1
|
Highly Stable, Cold-Active Aldehyde Dehydrogenase from the Marine Antarctic Flavobacterium sp. PL002. FERMENTATION 2021. [DOI: 10.3390/fermentation8010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Stable aldehyde dehydrogenases (ALDH) from extremophilic microorganisms constitute efficient catalysts in biotechnologies. In search of active ALDHs at low temperatures and of these enzymes from cold-adapted microorganisms, we cloned and characterized a novel recombinant ALDH from the psychrotrophic Flavobacterium PL002 isolated from Antarctic seawater. The recombinant enzyme (F-ALDH) from this cold-adapted strain was obtained by cloning and expressing of the PL002 aldH gene (1506 bp) in Escherichia coli BL21(DE3). Phylogeny and structural analyses showed a high amino acid sequence identity (89%) with Flavobacterium frigidimaris ALDH and conservation of all active site residues. The purified F-ALDH by affinity chromatography was homotetrameric, preserving 80% activity at 4 °C for 18 days. F-ALDH used both NAD+ and NADP+ and a broad range of aliphatic and aromatic substrates, showing cofactor-dependent compensatory KM and kcat values and the highest catalytic efficiency (0.50 µM−1 s−1) for isovaleraldehyde. The enzyme was active in the 4–60 °C-temperature interval, with an optimal pH of 9.5, and a preference for NAD+-dependent reactions. Arrhenius plots of both NAD(P)+-dependent reactions indicated conformational changes occurring at 30 °C, with four(five)-fold lower activation energy at high temperatures. The high thermal stability and substrate-specific catalytic efficiency of this novel cold-active ALDH favoring aliphatic catalysis provided a promising catalyst for biotechnological and biosensing applications.
Collapse
|
2
|
Respiratory sensitization: toxicological point of view on the available assays. Arch Toxicol 2017; 92:803-822. [DOI: 10.1007/s00204-017-2088-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
|
3
|
Natsch A, Gfeller H, Haupt T, Brunner G. Chemical Reactivity and Skin Sensitization Potential for Benzaldehydes: Can Schiff Base Formation Explain Everything? Chem Res Toxicol 2012; 25:2203-15. [DOI: 10.1021/tx300278t] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andreas Natsch
- Givaudan Schweiz AG, Ueberlandstrasse 138, CH-8600
Duebendorf, Switzerland
| | - Hans Gfeller
- Givaudan Schweiz AG, Ueberlandstrasse 138, CH-8600
Duebendorf, Switzerland
| | - Tina Haupt
- Givaudan Schweiz AG, Ueberlandstrasse 138, CH-8600
Duebendorf, Switzerland
| | - Gerhard Brunner
- Givaudan Schweiz AG, Ueberlandstrasse 138, CH-8600
Duebendorf, Switzerland
| |
Collapse
|
4
|
Klein SG, Hennen J, Serchi T, Blömeke B, Gutleb AC. Potential of coculture in vitro models to study inflammatory and sensitizing effects of particles on the lung. Toxicol In Vitro 2011; 25:1516-34. [PMID: 21963807 DOI: 10.1016/j.tiv.2011.09.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 07/18/2011] [Accepted: 09/06/2011] [Indexed: 12/30/2022]
Abstract
Exposure to particulate matter (PM) like nanoparticles (NPs) has increased in the last century due to increased combustion processes, road traffic, etc. In addition, the progress in chemical and cosmetic industry led to many new compounds, e.g. fragrances, which humans are exposed to every day. Many chemicals are known to act as contact and some as respiratory sensitizers, causing allergic reactions. Exposure to small particles of less than 100 nm in diameter is linked with an increased risk of respiratory diseases, such as asthma or rhinitis. To date already more than 1000 customer products contain eNPs without knowing much about the health effects. In comparison to chemicals, the mechanisms by which PM and eNPs can cause sensitization are still not fully understood. Validated and regulatory accepted in vitro models to assess this hazard in its full range are still missing. While a huge number of animal studies contributed to our knowledge about sensitization processes, knowledge on involved cellular mechanisms is still limited. In this review relevant in vitro models to study and elucidate these mechanisms in more detail are presented and their potential to serve as part of a tiered testing strategy is discussed.
