1
|
Delavar F, Mohseni M, Jahandideh A, Khajehmohammadi M, Najmoddin N. Piezoelectric bilayer fibrous conduit with gellan/curcumin encapsulated alginate infilling for promotion of sciatic nerve regeneration in the rat models. Int J Biol Macromol 2025; 286:137833. [PMID: 39566755 DOI: 10.1016/j.ijbiomac.2024.137833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
The peripheral nerve regeneration has a limited innate capacity for self-repair and thus it urgently necessitates designing a smart nerve guidance conduit. Considering the electrophysiological features of nerve tissues, a piezoelectric bilayer fibrous conduit filled with drug-encapsulated gellan was developed in this study and its ability to promote neural growth was assessed in vivo. To fabricate such conduit, bilayer fibrous mats were prepared from poly ε-caprolactone/BaTiO3 and poly-L-lactic acid -chitosan-gelatin-polyaniline/graphene via an electrospinning process. After rolling the fibrous mat, the inside of the hollow conduit was filled with gellan containing Curcumin-loaded alginate (Alg) particles. All intermediate and final products were characterized using various analytical techniques. Encapsulation of Curcumin into the Alg particles and loaded in the gellan could effectively enhance sustained release of drug during the healing process, following Higuchi model. Four weeks post-surgery, such an engineered conduit revealed much better nerve regeneration results than the control group and showed desirable outcomes in terms of sciatic function indices and formation of the perineurium as well as axon number. Such developed conduit has a high potency to repair the injured nerve tissue due to their capacity to sustain the release of drugs over a long period and transfer self-stimulated electrical signals between cells. The in vivo assay revealed the feasibility of exploiting such conduit in nerve tissue engineering.
Collapse
Affiliation(s)
- Farhan Delavar
- School of Life Sciences, Neuroscience Department, University of Warwick, Coventry, UK; Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Biomedical Engineering, Medical Engineering and Biology Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mojdeh Mohseni
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Alireza Jahandideh
- Department of Clinical Sciences, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehran Khajehmohammadi
- Department of Mechanical Engineering, Faculty of Engineering, Yazd University, Yazd, Iran; Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Medical Engineering and Biology Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Moyo MTG, Adali T, Edebal OH. ISO 10993-4 Compliant Hemocompatibility Evaluation of Gellan Gum Hybrid Hydrogels for Biomedical Applications. Gels 2024; 10:824. [PMID: 39727582 DOI: 10.3390/gels10120824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
This study examines the hemocompatibility of gellan-gum-based hybrid hydrogels, with varying gellan-gum concentrations and constant sodium alginate and silk fibroin concentrations, respectively, in accordance with ISO 10993-4 standards. While previous studies have focused on cytocompatibility, the hemocompatibility of these hydrogels remains underexplored. Hydrogels were formulated with 0.3%, 0.5%, 0.75%, and 1% gellan gum combined with 3% silk fibroin and 4.2% sodium alginate separately, using physical and ionic cross-linking. Swelling behavior was analyzed in phosphate (pH 7.4) and acetic (pH 1.2) buffers and surface morphology was examined by scanning electron microscopy (SEM). Hemocompatibility tests included complete blood count (CBC), coagulation assays, hemolysis index, erythrocyte morphology, and platelet adhesion analysis. Results showed that gellan gum-sodium alginate hydrogels exhibited faster swelling than gellan gum-silk fibroin formulations. SEM indicated smoother surfaces with sodium alginate, while silk fibroin increased roughness, further amplified by higher gellan-gum concentrations. Hemocompatibility assays confirmed normal profiles in formulations with 0.3%, 0.5%, and 0.75% gellan gum, while 1% gellan gum caused significant hemolytic and thrombogenic activity. These findings highlight the excellent hemocompatibility of gellan-gum-based hydrogels, especially the sodium alginate variants, supporting their potential in bioengineering, tissue engineering, and blood-contacting biomedical applications.
