1
|
Verma A, Rai N, Gupta P, Singh S, Tiwari H, Chauhan SB, Kailashiya V, Gautam V. Exploration of in vitro cytotoxic and in ovo antiangiogenic activity of ethyl acetate extract of Penicillium oxalicum. ENVIRONMENTAL TOXICOLOGY 2023; 38:2509-2523. [PMID: 37461856 DOI: 10.1002/tox.23889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 09/19/2023]
Abstract
Fungal endophytes have established new paradigms in the area of biomedicine due to their ability to produce metabolites of pharmacological importance. The present study reports the in vitro cytotoxic and in ovo antiangiogenic activity of the ethyl acetate (EA) extract of Penicillium oxalicum and their chemical profiling through Gas Chromatography-Mass Spectrometry analysis. Treatment of the EA extract of P. oxalicum to the selected human breast cancer cell lines (MDA-MB-231 and MCF-7) leads to the reduced glucose uptake and increased nitric oxide production suggesting the cytotoxic activity of EA extract of P. oxalicum. Our results further show that treatment of EA extract of P. oxalicum attenuates the colony number, cell migration ability and alters nuclear morphology in both the human breast cancer cell lines. Furthermore, the treatment of EA extract of P. oxalicum mediates apoptosis by increasing the expression of BAX, P21, FADD, and CASPASE-8 genes, with increased Caspase-3 activity. Additionally, in ovo chorioallantoic membrane (CAM) assay showed that the treatment of EA extract of P. oxalicum leads to antiangiogenic activity with perturbed formation of blood vessels. Overall, our findings suggest that the EA extract of P. oxalicum show in vitro cytotoxic and antiproliferative activity against human breast cancer cell lines, and in ovo antiangiogenic activity in CAM model.
Collapse
Affiliation(s)
- Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shashi Bhushan Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vikas Kailashiya
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Angwa LM, Nyadanu SD, Kanyugo AM, Adampah T, Pereira G. Fluoride-induced apoptosis in non-skeletal tissues of experimental animals: A systematic review and meta-analysis. Heliyon 2023; 9:e18646. [PMID: 37560699 PMCID: PMC10407679 DOI: 10.1016/j.heliyon.2023.e18646] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Different studies have suggested that fluoride can induce apoptosis in non-skeletal tissues, however, evidence from these experimental studies is still controversial. This meta-analysis aims to clarify the mechanism of fluoride-induced apoptosis in non-skeletal tissues of experimental animals. Primary studies which measured apoptosis were identified through exhaustive database searching in PubMed, Embase, Web of Science Core Collection, Scopus, and references of included studies. A random effects model with standardized mean difference (SMD) was used for meta-analyses. The heterogeneity of the studies was evaluated using Higgin's I2 statistics. The risk of bias and publication bias were assessed using the SYRCLE's risk of bias tool and Egger's test, respectively. There was an increase in total apoptotic cells, and the expression of Bax, Bax/Bcl-2 ratio, caspase-3, caspase-8, caspase-9, Cyt c, and p53, and a decrease in the expression of Bcl-2 in the fluoride-treated groups as compared to the control groups. However, there was no evidence of a difference in the expression of APAF-1 in the two groups. The subgroup analysis highlighted the role of the intervention period in modification of the apoptotic effect of fluoride and that the susceptibility and tolerance of different animal species and tissues vary. Meta-regression analysis indicated that the studies' effect size for total apoptotic cells was influenced by animal species and that of Bax by the sample source. The results of this meta-analysis revealed that fluoride causes apoptosis by up-regulating caspase-3, -8, and -9, Cyt c, p53, Bax, and down-regulating Bcl-2 with a concomitant up-regulation of the Bax/Bcl-2 ratio.
Collapse
Affiliation(s)
- Linet Musungu Angwa
- Department of Clinical Medicine, Kabarak University, Private Bag, 20157, Kabarak, Kenya
| | - Sylvester Dodzi Nyadanu
- Curtin School of Population Health, Curtin University, Perth, Kent Street, Bentley, Western Australia, 6102, Australia
- Education, Culture, and Health Opportunities (ECHO) Research Group International, Aflao, Ghana
| | - Anne Murugi Kanyugo
- Department of Clinical Medicine, Kabarak University, Private Bag, 20157, Kabarak, Kenya
| | - Timothy Adampah
- Education, Culture, and Health Opportunities (ECHO) Research Group International, Aflao, Ghana
| | - Gavin Pereira
- Curtin School of Population Health, Curtin University, Perth, Kent Street, Bentley, Western Australia, 6102, Australia
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, 0473, Oslo, Norway
- enAble Institute, Curtin University, Perth, Kent Street, Bentley, Western Australia, 6102, Australia
| |
Collapse
|
3
|
Żwierełło W, Maruszewska A, Skórka-Majewicz M, Gutowska I. Fluoride in the Central Nervous System and Its Potential Influence on the Development and Invasiveness of Brain Tumours-A Research Hypothesis. Int J Mol Sci 2023; 24:1558. [PMID: 36675073 PMCID: PMC9866357 DOI: 10.3390/ijms24021558] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The purpose of this review is to attempt to outline the potential role of fluoride in the pathogenesis of brain tumours, including glioblastoma (GBM). In this paper, we show for the first time that fluoride can potentially affect the generally accepted signalling pathways implicated in the formation and clinical course of GBM. Fluorine compounds easily cross the blood-brain barrier. Enhanced oxidative stress, disruption of multiple cellular pathways, and microglial activation are just a few examples of recent reports on the role of fluoride in the central nervous system (CNS). We sought to present the key mechanisms underlying the development and invasiveness of GBM, as well as evidence on the current state of knowledge about the pleiotropic, direct, or indirect involvement of fluoride in the regulation of these mechanisms in various tissues, including neural and tumour tissue. The effects of fluoride on the human body are still a matter of controversy. However, given the growing incidence of brain tumours, especially in children, and numerous reports on the effects of fluoride on the CNS, it is worth taking a closer look at these mechanisms in the context of brain tumours, including gliomas.