Collapse
Affiliation(s)
- Sebastian G Klein
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public, Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | | | | | | | | |
Collapse
|
5
|
Schwöbel JAH, Koleva YK, Enoch SJ, Bajot F, Hewitt M, Madden JC, Roberts DW, Schultz TW, Cronin MTD. Measurement and Estimation of Electrophilic Reactivity for Predictive Toxicology. Chem Rev 2011; 111:2562-96. [DOI: 10.1021/cr100098n] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Johannes A. H. Schwöbel
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Yana K. Koleva
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Steven J. Enoch
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Fania Bajot
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Mark Hewitt
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Judith C. Madden
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - David W. Roberts
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Terry W. Schultz
- College of Veterinary Medicine, Department of Comparative Medicine, The University of Tennessee, 2407 River Drive, Knoxville, Tennessee 37996-4543, United States
| | - Mark T. D. Cronin
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| |
Collapse
|
6
|
Chemical reactivity measurements: Potential for characterization of respiratory chemical allergens. Toxicol In Vitro 2011; 25:433-45. [DOI: 10.1016/j.tiv.2010.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 10/01/2010] [Accepted: 11/11/2010] [Indexed: 01/13/2023]
|
7
|
Patlewicz G, Mekenyan O, Dimitrova G, Kuseva C, Todorov M, Kotov S, Stoeva S, Donner EM. Can mutagenicity information be useful in an Integrated Testing Strategy (ITS) for skin sensitization? SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2010; 21:619-656. [PMID: 21120753 DOI: 10.1080/1062936x.2010.528447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Our previous work has investigated the utility of mutagenicity data in the development and application of Integrated Testing Strategies (ITS) for skin sensitization by focusing on the chemical mechanisms at play and substantiating these with experimental data where available. The hybrid expert system TIMES (Tissue Metabolism Simulator) was applied in the identification of the chemical mechanisms since it encodes a comprehensive set of established structure-activity relationships for both skin sensitization and mutagenicity. Based on the evaluation, the experimental determination of mutagenicity was thought to be potentially helpful in the evaluation of skin sensitization potential. This study has evaluated the dataset reported by Wolfreys and Basketter (Cutan. Ocul. Toxicol. 23 (2004), pp. 197-205). Upon an update of the experimental data, the original reported concordance of 68% was found to increase to 88%. There were several compounds that were 'outliers' in the two experimental evaluations which are discussed from a mechanistic basis. The discrepancies were found to be mainly associated with the differences between skin and liver metabolism. Mutagenicity information can play a significant role in evaluating sensitization potential as part of an ITS though careful attention needs to be made to ensure that any information is interpreted in the appropriate context.
Collapse
Affiliation(s)
- G Patlewicz
- DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, Delaware, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Jeppsson MC, Jönsson BAG, Kristiansson M, Lindh CH. Identification of covalent binding sites of phthalic anhydride in human hemoglobin. Chem Res Toxicol 2009; 21:2156-63. [PMID: 18831565 DOI: 10.1021/tx800242j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phthalic anhydride (PA) is a reactive low molecular weight compound used in the chemical industry. The exposure of PA may lead to work-related airway diseases such as rhinitis, chronic bronchitis, and asthma. The exposure gives rise to an increase in hapten-specific IgG antibodies in workers but with a low presence of specific IgE antibodies. In this study, the binding of PA to human hemoglobin (Hb) in vitro was investigated. Trypsin and Pronase E digestion, LC, LC/MS/MS, GC/MS analysis, and nanoelectrospray hybrid quadrupole time-of-flight MS were used to identify the adducted amino acids of the synthesized PA-Hb conjugates. In the conjugate with the molar ratio 1:0.1, a total of six adducted amino acids were identified. N-Terminal valine was found adducted in both the alpha- and the beta-chains as well as a total of four lysines, Val 1, Lys 16, and Lys 61 on the alpha-chain and Val 1, Lys 66, and Lys 144 on the beta-chain. Two types of lysine adducts were found, a phthalamide and a phthalimide. It was also found that PA differs in its binding site as compared to hexahydrophthalic anhydride. The result of this study suggests several interesting applications of biological monitoring.