Collapse
Affiliation(s)
- Mthabisi Talent George Moyo
- Department of Medical Biochemistry, Faculty of Medicine, Girne American University, Karmi Campus, Kyrenia 99428, North Cyprus, Turkey
- Research and Applications Center of Biomedical Sciences, Girne American University, Karmi Campus, Kyrenia 99428, North Cyprus, Turkey
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Nicosia 99138, North Cyprus, Turkey
| | - Terin Adali
- Department of Medical Biochemistry, Faculty of Medicine, Girne American University, Karmi Campus, Kyrenia 99428, North Cyprus, Turkey
- Research and Applications Center of Biomedical Sciences, Girne American University, Karmi Campus, Kyrenia 99428, North Cyprus, Turkey
| | - Oğuz Han Edebal
- Clinical Biochemistry Laboratory, Near East University Hospital, Nicosia 99138, North Cyprus, Turkey
| |
Collapse
|
3
|
Lalebeigi F, Alimohamadi A, Afarin S, Aliabadi HAM, Mahdavi M, Farahbakhshpour F, Hashemiaval N, Khandani KK, Eivazzadeh-Keihan R, Maleki A. Recent advances on biomedical applications of gellan gum: A review. Carbohydr Polym 2024; 334:122008. [PMID: 38553201 DOI: 10.1016/j.carbpol.2024.122008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Gellan gum (GG) has attracted considerable attention as a versatile biopolymer with numerous potential biological applications, especially in the fields of tissue engineering, wound healing, and cargo delivery. Due to its distinctive characteristics like biocompatibility, biodegradability, nontoxicity, and gel-forming ability, GG is well-suited for these applications. This review focuses on recent research on GG-based hydrogels and biocomposites and their biomedical applications. It discusses the incorporation of GG into hydrogels for controlled drug release, its role in promoting wound healing processes, and its potential in tissue engineering for various tissues including bone, retina, cartilage, vascular, adipose, and cardiac tissue. It provides an in-depth analysis of the latest findings and advancements in these areas, making it a valuable resource for researchers and professionals in these fields.
Collapse
Affiliation(s)
- Farnaz Lalebeigi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | - Shahin Afarin
- School of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Farahbakhshpour
- Medical Biotechnology Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Neginsadat Hashemiaval
- Medical Biotechnology Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Kimia Kalantari Khandani
- Medical Biotechnology Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
4
|
Alharbi HY, Alnoman RB, Aljohani MS, Al-Anazia M, Monier M. Synthesis and characterization of gellan gum-based hydrogels for drug delivery applications. Int J Biol Macromol 2024; 258:128828. [PMID: 38141700 DOI: 10.1016/j.ijbiomac.2023.128828] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
In this study, gellan gum (Gel) derivatives were allowed to interact via aqueous Diels-Alder chemistry without the need for initiators, producing a crosslinked hydrogel network that exhibited good potential as a drug carrier using tramadol as a drug model. Hydrogel conjugation was achieved by the synthesis of a maleimide and furan-functionalized Gel, and the pre- and post-gelation chemical structure of the resulting hydrogel precursors was fully investigated. Potential uses of the developed hydrogel in the pharmaceutical industry were also evaluated by looking at its gelation duration, temperature, morphologies, swelling, biodegradation, and mechanical characteristics. The Gel-FM hydrogels were safe, showed good antimicrobial activity, and had a low storage modulus, which meant that they could be used in many biochemical fields. The encapsulation and release of tramadol from the hydrogel system in phosphate-buffered saline (PBS) at 37 °C were investigated under acidic and slightly alkaline conditions, replicating the stomach and intestinal tracts, respectively. The in-vitro release profile showed promising results for drug encapsulation, revealing that the drug could safely be well-encapsulated in acidic stomach environments and released more quickly in slightly alkaline intestinal environments. This implies that the hydrogels produced could work well as polymers for specifically delivering medication to the colon.
Collapse
Affiliation(s)
- Hussam Y Alharbi
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia.
| | - Rua B Alnoman
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Majed S Aljohani
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Menier Al-Anazia
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - M Monier
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
5
|
Kaewchuchuen J, Roamcharern N, Phuagkhaopong S, Bimbo LM, Seib FP. Microfibre-Functionalised Silk Hydrogels. Cells 2023; 13:10. [PMID: 38201214 PMCID: PMC10777932 DOI: 10.3390/cells13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Silk hydrogels have shown potential for tissue engineering applications, but several gaps and challenges, such as a restricted ability to form hydrogels with tuned mechanics and structural features, still limit their utilisation. Here, Bombyx mori and Antheraea mylitta (Tasar) silk microfibres were embedded within self-assembling B. mori silk hydrogels to modify the bulk hydrogel mechanical properties. This approach is particularly attractive because it creates structured silk hydrogels. First, B. mori and Tasar microfibres were prepared with lengths between 250 and 500 μm. Secondary structure analyses showed high beta-sheet contents of 61% and 63% for B. mori and Tasar microfibres, respectively. Mixing either microfibre type, at either 2% or 10% (w/v) concentrations, into 3% (w/v) silk solutions during the solution-gel transition increased the initial stiffness of the resulting silk hydrogels, with the 10% (w/v) addition giving a greater increase. Microfibre addition also altered hydrogel stress relaxation, with the fastest stress relaxation observed with a rank order of 2% (w/v) > 10% (w/v) > unmodified hydrogels for either fibre type, although B. mori fibres showed a greater effect. The resulting data sets are interesting because they suggest that the presence of microfibres provided potential 'flow points' within these hydrogels. Assessment of the biological responses by monitoring cell attachment onto these two-dimensional hydrogel substrates revealed greater numbers of human induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) attached to the hydrogels containing 10% (w/v) B. mori microfibres as well as 2% (w/v) and 10% (w/v) Tasar microfibres at 24 h after seeding. Cytoskeleton staining revealed a more elongated and stretched morphology for the cells growing on hydrogels containing Tasar microfibres. Overall, these findings illustrate that hydrogel stiffness, stress relaxation and the iPSC-MSC responses towards silk hydrogels can be tuned using microfibres.