Collapse
Affiliation(s)
- Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| | - Agnieszka Maruszewska
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, Felczaka 3c St., 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Centre, Institute of Biology, University of Szczecin, Wąska 13 St., 71-415 Szczecin, Poland
| | - Marta Skórka-Majewicz
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| |
Collapse
|
4
|
Ren C, Li HH, Zhang CY, Song XC. Effects of chronic fluorosis on the brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114021. [PMID: 36049331 DOI: 10.1016/j.ecoenv.2022.114021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
This article reviews the effects of chronic fluorosis on the brain and possible mechanisms. We used PubMed, Medline and Cochraine databases to collect data on fluorosis, brain injury, and pathogenesis. A large number of in vivo and in vitro studies and epidemiological investigations have found that chronic fluorosis can cause brain damage, resulting in abnormal brain structure and brain function.Chronic fluorosis not only causes a decline in concentration, learning, and memory, but also has mental symptoms such as anxiety, tension, and depression. Several possible mechanisms that have been proposed: the oxidative stress and inflammation theory, neural cell apoptosis theory, neurotransmitter imbalance theory, as well as the doctrine of the interaction of fluorine with other elements. However, the specific mechanism of chronic fluorosis on brain damage is still unclear. Thus, a better understanding of the mechanisms via which chronic fluorosis causes brain damage is of great significance to protect the physical and mental health of people in developing countries, especially those living in the endemic areas of fluorosis. In brief, further investigation concerning the influence of fluoride on the brain should be conducted as the neural damage induced by it may bring about a huge problem in public health, especially considering growing environmental pollution.
Collapse
Affiliation(s)
- Chao Ren
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong Province 264000, China; Shandong Provincial Innovation and Practice Base for Postdoctors, Yantai Yuhuangding Hospital, Yantai 264000, China; Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province 264000, China.
| | - Hui-Hua Li
- Zhenjiang Mental Health Center, The Fifth People's Hospital of Zhenjiang City, Zhenjiang, Jiangsu Province 212000, China
| | - Cai-Yi Zhang
- Department of Psychiatry, Xuzhou Medical University Affiliated Xuzhou Oriental Hospital, No.379 Tongshan Road, Xuzhou, Jiangsu Province 221000, China; Department of Emergency psychology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China; Department of Emergency, Xuzhou Medical University Affiliate Hospital, No.99 Huaihai Road, Xuzhou, Jiangsu Province 221000, China
| | - Xi-Cheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong Province 264000, China; Shandong Provincial Innovation and Practice Base for Postdoctors, Yantai Yuhuangding Hospital, Yantai 264000, China.
| |
Collapse
|
5
|
Sun H, Yang Y, Gu M, Li Y, Jiao Z, Lu C, Li B, Jiang Y, Jiang L, Chu F, Yang W, Sun D, Gao Y. The role of Fas-FasL-FADD signaling pathway in arsenic-mediated neuronal apoptosis in vivo and in vitro. Toxicol Lett 2021; 356:143-150. [PMID: 34953944 DOI: 10.1016/j.toxlet.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 11/18/2022]
Abstract
The molecular mechanisms underlying arsenic-induced neurotoxicity have not been completely elucidated. Our study aimed to determine the role of the Fas-FasL-FADD signaling pathway in arsenic-mediated neuronal apoptosis. Pathological and molecular biological tests were performed on the cerebral cortex of arsenic-exposed rats and SH-SY5Y neuroblastoma cells. Arsenic induced apoptosis in the cortical neurons, which corresponded to abnormal ultrastructural changes. Mechanistically, arsenic activated the Fas-FasL-FADD signaling pathway and the downstream caspases both in vivo and in vitro. ZB4 treatment reversed the apoptotic effects of arsenic on the SHSY5Y cells. Taken together, arsenic induces neurotoxicity by activating the Fas-FasL-FADD signaling pathway.
Collapse
Affiliation(s)
- Hongna Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China
| | - Yanmei Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China
| | - Muyu Gu
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yang Li
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China
| | - Zhe Jiao
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China
| | - Chunqing Lu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China
| | - Bingyu Li
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China
| | - Yuting Jiang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China
| | - Lixin Jiang
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Fang Chu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China
| | - Wenjing Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China
| | - Dianjun Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China.
| | - Yanhui Gao
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China.