Collapse
Affiliation(s)
- Marina C Jeppsson
- Department of Occupational and Environmental Medicine, Institute of Laboratory Medicine, University Hospital, SE-221 85 Lund, Sweden.
| | | | | | | |
Collapse
|
9
|
Staack RF, Hopfgartner G. New analytical strategies in studying drug metabolism. Anal Bioanal Chem 2007; 388:1365-80. [PMID: 17583803 DOI: 10.1007/s00216-007-1367-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/09/2007] [Accepted: 05/11/2007] [Indexed: 01/03/2023]
Abstract
Identification and elucidation of the structures of metabolites play major roles in drug discovery and in the development of pharmaceutical compounds. These studies are also important in toxicology or doping control with either pharmaceuticals or illicit drugs. This review focuses on: new analytical strategies used to identify potential metabolites in biological matrices with and without radiolabeled drugs; use of software for metabolite profiling; interpretation of product spectra; profiling of reactive metabolites; development of new approaches for generation of metabolites; and detection of metabolites with increased sensitivity and simplicity. Most of the new strategies involve mass spectrometry (MS) combined with liquid chromatography (LC).
Collapse
Affiliation(s)
- Roland F Staack
- Life Sciences Mass Spectrometry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 20, Bd d'Yvoy, 1211 Genève 4, Switzerland
| | | |
Collapse
|
10
|
Gedela S, Medicherla NR. Chromatographic Techniques for the Separation of Peptides: Application to Proteomics. Chromatographia 2007. [DOI: 10.1365/s10337-007-0215-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Yang XX, Hu ZP, Chan SY, Zhou SF. Monitoring drug-protein interaction. Clin Chim Acta 2005; 365:9-29. [PMID: 16199025 DOI: 10.1016/j.cca.2005.08.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 08/16/2005] [Accepted: 08/23/2005] [Indexed: 11/25/2022]
Abstract
A variety of therapeutic drugs can undergo biotransformation via Phase I and Phase II enzymes to reactive metabolites that have intrinsic chemical reactivity toward proteins and cause potential organ toxicity. A drug-protein adduct is a protein complex that forms when electrophilic drugs or their reactive metabolite(s) covalently bind to a protein molecule. Formation of such drug-protein adducts eliciting cellular damages and immune responses has been a major hypothesis for the mechanism of toxicity caused by numerous drugs. The monitoring of protein-drug adducts is important in the kinetic and mechanistic studies of drug-protein adducts and establishment of dose-toxicity relationships. The determination of drug-protein adducts can also provide supportive evidence for diagnosis of drug-induced diseases associated with protein-drug adduct formation in patients. The plasma is the most commonly used matrix for monitoring drug-protein adducts due to its convenience and safety. Measurement of circulating antibodies against drug-protein adducts may be used as a useful surrogate marker in the monitoring of drug-protein adducts. The determination of plasma protein adducts and/or relevant antibodies following administration of several drugs including acetaminophen, dapsone, diclofenac and halothane has been conducted in clinical settings for characterizing drug toxicity associated with drug-protein adduct formation. The monitoring of drug-protein adducts often involves multi-step laboratory procedure including sample collection and preliminary preparation, separation to isolate or extract the target compound from a mixture, identification and determination. However, the monitoring of drug-protein adducts is often difficult because of short half-lives of the protein adducts, sampling problem and lack of sensitive analytical techniques for the protein adducts. Currently, chromatographic (e.g. high performance liquid chromatography) and immunological methods (e.g. enzyme-linked immunosorbent assay) are two major techniques used to determine protein adducts of drugs in patients. The present review highlights the importance for clinical monitoring of drug-protein adducts, with an emphasis on methodology and with a further discussion of the application of these techniques to individual drugs and their target proteins.
