow various functions depending on physiological and pharmacological requirements. Mechanically, four strategies are summarized to optimize the biophysical microenvironment of SPNHs for bone regeneration. Furthermore, comprehensive applications about SPNHs for bone tissue engineering are reviewed. The biomaterials can be directly used in the form of injectable hydrogels or composite nanoscaffolds, or they can be used to construct engineered bone grafts by bioprinting or bioreactors. Finally, continuing challenges and outlook are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Hanke Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yi Wang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yingkun Hu
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Tianhong Chen
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Shuwei Zhang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Xiaodong Guo
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Road 1277Wuhan430022China
| | - Lin Cai
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Jingfeng Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| |
Collapse
|
5
|
Sun X, Liu Y, Wei Y, Wang Y. Chirality-induced bionic scaffolds in bone defects repair-a review. Macromol Biosci 2022; 22:e2100502. [PMID: 35246939 DOI: 10.1002/mabi.202100502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/27/2022] [Indexed: 11/12/2022]
Abstract
Due to lack of amino sugar with aging, people will suffer from various epidemic bone diseases called "undead cancer" by the World Health Organization. The key problem in bone tissue engineering that has not been completely resolved is the repair of critical large-scale bone and cartilage defects. The chirality of the extracellular matrix plays a decisive role in the physiological activity of bone cells and the occurrence of bone tissue, but the mechanism of chirality in regulating cell adhesion and growth is still in the early stage of exploration. This paper reviews the application progress of chirality-induced bionic scaffolds in bone defects repair based on "soft" and "hard" scaffolds. The aim is to summarize the effects of different chiral structures (L-shaped and D-shaped) in the process of inducing bionic scaffolds in bone defects repair. In addition, many technologies and methods as well as issues worthy of special consideration for preparing chirality-induced bionic scaffolds are also introduced. We expect that this work can provide inspiring ideas for designing new chirality-induced bionic scaffolds and promote the development of chirality in bone tissue engineering. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xinyue Sun
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Yue Liu
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, 300211, P. R. China
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, P. R. China
| |
Collapse
|
6
|
Zhang M, Li L, An H, Zhang P, Liu P. Repair of Peripheral Nerve Injury Using Hydrogels Based on Self-Assembled Peptides. Gels 2021; 7:152. [PMID: 34698159 PMCID: PMC8544532 DOI: 10.3390/gels7040152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Peripheral nerve injury often occurs in young adults and is characterized by complex regeneration mechanisms, poor prognosis, and slow recovery, which not only creates psychological obstacles for the patients but also causes a significant burden on society, making it a fundamental problem in clinical medicine. Various steps are needed to promote regeneration of the peripheral nerve. As a bioremediation material, self-assembled peptide (SAP) hydrogels have attracted international attention. They can not only be designed with different characteristics but also be applied in the repair of peripheral nerve injury by promoting cell proliferation or drug-loaded sustained release. SAP hydrogels are widely used in tissue engineering and have become the focus of research. They have extensive application prospects and are of great potential biological value. In this paper, the application of SAP hydrogel in peripheral nerve injury repair is reviewed, and the latest progress in peptide composites and fabrication techniques are discussed.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China;
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Lei Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan 250012, China;
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100044, China;
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China;
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Peilai Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan 250012, China;
| |
Collapse
|
7
|
Wang TT, Xia YY, Gao JQ, Xu DH, Han M. Recent Progress in the Design and Medical Application of In Situ Self-Assembled Polypeptide Materials. Pharmaceutics 2021; 13:753. [PMID: 34069645 PMCID: PMC8160760 DOI: 10.3390/pharmaceutics13050753] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Inspired by molecular self-assembly, which is ubiquitous in natural environments and biological systems, self-assembled peptides have become a research hotspot in the biomedical field due to their inherent biocompatibility and biodegradability, properties that are afforded by the amide linkages forming the peptide backbone. This review summarizes the biological advantages, principles, and design strategies of self-assembled polypeptide systems. We then focus on the latest advances in in situ self-assembly of polypeptides in medical applications, such as oncotherapy, materials science, regenerative medicine, and drug delivery, and then briefly discuss their potential challenges in clinical treatment.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China;
| | - Yi-Yi Xia
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-Y.X.); (J.-Q.G.)
| | - Jian-Qing Gao
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-Y.X.); (J.-Q.G.)
| | - Dong-Hang Xu
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China;
| | - Min Han
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-Y.X.); (J.-Q.G.)
| |
Collapse
|
8
|
Jorgensen MD, Chmielewski J. Reversible crosslinked assembly of a trimeric coiled-coil peptide into a three-dimensional matrix for cell encapsulation and release. J Pept Sci 2021; 28:e3302. [PMID: 33506586 DOI: 10.1002/psc.3302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Mimicking the extracellular matrix (ECM) continues to be a goal in the field of regenerative medicine. Herein, we report a modified trimeric GCN4 coiled-coil sequence containing three ligands for metal ions specifically positioned for crosslinked assembly (TriCross). In the presence of metal ions, TriCross assembles into a three-dimensional (3D) matrix with significant cavities to accommodate cells. The matrix was found to be stable in media with serum, and mild removal of the metal leads to disassembly. By assembling TriCross with a suspension of cells in media, the matrix encapsulates cells during the assembly process leading to high cell viability. Further disassembly under mild conditions allows for the release of cells from the scaffold. As such, this peptide-based material displays many of the characteristics necessary for successful 3D cell culture.
Collapse
Affiliation(s)
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|