| |
Collapse
|
6
|
Li H, Fan J, Zhao Y, Yang J, Xu H, Manthari RK, Cheng X, Wang J, Wang J. Calcium alleviates fluoride-induced kidney damage via FAS/FASL, TNFR/TNF, DR5/TRAIL pathways in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112851. [PMID: 34619480 DOI: 10.1016/j.ecoenv.2021.112851] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Long-term excessive intake of fluoride (F) can cause osseous and non-osseous damage. The kidney is the main fluoride excretion organ of the body. This study aimed to explore whether dietary calcium (Ca) supplementation can alleviate kidney damage caused by fluorosis and to further investigate the effects of Ca on the mitigation mechanism of renal cell apoptosis triggered by F. We evaluated the histopathological structure, renal function indicators, and gene and protein expression levels of death receptor-mediated apoptosis pathways in Sprague Dawley (SD) rats treated with sodium fluoride (NaF) and/or calcium carbonate (CaCO3) for 120 days. The results showed that 100 mg/L NaF induced kidney histopathological injury and apoptosis, increased the concentrations of Creatinine (CRE), uric acid (UA), blood urea nitrogen (BUN), potassium (K), phosphorus (P) and F (p < 0.05), and decrease the level of serum magnesium (Mg) (p < 0.05). Moreover, NaF increased the mRNA and protein expression levels of Fas cell surface death receptor (FAS), tumor necrosis factor (TNF), TNF-related apoptosis-inducing ligand (TRAIL), Caspase 8, Caspase 3 and poly ADP-ribose polymerase (PARP) (p < 0.01), which finally activated the death receptor pathway. Inversely, Ca supplementation reversed the decrease of CRE, BUN, UA, F and P levels induced by F, alleviated histopathological damage and apoptosis, and reduced the gene and protein expression levels of death receptor pathway-related markers. In conclusion, 1% Ca alleviates F-induced kidney apoptosis through FAS/FASL, TNFR/TNF, DR5/TRAIL signaling pathways.
Collapse
Affiliation(s)
- Haojie Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Junjiang Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Yangfei Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Jiarong Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Huimiao Xu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Ram Kumar Manthari
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Xiaofang Cheng
- Department of Basic Science, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Jinming Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China.
| |
Collapse
|
7
|
Tang H, Zhang S, Huang C, Li K, Zhao Q, Li X. MiR-448-5p/VEGFA Axis Protects Cardiomyocytes from Hypoxia Through Regulating the FAS/FAS-L Signaling Pathway. Int Heart J 2021; 62:647-657. [PMID: 33994507 DOI: 10.1536/ihj.20-600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bioinformatics analysis showed that miR-448-5p expression in the myocardial tissue of rats with myocardial infarction significantly increased, suggesting that it may participate in myocardial cell apoptosis in myocardial infarction. This study aimed to explore the protective effects of miR-448-5p on hypoxic myocardial cells.H9C2 cells were cultured and subjected to anoxia for 2, 4, and 8 hours to establish a hypoxia model. MiR-448-5p mimic and inhibitor were transfected into the cells; then, a dual-luciferase experiment was conducted to verify the targeting relationship between miR-448-5p and VEGFA. Cell viability and apoptosis was detected by cell counting kit-8 and flow cytometry, respectively. The expressions of apoptosis-related proteins, miR-448-5p, FAS, and FAS-L were measured using western blotting and quantitative reverse transcription-polymerase chain reaction (qRT-PCR).Hypoxia-reduced H9C2 cell viability and promoted apoptosis. MiR-448-5p expression was increased after H9C2 cell hypoxia. MiR-448-5p mimic significantly inhibited the viability and promoted the apoptosis of hypoxia-induced model cells. Hypoxia promoted the expression of apoptosis-related protein B-cell lymphoma-2 (Bcl-2) and inhibited the expressions of Bcl-2-associated x protein (Bax), cleaved caspase-3, and caspase-3, whereas the effect of inhibitor on hypoxia-reduced H9C2 cell and apoptotic protein expression were opposite to miR-448-5p mimic. MiR-448-5p targeted VEGFA and regulated its expression. Silenced VEGFA expression significantly inhibited inhibitor effect on increasing cell viability and promoted apoptosis. In addition, miR-448-5p mimic inhibited the effect of hypoxia on promoting the expressions of FAS and FAS-L of H9C2 cells. Inhibitors had the opposite effect on cell hypoxia model.The miR-448-5p/VEGFA axis could protect cardiomyocytes from hypoxia through inhibiting the FAS/FAS-L signaling pathway.
Collapse
Affiliation(s)
- Hanqing Tang
- School of Basic Medicine, Youjiang Medical University for Nationalities
| | - Shitian Zhang
- School of Basic Medicine, Youjiang Medical University for Nationalities
| | - Cenhan Huang
- School of Basic Medicine, Youjiang Medical University for Nationalities
| | - Keming Li
- School of Basic Medicine, Youjiang Medical University for Nationalities
| | - Qiuhua Zhao
- School of Basic Medicine, Youjiang Medical University for Nationalities
| | - Xiaohua Li
- School of Basic Medicine, Youjiang Medical University for Nationalities
| |
Collapse
|
8
|
Garcia ALH, Picinini J, Silveira MD, Camassola M, Visentim APV, Salvador M, da Silva J. Fluorosilicic acid induces DNA damage and oxidative stress in bone marrow mesenchymal stem cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 861-862:503297. [PMID: 33551106 DOI: 10.1016/j.mrgentox.2020.503297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Excess fluoride in water can produce changes in tooth enamel mineralization and lead to diseases such as dental or skeletal fluorosis. The present study aimed to assess the genotoxic effects, oxidative stress, and osteoblastic mineralization induced by fluorosilicic acid (FA) in murine bone marrow-derived mesenchymal stem cells (BM-MSCs). BM-MSCs were isolated from the femurs and tibias of rats and cultured under standard conditions. Cells exposure occurred for 3, 7, 14, and 21 days to different concentrations of FA (0.6-9.6 mg/L). Cytotoxicity was observed in 14 and 21 days of exposure for all concentrations of FA (cell proliferation below 60%), and for 3 and 7 days, in which the proliferation was above 80%. Alkaline comet assay results demonstrated significant increased damage at concentrations of 0.3-2.4 mg/L, and the micronucleus test showed increased rates for micronucleus (1.2-2.4 mg/L) and nuclear buds (NBUDs) (0.3-2.4 mg/L) (P < 0.05/Dunnett's test). An alkaline comet assay modified by repair endonuclease (FPG) was used to detect oxidized nucleobases, which occurred at 0.6 mg/L. The oxidative stress was evaluated by lipid peroxidation (TBARS) and antioxidant activity (TAC). Only lipid peroxidation was increased at concentrations of 0.6 mg/L and 1.2 mg/L (P < 0.001/Tukey's test). The osteogenesis process determined the level of extracellular matrix mineralization. The mean concentration of Alizarin red increased significantly in 14 days at the 0.6 mg/L concentration group (P < 0.05/Tukey's test) compared to the control group, and a significant difference between the groups regarding the activity of alkaline phosphatase (ALP) was observed. Unlike other studies, our results indicated that FA in BM-MSCs at concentrations used in drinking water induced genotoxicity, oxidative stress, and acceleration of bone mineralization.