Collapse
Affiliation(s)
- Xiao-Xia Yang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Science Drive 4, Singapore 117543, Singapore
| | | | | | | |
Collapse
|
12
|
Zhou S, Chan E, Duan W, Huang M, Chen YZ. Drug bioactivation, covalent binding to target proteins and toxicity relevance. Drug Metab Rev 2005; 37:41-213. [PMID: 15747500 DOI: 10.1081/dmr-200028812] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A number of therapeutic drugs with different structures and mechanisms of action have been reported to undergo metabolic activation by Phase I or Phase II drug-metabolizing enzymes. The bioactivation gives rise to reactive metabolites/intermediates, which readily confer covalent binding to various target proteins by nucleophilic substitution and/or Schiff's base mechanism. These drugs include analgesics (e.g., acetaminophen), antibacterial agents (e.g., sulfonamides and macrolide antibiotics), anticancer drugs (e.g., irinotecan), antiepileptic drugs (e.g., carbamazepine), anti-HIV agents (e.g., ritonavir), antipsychotics (e.g., clozapine), cardiovascular drugs (e.g., procainamide and hydralazine), immunosupressants (e.g., cyclosporine A), inhalational anesthetics (e.g., halothane), nonsteroidal anti-inflammatory drugs (NSAIDSs) (e.g., diclofenac), and steroids and their receptor modulators (e.g., estrogens and tamoxifen). Some herbal and dietary constituents are also bioactivated to reactive metabolites capable of binding covalently and inactivating cytochrome P450s (CYPs). A number of important target proteins of drugs have been identified by mass spectrometric techniques and proteomic approaches. The covalent binding and formation of drug-protein adducts are generally considered to be related to drug toxicity, and selective protein covalent binding by drug metabolites may lead to selective organ toxicity. However, the mechanisms involved in the protein adduct-induced toxicity are largely undefined, although it has been suggested that drug-protein adducts may cause toxicity either through impairing physiological functions of the modified proteins or through immune-mediated mechanisms. In addition, mechanism-based inhibition of CYPs may result in toxic drug-drug interactions. The clinical consequences of drug bioactivation and covalent binding to proteins are unpredictable, depending on many factors that are associated with the administered drugs and patients. Further studies using proteomic and genomic approaches with high throughput capacity are needed to identify the protein targets of reactive drug metabolites, and to elucidate the structure-activity relationships of drug's covalent binding to proteins and their clinical outcomes.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | | | | | | | | |
Collapse
|
13
|
Zhou S. Separation and detection methods for covalent drug–protein adducts. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 797:63-90. [PMID: 14630144 DOI: 10.1016/s1570-0232(03)00399-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Covalent binding of reactive metabolites of drugs to proteins has been a predominant hypothesis for the mechanism of toxicity caused by numerous drugs. The development of efficient and sensitive analytical methods for the separation, identification, quantification of drug-protein adducts have important clinical and toxicological implications. In the last few decades, continuous progress in analytical methodology has been achieved with substantial increase in the number of new, more specific and more sensitive methods for drug-protein adducts. The methods used for drug-protein adduct studies include those for separation and for subsequent detection and identification. Various chromatographic (e.g., affinity chromatography, ion-exchange chromatography, and high-performance liquid chromatography) and electrophoretic techniques [e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional SDS-PAGE, and capillary electrophoresis], used alone or in combination, offer an opportunity to purify proteins adducted by reactive drug metabolites. Conventionally, mass spectrometric (MS), nuclear magnetic resonance, and immunological and radioisotope methods are used to detect and identify protein targets for reactive drug metabolites. However, these methods are labor-intensive, and have provided very limited sequence information on the target proteins adducted, and thus the identities of the protein targets are usually unknown. Moreover, the antibody-based methods are limited by the availability, quality, and specificity of antibodies to protein adducts, which greatly hindered the identification of specific protein targets of drugs and their clinical applications. Recently, the use of powerful MS technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight) together with analytical proteomics have enabled one to separate, identify unknown protein adducts, and establish the sequence context of specific adducts by offering the opportunity to search for adducts in proteomes containing a large number of proteins with protein adducts and unmodified proteins. The present review highlights the separation and detection technologies for drug-protein adducts, with an emphasis on methodology, advantages and limitations to these techniques. Furthermore, a brief discussion of the application of these techniques to individual drugs and their target proteins will be outlined.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|