Collapse
Affiliation(s)
- Jirada Kaewchuchuen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK (L.M.B.)
| | - Napaporn Roamcharern
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK (L.M.B.)
| | - Suttinee Phuagkhaopong
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK (L.M.B.)
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Luis M. Bimbo
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK (L.M.B.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - F. Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK (L.M.B.)
- Fraunhofer Institute for Molecular Biology & Applied Ecology, Branch Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany
- Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany
| |
Collapse
|
6
|
Li W, Hu J, Chen C, Li X, Zhang H, Xin Y, Tian Q, Wang S. Emerging advances in hydrogel-based therapeutic strategies for tissue regeneration. Regen Ther 2023; 24:459-471. [PMID: 37772128 PMCID: PMC10523184 DOI: 10.1016/j.reth.2023.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/14/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
Significant developments in cell therapy and biomaterial science have broadened the therapeutic landscape of tissue regeneration. Tissue damage is a complex biological process in which different types of cells play a specific role in repairing damaged tissues and growth factors strictly regulate the activity of these cells. Hydrogels have become promising biomaterials for tissue regeneration if appropriate materials are selected and the hydrogel properties are well-regulated. Importantly, they can be used as carriers for living cells and growth factors due to the high water-holding capacity, high permeability, and good biocompatibility of hydrogels. Cell-loaded hydrogels can play an essential role in treating damaged tissues and open new avenues for cell therapy. There is ample evidence substantiating the ability of hydrogels to facilitate the delivery of cells (stem cell, macrophage, chondrocyte, and osteoblast) and growth factors (bone morphogenetic protein, transforming growth factor, vascular endothelial growth factor and fibroblast growth factor). This paper reviewed the latest advances in hydrogels loaded with cells or growth factors to promote the reconstruction of tissues. Furthermore, we discussed the shortcomings of the application of hydrogels in tissue engineering to promote their further development.
Collapse
Affiliation(s)
- Wenqi Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jing Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Cheng Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xinyue Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Honghua Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yanru Xin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qingchang Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
7
|
Ahmed T. Functional biomaterials for biomimetic 3D in vitro tumor microenvironment modeling. IN VITRO MODELS 2023; 2:1-23. [PMID: 39872875 PMCID: PMC11756483 DOI: 10.1007/s44164-023-00043-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/30/2025]
Abstract
The translational potential of promising anticancer medications and treatments may be enhanced by the creation of 3D in vitro models that can accurately reproduce native tumor microenvironments. Tumor microenvironments for cancer treatment and research can be built in vitro using biomaterials. Three-dimensional in vitro cancer models have provided new insights into the biology of cancer. Cancer researchers are creating artificial three-dimensional tumor models based on functional biomaterials that mimic the microenvironment of the real tumor. Our understanding of tumor stroma activity over the course of cancer has improved because of the use of scaffold and matrix-based three-dimensional systems intended for regenerative medicine. Scientists have created synthetic tumor models thanks to recent developments in materials engineering. These models enable researchers to investigate the biology of cancer and assess the therapeutic effectiveness of available medications. The emergence of biomaterial engineering technologies with the potential to hasten treatment outcomes is highlighted in this review, which also discusses the influence of creating in vitro biomimetic 3D tumor microenvironments utilizing functional biomaterials. Future cancer treatments will rely much more heavily on biomaterials engineering.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Bashundhara R/A, Dhaka-1229 Dhaka, Bangladesh
| |
Collapse
|
8
|
Azam F, Ahmad F, Ahmad S, Zafar MS, Ulker Z. Preparation and Characterization of Alginate Hydrogel Fibers Reinforced by Cotton for Biomedical Applications. Polymers (Basel) 2022; 14:4707. [PMID: 36365700 PMCID: PMC9655604 DOI: 10.3390/polym14214707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2023] Open
Abstract