Collapse
Affiliation(s)
- Ana L H Garcia
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), 92425-900, Canoas, RS, Brazil.
| | - Juliana Picinini
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), 92425-900, Canoas, RS, Brazil
| | - Maiele D Silveira
- Lutheran University of Brazil (ULBRA), Laboratory of Stem Cells and Tissue Engineering PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), 92425-900, Canoas, Rio Grande do Sul, Brazil
| | - Melissa Camassola
- Lutheran University of Brazil (ULBRA), Laboratory of Stem Cells and Tissue Engineering PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), 92425-900, Canoas, Rio Grande do Sul, Brazil
| | - Ana P V Visentim
- Institute, University of Caxias do Sul, Rua Travessão Solferino 610, Cruzeiro, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Mirian Salvador
- Institute, University of Caxias do Sul, Rua Travessão Solferino 610, Cruzeiro, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Juliana da Silva
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), 92425-900, Canoas, RS, Brazil; Laboratory of Genetic Toxicology, La Salle University (UniLaSalle), Canoas, RS, Brazil.
| |
Collapse
|
9
|
Guth S, Hüser S, Roth A, Degen G, Diel P, Edlund K, Eisenbrand G, Engel KH, Epe B, Grune T, Heinz V, Henle T, Humpf HU, Jäger H, Joost HG, Kulling SE, Lampen A, Mally A, Marchan R, Marko D, Mühle E, Nitsche MA, Röhrdanz E, Stadler R, van Thriel C, Vieths S, Vogel RF, Wascher E, Watzl C, Nöthlings U, Hengstler JG. Toxicity of fluoride: critical evaluation of evidence for human developmental neurotoxicity in epidemiological studies, animal experiments and in vitro analyses. Arch Toxicol 2020; 94:1375-1415. [PMID: 32382957 PMCID: PMC7261729 DOI: 10.1007/s00204-020-02725-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/26/2020] [Indexed: 12/29/2022]
Abstract
Recently, epidemiological studies have suggested that fluoride is a human developmental neurotoxicant that reduces measures of intelligence in children, placing it into the same category as toxic metals (lead, methylmercury, arsenic) and polychlorinated biphenyls. If true, this assessment would be highly relevant considering the widespread fluoridation of drinking water and the worldwide use of fluoride in oral hygiene products such as toothpaste. To gain a deeper understanding of these assertions, we reviewed the levels of human exposure, as well as results from animal experiments, particularly focusing on developmental toxicity, and the molecular mechanisms by which fluoride can cause adverse effects. Moreover, in vitro studies investigating fluoride in neuronal cells and precursor/stem cells were analyzed, and 23 epidemiological studies published since 2012 were considered. The results show that the margin of exposure (MoE) between no observed adverse effect levels (NOAELs) in animal studies and the current adequate intake (AI) of fluoride (50 µg/kg b.w./day) in humans ranges between 50 and 210, depending on the specific animal experiment used as reference. Even for unusually high fluoride exposure levels, an MoE of at least ten was obtained. Furthermore, concentrations of fluoride in human plasma are much lower than fluoride concentrations, causing effects in cell cultures. In contrast, 21 of 23 recent epidemiological studies report an association between high fluoride exposure and reduced intelligence. The discrepancy between experimental and epidemiological evidence may be reconciled with deficiencies inherent in most of these epidemiological studies on a putative association between fluoride and intelligence, especially with respect to adequate consideration of potential confounding factors, e.g., socioeconomic status, residence, breast feeding, low birth weight, maternal intelligence, and exposure to other neurotoxic chemicals. In conclusion, based on the totality of currently available scientific evidence, the present review does not support the presumption that fluoride should be assessed as a human developmental neurotoxicant at the current exposure levels in Europe.
Collapse
Affiliation(s)
- Sabine Guth
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Stephanie Hüser
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Angelika Roth
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Gisela Degen
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Karolina Edlund
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Karl-Heinz Engel
- Department of General Food Technology, School of Life Sciences, TU Munich, Freising, Germany
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, Mainz, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Volker Heinz
- German Institute of Food Technologies (DIL), Quakenbrück, Germany
| | - Thomas Henle
- Department of Food Chemistry, TU Dresden, Dresden, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Henry Jäger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Alfonso Lampen
- Department of Food Safety, Bundesinstitut für Risikobewertung (BfR), Berlin, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | - Rosemarie Marchan
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Eva Mühle
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Ruhr-University, Bochum, Germany
| | - Elke Röhrdanz
- Department of Experimental Pharmacology and Toxicology, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Richard Stadler
- Institute of Food Safety and Analytic Sciences, Nestlé Research Centre, Lausanne, Switzerland
| | - Christoph van Thriel
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, TU Munich, Freising, Germany
| | - Edmund Wascher
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Carsten Watzl
- Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Ute Nöthlings
- Department of Nutrition and Food Sciences, Nutritional Epidemiology, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany.
| | - Jan G Hengstler
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany.
| |
Collapse
|
10
|
Abstract
Although actively disputed and questioned, it has been proposed that chronic exposure to inorganic fluoride (F-) is toxic for brain. The major question for this review was whether an excessive F- intake is causally related to adverse neurological and cognitive health conditions in human beings and animals. The paper systematically and critically summarizes the findings of the studies showing positive associations between F- intoxication and various intellectual defects, as well as of those which attempted to clarify the nature of F- neurotoxicity. Many works provide support for a link between pre- and postnatal F- exposure and structural and functional changes in the central nervous system responsible for neurological and cognitive disorders. The mechanisms suggested to underlie F- neurotoxicity include the disturbances in synaptic transmission and synaptic plasticity, premature death of neurons, altered activities of components of intracellular signaling cascades, impaired protein synthesis, deficit of neurotrophic and transcriptional factors, oxidative stress, metabolic changes, inflammatory processes. However, the majority of works have been performed on laboratory rodents using such F- doses which are never exist in the nature even in the regions of endemic fluorosis. Thus, this kind of treatment is hardly comparable with human exposure even taking into account the higher rate of F- clearance in animals. Of special importance are the data collected on humans chronically consuming excessive F- doses in the regions of endemic fluorosis or contacting with toxic F- compounds at industrial sites, but those works are scarce and often criticized due to low quality. New, expertly performed studies with repeated exposure assessment in independent populations are needed to prove an ability of F- to impair neurological and intellectual development of human beings and to understand the molecular mechanisms implicated in F--induced neurotoxicity.
Collapse
Affiliation(s)
- N I Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint-Petersburg, Russian Federation
| | - O V Nadei
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint-Petersburg, Russian Federation
| |
Collapse
|
11
|
Zhou G, Tang S, Yang L, Niu Q, Chen J, Xia T, Wang S, Wang M, Zhao Q, Liu L, Li P, Dong L, Yang K, Zhang S, Wang A. Effects of long-term fluoride exposure on cognitive ability and the underlying mechanisms: Role of autophagy and its association with apoptosis. Toxicol Appl Pharmacol 2019; 378:114608. [DOI: 10.1016/j.taap.2019.114608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
|
12
|
In Vivo Comparison of the Phenotypic Aspects and Molecular Mechanisms of Two Nephrotoxic Agents, Sodium Fluoride and Uranyl Nitrate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16071136. [PMID: 30934888 PMCID: PMC6479911 DOI: 10.3390/ijerph16071136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 02/03/2023]
Abstract
Because of their nephrotoxicity and presence in the environment, uranium (U) and fluoride (F) represent risks to the global population. There is a general lack of knowledge regarding the mechanisms of U and F nephrotoxicity and the underlying molecular pathways. The present study aims to compare the threshold of the appearance of renal impairment and to study apoptosis and inflammation as mechanisms of nephrotoxicity. C57BL/6J male mice were intraperitoneally treated with a single dose of U (0, 2, 4 and 5 mg/kg) or F (0, 2, 5, 7.5 and 10 mg/kg) and euthanized 72 h after. Renal phenotypic characteristics and biological mechanisms were evaluated by urine biochemistry, gene/protein expression, enzyme activity, and (immuno)histological analyses. U and F exposures induced nephrotoxicity in a dose-dependent manner, and the highest concentrations induced severe histopathological alterations as well as increased gene expression and urinary excretion of nephrotoxicity biomarkers. KIM-1 gene expression was induced starting at 2 mg/kg U and 7.5 mg/kg F, and this increase in expression was confirmed through in situ detection of this biomarker of nephrotoxicity. Both treatments induced inflammation as evidenced by cell adhesion molecule expression and in situ levels, whereas caspase 3/7-dependent apoptosis was increased only after U treatment. Overall, a single dose of F or U induced histopathologic evidence of nephrotoxicity renal impairment and inflammation in mice with thresholds under 7.5 mg/kg and 4 mg/kg, respectively.