In this study, cotton-reinforced alginate hydrogel fibers were successfully synthesized using the wet spinning technique to improve hydrogel fibers' mechanical strength and durability. Structural, chemical, and mechanical properties of the prepared fibers were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray Diffraction, differential scanning calorimeter, and single fiber strength tester. Based on the results obtained from fourier transform infrared spectroscopy and x-ray Diffraction, cotton fibers have been successfully incorporated into the structure of the hydrogel fibers. It was seen from the differential scanning calorimeter results that the incorporation of fibers in the structure even enhanced the thermal stability of the fiber and is viable to be implanted in the human body. Cotton reinforcement in alginate hydrogel fibers increases the modulus up to 56.45 MPa providing significant stiffness and toughness for the hydrogel composite fiber. The tenacity of the fibers increased by increasing the concentration of alginate from 2.1 cN/Tex (1% w/v) to 8.16 cN/Tex (1.5% w/v). Fiber strength increased by 26.75% and water absorbance increased by 120% by incorporating (10% w/w) cotton fibers into the fibrous structure. It was concluded that these cotton-reinforced alginate hydrogel fibers have improved mechanical properties and liquid absorption properties suitable for use in various biomedical applications.
Collapse
Affiliation(s)
- Farooq Azam
- School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Faheem Ahmad
- School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Sheraz Ahmad
- School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Zeynep Ulker
- School of Pharmacy, Altinbas University, Istanbul 34147, Turkey
| |
Collapse
|
9
|
Gellan Gum Is a Suitable Biomaterial for Manual and Bioprinted Setup of Long-Term Stable, Functional 3D-Adipose Tissue Models. Gels 2022; 8:gels8070420. [PMID: 35877505 PMCID: PMC9315477 DOI: 10.3390/gels8070420] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 02/06/2023] Open
Abstract
Due to its wide-ranging endocrine functions, adipose tissue influences the whole body’s metabolism. Engineering long-term stable and functional human adipose tissue is still challenging due to the limited availability of suitable biomaterials and adequate cell maturation. We used gellan gum (GG) to create manual and bioprinted adipose tissue models because of its similarities to the native extracellular matrix and its easily tunable properties. Gellan gum itself was neither toxic nor monocyte activating. The resulting hydrogels exhibited suitable viscoelastic properties for soft tissues and were stable for 98 days in vitro. Encapsulated human primary adipose-derived stem cells (ASCs) were adipogenically differentiated for 14 days and matured for an additional 84 days. Live-dead staining showed that encapsulated cells stayed viable until day 98, while intracellular lipid staining showed an increase over time and a differentiation rate of 76% between days 28 and 56. After 4 weeks of culture, adipocytes had a univacuolar morphology, expressed perilipin A, and secreted up to 73% more leptin. After bioprinting establishment, we demonstrated that the cells in printed hydrogels had high cell viability and exhibited an adipogenic phenotype and function. In summary, GG-based adipose tissue models show long-term stability and allow ASCs maturation into functional, univacuolar adipocytes.
Collapse
|
10
|
Bonifacio MA, Cometa S, Cochis A, Scalzone A, Gentile P, Scalia AC, Rimondini L, Mastrorilli P, De Giglio E. A bioprintable gellan gum/lignin hydrogel: a smart and sustainable route for cartilage regeneration. Int J Biol Macromol 2022; 216:336-346. [PMID: 35798077 DOI: 10.1016/j.ijbiomac.2022.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022]
Abstract
In this work a hydrogel, based on a blend of two gellan gums with different acyl content embedding lignin (up to 0.4%w/v) and crosslinked with magnesium ions, was developed for cartilage regeneration. The physico-chemical characterizations established that no chemical interaction between lignin and polysaccharides was detected. Lignin achieved up to 80 % of ascorbic acid's radical scavenging activity in vitro on DPPH and ABTS radicals. Viability of hMSC onto hydrogel containing lignin resulted comparable to the lignin-free one (>70 % viable cells, p > 0.05). The presence of lignin improved the hMSC 3D-constructs chondrogenesis, bringing to a significant (p < 0.05) up-regulation of the collagen type II, aggrecan and SOX 9 chondrogenic genes, and conferred bacteriostatic properties to the hydrogel, reducing the proliferation of S. aureus and S. epidermidis. Finally, cellularized 3D-constructs were manufactured via 3D-bioprinting confirming the processability of the formulation as a bioink and its unique biological features for creating a physiological milieu for cell growth.