Collapse
|
13
|
Goschorska M, Baranowska-Bosiacka I, Gutowska I, Metryka E, Skórka-Majewicz M, Chlubek D. Potential Role of Fluoride in the Etiopathogenesis of Alzheimer's Disease. Int J Mol Sci 2018; 19:ijms19123965. [PMID: 30544885 PMCID: PMC6320968 DOI: 10.3390/ijms19123965] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/18/2022] Open
Abstract
The etiopathogenesis of Alzheimer's disease has not been fully explained. Now, the disease is widely attributed both to genetic and environmental factors. It is believed that only a small percentage of new AD cases result solely from genetic mutations, with most cases attributed to environmental factors or to the interaction of environmental factors with preexistent genetic determinants. Fluoride is widespread in the environment and it easily crosses the blood⁻brain barrier. In the brain fluoride affects cellular energy metabolism, synthesis of inflammatory factors, neurotransmitter metabolism, microglial activation, and the expression of proteins involved in neuronal maturation. Finally, and of specific importance to its role in Alzheimer's disease, studies report fluoride-induced apoptosis and inflammation within the central nervous system. This review attempts to elucidate the potential relationship between the effects of fluoride exposure and the pathogenesis of Alzheimer's disease. We describe the impact of fluoride-induced oxidative stress and inflammation in the pathogenesis of AD and demonstrate a role for apoptosis in disease progression, as well as a mechanism for its initiation by fluoride. The influence of fluoride on processes of AD initiation and progression is complex and warrants further investigation, especially considering growing environmental fluoride pollution.
Collapse
Affiliation(s)
- Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland.
| | - Emilia Metryka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| | - Marta Skórka-Majewicz
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| |
Collapse
|
14
|
Wei Q, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. A mini review of fluoride-induced apoptotic pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33926-33935. [PMID: 30338467 DOI: 10.1007/s11356-018-3406-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Fluorine or fluoride can have toxic effects on bone tissue and soft tissue at high concentrations. These negative effects include but not limited to cytotoxicity, immunotoxicity, blood toxicity, and oxidative damage. Apoptosis plays an important role in fluoride-induced toxicity of kidney, liver, spleen, thymus, bursa of Fabricius, cecal tonsil, and cultured cells. Here, apoptosis activated by high level of fluoride has been systematically reviewed, focusing on three pathways: mitochondrion-mediated, endoplasmic reticulum (ER) stress-mediated, and death receptor-mediated pathways. However, very limited reports are focused on the death receptor-mediated apoptosis pathways in the fluoride-induced apoptosis. Therefore, understanding and discovery of more pathways and molecular mechanisms of fluoride-induced apoptosis may contribute to designing measures for preventing fluoride toxicity.
Collapse
Affiliation(s)
- Qin Wei
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Agricultural information engineering of Sichuan Province, Sichuan Agriculture University, Ya'an, 625014, Sichuan, China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, Sichuan, China
| |
Collapse
|
15
|
Tan PP, Zhou BH, Zhao WP, Jia LS, Liu J, Wang HW. Mitochondria-Mediated Pathway Regulates C2C12 Cell Apoptosis Induced by Fluoride. Biol Trace Elem Res 2018; 185:440-447. [PMID: 29594946 DOI: 10.1007/s12011-018-1265-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/05/2018] [Indexed: 11/29/2022]
Abstract
This study was designed to investigate the mechanisms of excessive fluoride-induced apoptosis via mitochondria-mediated pathway in skeletal muscle cells (C2C12 cells). C2C12 cells were cultured with the fluoride concentrations (0, 1, and 2.5 mmol/L) for 48 h. The morphology and ultrastructural changes of C2C12 cells were observed using a light microscope and transmission electron microscope (TEM). The protein expression levels of apoptosis factors, including Bax, Bcl-2, cytochrome c (Cyt c), caspase-3, and caspase-9, were measured using real-time polymerase chain reaction (real-time PCR) and immunocytofluorescence. The morphology and ultrastructure of C2C12 cells were seriously damaged by fluoride at 1 and 2.5 mmol/L doses, including swollen mitochondria, vacuolization, ridge breakage, and disappearance of the nuclear membrane. Simultaneously, compared with the control group, the expression levels of Bax, Bcl-2, Cyt c, caspase-3, and caspase-9 were up-regulated after fluoride treatment. Excessive fluoride damages the ultrastructure in mitochondria, leading to the release of Cyt c from the mitochondria to cytoplasm in C2C12 cells; thereby, activated caspases cascade apoptosis process through a mitochondria-mediated pathway.
Collapse
Affiliation(s)
- Pan-Pan Tan
- Henan Provincial Open Laboratory of Key Disciplines, Environment and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Bian-Hua Zhou
- Henan Provincial Open Laboratory of Key Disciplines, Environment and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China.
| | - Wen-Peng Zhao
- Henan Provincial Open Laboratory of Key Disciplines, Environment and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Liu-Shu Jia
- Henan Provincial Open Laboratory of Key Disciplines, Environment and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Jing Liu
- Henan Provincial Open Laboratory of Key Disciplines, Environment and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Hong-Wei Wang
- Henan Provincial Open Laboratory of Key Disciplines, Environment and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
16
|
Tu W, Zhang Q, Liu Y, Han L, Wang Q, Chen P, Zhang S, Wang A, Zhou X. Fluoride induces apoptosis via inhibiting SIRT1 activity to activate mitochondrial p53 pathway in human neuroblastoma SH-SY5Y cells. Toxicol Appl Pharmacol 2018; 347:60-69. [PMID: 29609003 DOI: 10.1016/j.taap.2018.03.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 01/08/2023]
Abstract
There has been a great concern about the neurotoxicity of fluoride since it can pass through the blood-brain barrier and accumulate in the brain. It has been suggested that apoptosis plays a vital role in neurotoxicity of fluoride. However, whether p53-mediated apoptotic pathway is involved is still unclear. Our results showed that apoptosis was induced after treatment with 40 and 60 mg/L of NaF for 24 h in human neuroblastoma SH-SY5Y cells. Exposure to 60 mg/L of NaF for 24 h significantly upregulated the levels of p53 and apoptosis-related proteins including PUMA, cytochrome c (cyto c), cleaved caspase-3 and cleaved PARP, whereas downregulated Bcl-2 in SH-SY5Y cells. Meanwhile, fluoride increased p53 nuclear translocation, cyto c release from mitochondria to cytoplasm and mitochondrial translocation of Bax in SH-SY5Y cells. Fluoride-induced increases of apoptotic rates and apoptosis-related protein levels were significantly attenuated by inhibiting p53 transcriptional activity with pifithrin-α. In addition, fluoride inhibited the deacetylase activity of SIRT1 and increased p53 (acetyl K382) level in SH-SY5Y cells. Apoptosis and upregulation of cleaved caspase-3, cleaved PARP and p53 (acetyl K382) induced by fluoride could be ameliorated by SIRT1 overexpression or its activator resveratrol in SH-SY5Y cells. Taken together, our study demonstrates that fluoride induces apoptosis by inhibiting the deacetylase activity of SIRT1 to activate mitochondrial p53 pathway in SH-SY5Y cells, which depends on p53 transcriptional activity. Thus, SIRT1 may be a promising target to protect against neurotoxicity induced by fluoride.
Collapse
Affiliation(s)
- Wei Tu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Qian Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yin Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Lianyong Han
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Qin Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Panpan Chen
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Shun Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Aiguo Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
17
|
Niu Q, Chen J, Xia T, Li P, Zhou G, Xu C, Zhao Q, Dong L, Zhang S, Wang A. Excessive ER stress and the resulting autophagic flux dysfunction contribute to fluoride-induced neurotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:889-899. [PMID: 29100748 DOI: 10.1016/j.envpol.2017.09.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/06/2017] [Indexed: 06/07/2023]
Abstract
Fluoride is capable of inducing neurotoxicity, but its mechanisms remain elusive. This study aimed to explore the roles of endoplasmic reticulum (ER) stress and autophagy in sodium fluoride (NaF)-induced neurotoxicity, focusing on the regulating role of ER stress in autophagy. The in vivo results demonstrated that NaF exposure impaired the learning and memory capabilities of rats, and resulted in histological and ultrastructural abnormalities in rat hippocampus. Moreover, NaF exposure induced excessive ER stress and associated apoptosis, as manifested by elevated IRE1α, GRP78, cleaved caspase-12 and cleaved-caspase-3, as well as defective autophagy, as shown by increased Beclin1, LC3-II and p62 expression in hippocampus. Consistently, the in vitro results further verified the findings of in vivo study that NaF induced excessive ER stress and defective autophagy in SH-SY5Y cells. Notably, inhibition of autophagy in NaF-treated SH-SY5Y cells with Wortmannin or Chloroquine decreased, while induction of autophagy by Rapamycin increased the cell viability. These results were correlated well with the immunofluorescence observations, thus confirming the pivotal role of autophagic flux dysfunction in NaF-induced cell death. Importantly, mitigation of ER stress by 4-phenylbutyrate in NaF-treated SH-SY5Y cells inhibited the expressions of autophagy markers, and decreased cell apoptosis. Taken together, these data suggest that neuronal death resulted from excessive ER stress and autophagic flux dysfunction contributes to fluoride-elicited neurotoxicity. Moreover, the autophagic flux dysfunction was mediated by excessive ER stress, which provided novel insight into a better understanding of fluoride-induced neurotoxicity.
Collapse
Affiliation(s)
- Qiang Niu
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jingwen Chen
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tao Xia
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Pei Li
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Guoyu Zhou
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chunyan Xu
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qian Zhao
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Lixin Dong
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shun Zhang
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Aiguo Wang
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
18
|
Dec K, Łukomska A, Maciejewska D, Jakubczyk K, Baranowska-Bosiacka I, Chlubek D, Wąsik A, Gutowska I. The Influence of Fluorine on the Disturbances of Homeostasis in the Central Nervous System. Biol Trace Elem Res 2017; 177:224-234. [PMID: 27787813 PMCID: PMC5418325 DOI: 10.1007/s12011-016-0871-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/11/2016] [Indexed: 01/21/2023]
Abstract
Fluorides occur naturally in the environment, the daily exposure of human organism to fluorine mainly depends on the intake of this element with drinking water and it is connected with the geographical region. In some countries, we can observe the endemic fluorosis-the damage of hard and soft tissues caused by the excessive intake of fluorine. Recent studies showed that fluorine is toxic to the central nervous system (CNS). There are several known mechanisms which lead to structural brain damage caused by the excessive intake of fluorine. This element is able to cross the blood-brain barrier, and it accumulates in neurons affecting cytological changes, cell activity and ion transport (e.g. chlorine transport). Additionally, fluorine changes the concentration of non-enzymatic advanced glycation end products (AGEs), the metabolism of neurotransmitters (influencing mainly glutamatergic neurotransmission) and the energy metabolism of neurons by the impaired glucose transporter-GLUT1. It can also change activity and lead to dysfunction of important proteins which are part of the respiratory chain. Fluorine also affects oxidative stress, glial activation and inflammation in the CNS which leads to neurodegeneration. All of those changes lead to abnormal cell differentiation and the activation of apoptosis through the changes in the expression of neural cell adhesion molecules (NCAM), glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF) and MAP kinases. Excessive exposure to this element can cause harmful effects such as permanent damage of all brain structures, impaired learning ability, memory dysfunction and behavioural problems. This paper provides an overview of the fluoride neurotoxicity in juveniles and adults.