Collapse
Affiliation(s)
- Maria A Bonifacio
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy; INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy.
| | | | - Andrea Cochis
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Health Sciences, 28100 Novara, Italy.
| | - Annachiara Scalzone
- Newcastle University, School of Engineering, Claremont Road, NE1 7RU Newcastle upon Tyne, United Kingdom.
| | - Piergiorgio Gentile
- Newcastle University, School of Engineering, Claremont Road, NE1 7RU Newcastle upon Tyne, United Kingdom.
| | - Alessandro C Scalia
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Health Sciences, 28100 Novara, Italy.
| | - Lia Rimondini
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Health Sciences, 28100 Novara, Italy.
| | - Piero Mastrorilli
- DICATECh Department Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy.
| | - Elvira De Giglio
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy; INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy.
| |
Collapse
|
11
|
Yokoi T, Mio A, Nakamura J, Sugawara-Narutaki A, Kawashita M, Ohtsuki C. Transformation behaviour of salts composed of calcium ions and phosphate esters with different linear alkyl chain structures in a simulated body fluid modified with alkaline phosphatase. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:341-351. [PMID: 35693889 PMCID: PMC9176335 DOI: 10.1080/14686996.2022.2074801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Ceramic biomaterials have been used for the treatment of bone defects and have stimulated intense research on such materials. We have previously reported that a salt composed of calcium ions and a phosphate ester (SCPE) transformed into hydroxyapatite (HAp) in a simulated body fluid (SBF) modified with alkaline phosphatase (ALP), and proposed SCPEs as a new category of ceramic biomaterials, namely bioresponsive ceramics. However, the factors that affect the transformation of SCPEs to HAp in the SBF remained unclear. Therefore, in this study, we investigated the behaviour of calcium salts of methyl phosphate (CaMeP), ethyl phosphate (CaEtP), butyl phosphate (CaBuP), and dodecyl phosphate (CaDoP) in SBF with and without ALP modification. For the standard SBF, an X-ray diffraction (XRD) analysis indicated that these SCPEs did not readily transform into calcium phosphate. However, CaMeP, CaEtP, and CaBuP were transformed into HAp and octacalcium phosphate in the SBF modified with ALP; therefore, these SCPEs can be categorised as bioresponsive ceramics. Although CaDoP did not exhibit a sufficient response to ALP to be detected by XRD, it is likely to be a bioresponsive ceramic based on the results of morphological observations. The transformation rate for the SCPEs decreased with increasing size of the linear alkyl group of the phosphate esters. The rate-determining steps for the transformation reaction of the SCPEs were changed from the dissolution of the SCPEs to the hydrolysis of the phosphate esters with increasing size of the phosphate ester alkyl groups. These findings contribute to designing novel bioresponsive ceramic biomaterials.
Collapse
Affiliation(s)
- Taishi Yokoi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akiyoshi Mio
- Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Jin Nakamura
- Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | | | - Masakazu Kawashita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Chikara Ohtsuki
- Graduate School of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
12
|
Kim J, Lee CM, Moon SY, Jeong YIL, Kim CS, Lee SY. Biomedical Membrane of Fish Collagen/Gellan Gum Containing Bone Graft Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2954. [PMID: 35454647 PMCID: PMC9026336 DOI: 10.3390/ma15082954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023]
Abstract
The development of a guided bone regeneration (GBR) membrane with non-mammalian fish collagen has the advantage of low risk for transmission of infectious diseases in tissue regeneration. In this work, a fish collagen/gellan gum and bone graft material (FC/GG-BGM) composite GBR membrane were fabricated through solution blending and casting procedures in a vacuum. The membranes were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy observation (SEM), and atomic force microscope (AFM) analyses. FT-IR results suggested that ionic interactions were formed between FC and GG both in composite powder and membranes. In vivo experiments showed that these FC/GG-BGM composite membranes could generate osteoblast minerals and promote loose bone calcification, thus accelerating bone regeneration. At 2 weeks, the defected site of rats treated with FC/GG-BGM membrane (0.377 ± 0.012 mm3) showed higher regeneration than that of rats treated with the bovine collagen membrane (0.290 ± 0.015 mm3) and control rats without membrane (0.160 ± 0.008 mm3). Compared with bovine collagen membrane, the FC/GG-BGM composite membrane displays better bone regeneration ability. Therefore, FC/GG-BGM composite membrane is suitable as a GBR membrane for bone regeneration.
Collapse
Affiliation(s)
- Jin Kim
- Department of Oral and Maxillofacial Surgery, Chosun University Dental Hospital, Gwangju 61452, Korea; (J.K.); (S.-Y.M.)
| | - Chang-Moon Lee
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59662, Korea;
- Department of Biomedical Engineering, Chonnam National University, Yeosu 59662, Korea
- Research Center of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59662, Korea
| | - Seong-Yong Moon
- Department of Oral and Maxillofacial Surgery, Chosun University Dental Hospital, Gwangju 61452, Korea; (J.K.); (S.-Y.M.)
| | - Young-IL Jeong
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea;
| | - Chun Sung Kim
- Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju 61452, Korea
| | - Sook-Young Lee
- Marine Bio Research Center, Chosun University, Wando 59146, Korea
| |
Collapse
|
13
|
Tomasello L, Fiorica C, Mauceri R, Martorana A, Palumbo FS, Pitarresi G, Pizzolanti G, Campisi G, Giordano C, Cavallaro G. Bioactive Scaffolds Based on Amine-Functionalized Gellan Gum for the Osteogenic Differentiation of Gingival Mesenchymal Stem Cells. ACS APPLIED POLYMER MATERIALS 2022; 4:1805-1815. [DOI: 10.1021/acsapm.1c01586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Affiliation(s)
- Laura Tomasello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (ProMISE), Laboratory of Regenerative Medicine “Aldo Galluzzo”, Piazza delle Cliniche 2, 90127, University of Palermo, Palermo 90133, Italy
| | - Calogero Fiorica
- Department of Biological Chemical and Technological Sciences and Technologies (STEBICEF), Laboratory of Biocompatible Polymers, via Archirafi 32, 90123, University of Palermo, Palermo 90133, Italy
| | - Rodolfo Mauceri
- Department of Surgical, Oncological and Oral Sciences (Di.Chir.On.S.), Via Liborio Giuffrè, 590127, University of Palermo, Palermo 90133, Italy
- Department of Biomedical and Dental Sciences, Morphological and Functional Images (BIOMORF), University of Messina, Messina 98122, Italy
- Department of Dental Surgery, Faculty of Dental Surgery, University of Malta, Msida 2080, Malta
| | - Annalisa Martorana
- Department of Biological Chemical and Technological Sciences and Technologies (STEBICEF), Laboratory of Biocompatible Polymers, via Archirafi 32, 90123, University of Palermo, Palermo 90133, Italy
| | - Fabio Salvatore Palumbo
- Department of Biological Chemical and Technological Sciences and Technologies (STEBICEF), Laboratory of Biocompatible Polymers, via Archirafi 32, 90123, University of Palermo, Palermo 90133, Italy
| | - Giovanna Pitarresi
- Department of Biological Chemical and Technological Sciences and Technologies (STEBICEF), Laboratory of Biocompatible Polymers, via Archirafi 32, 90123, University of Palermo, Palermo 90133, Italy
| | - Giuseppe Pizzolanti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (ProMISE), Laboratory of Regenerative Medicine “Aldo Galluzzo”, Piazza delle Cliniche 2, 90127, University of Palermo, Palermo 90133, Italy
- Advanced Technology and Network Center (ATeN Center), Università degli Studi di Palermo, Viale delle Scienze ed. 18/A, Palermo 90133, Italy
| | - Giuseppina Campisi
- Department of Surgical, Oncological and Oral Sciences (Di.Chir.On.S.), Via Liborio Giuffrè, 590127, University of Palermo, Palermo 90133, Italy
| | - Carla Giordano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (ProMISE), Laboratory of Regenerative Medicine “Aldo Galluzzo”, Piazza delle Cliniche 2, 90127, University of Palermo, Palermo 90133, Italy
| | - Gennara Cavallaro
- Department of Biological Chemical and Technological Sciences and Technologies (STEBICEF), Laboratory of Biocompatible Polymers, via Archirafi 32, 90123, University of Palermo, Palermo 90133, Italy
- Advanced Technology and Network Center (ATeN Center), Università degli Studi di Palermo, Viale delle Scienze ed. 18/A, Palermo 90133, Italy
| |
Collapse
|