Collapse
Affiliation(s)
- K Dec
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - A Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - D Maciejewska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - K Jakubczyk
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - I Baranowska-Bosiacka
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 av., 71-111, Szczecin, Poland
| | - D Chlubek
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 av., 71-111, Szczecin, Poland
| | - A Wąsik
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, Smętna street 12, 31-343, Kraków, Poland
| | - I Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland.
| |
Collapse
|
19
|
Singh R, Banerjee C, Ray A, Rajamani P, Mazumder S. Fluoride-induced headkidney macrophage cell apoptosis involves activation of the CaMKII g-ERK 1/2-caspase-8 axis: the role of superoxide in initiating the apoptotic cascade. Toxicol Res (Camb) 2016; 5:1477-1489. [PMID: 30090451 DOI: 10.1039/c6tx00206d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/22/2016] [Indexed: 11/21/2022] Open
Abstract
Fluoride is known to induce apoptosis though the mechanisms remain obscure. The aim of the present study was to understand the underlying molecular mechanisms of fluoride-induced apoptosis using fish headkidney macrophages (HKMs). Exposure to fluoride triggered HKM cell apoptosis as evidenced by Hoechst 333432 and AnnexinV-propidium iodide staining, the presence of an internucleosomal DNA ladder and the comet assay. Our results suggest the influx of extra-cellular Ca2+ to be an initial event in fluoride-induced HKM cell apoptosis. We observed persistently elevated levels of superoxide anions and our inhibitor studies with EGTA suggested the primal role of the Ca2+ flux in triggering superoxide production in fluoride-exposed HKM cells. Fluoride exposure led to elevated levels of Ca2+/CaM dependent protein kinase II gamma (CaMKIIg) and pre-treatment with the inhibitor KN-93 but not its inactive structural analogue KN-92 reduced the number of apoptotic cells establishing the pro-apoptotic role of CaMKIIg in fluoride-induced HKM cell apoptosis. We report that the sustained superoxide generation is primarily responsible for the increased CaMKIIg levels observed in fluoride-exposed HKM cells. Our inhibitor studies further implicated CaMKIIg in the activation of extracellular signal-regulated kinases 1 and 2 (ERK 1/2) culminating in caspase-8/caspase-3 mediated apoptosis of HKM cells. We conclude that fluoride-induced apoptosis is largely dependent on Ca2+ induced superoxide generation leading to elevation in CaMKIIg which in turn induces the phosphorylation of ERK 1/2 and downstream activation of extrinsic caspase cascade in HKM cells.
Collapse
Affiliation(s)
- Rashmi Singh
- Immunobiology Laboratory , Department of Zoology , University of Delhi , Delhi 110 007 , India . ; ; Tel: +91-11-27667985
| | - Chaitali Banerjee
- Immunobiology Laboratory , Department of Zoology , University of Delhi , Delhi 110 007 , India . ; ; Tel: +91-11-27667985
| | - Atish Ray
- Immunobiology Laboratory , Department of Zoology , University of Delhi , Delhi 110 007 , India . ; ; Tel: +91-11-27667985
| | - Paulraj Rajamani
- School of Environmental Sciences , Jawaharlal Nehru University , Delhi , India
| | - Shibnath Mazumder
- Immunobiology Laboratory , Department of Zoology , University of Delhi , Delhi 110 007 , India . ; ; Tel: +91-11-27667985
| |
Collapse
|
20
|
Zhang S, Niu Q, Gao H, Ma R, Lei R, Zhang C, Xia T, Li P, Xu C, Wang C, Chen J, Dong L, Zhao Q, Wang A. Excessive apoptosis and defective autophagy contribute to developmental testicular toxicity induced by fluoride. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:97-104. [PMID: 26840522 DOI: 10.1016/j.envpol.2016.01.059] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Fluoride, a ubiquitous environmental contaminant, is known to impair testicular functions and fertility; however the underlying mechanisms remain obscure. In this study, we used a rat model to mimic human exposure and sought to investigate the roles of apoptosis and autophagy in testicular toxicity of fluoride. Sprague-Dawley rats were developmentally exposed to 25, 50, or 100 mg/L sodium fluoride (NaF) via drinking water from pre-pregnancy to post-puberty, and then the testes of offspring were excised on postnatal day 56. Our results demonstrated that developmental NaF exposure induced an enhanced testicular apoptosis, as manifested by a series of hallmarks such as caspase-3 activation, chromatin condensation and DNA fragmentation. Further study revealed that fluoride exposure elicited significant elevations in the levels of cell surface death receptor Fas with a parallel increase in cytoplasmic cytochrome c, indicating the involvement of both extrinsic and intrinsic apoptotic pathways. Intriguingly, fluoride treatment also simultaneously increased the number of autophagosomes and the levels of autophagy marker LC3-II but not Beclin1. Unexpectedly, the expression of p62, a substrate that is degraded by autophagy, was also significantly elevated, suggesting that the accumulated autophagosomes resulted from impaired autophagy degradation rather than increased formation. Importantly, these were associated with marked histopathological lesions including spermatogenic failure and germ cell loss, along with severe ultrastructural abnormalities in testes. Taken together, our findings provide deeper insights into roles of excessive apoptosis and defective autophagy in the aggravation of testicular damage, which could contribute to a better understanding of fluoride-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Qiang Niu
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Hui Gao
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Rulin Ma
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Rongrong Lei
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Cheng Zhang
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Tao Xia
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Pei Li
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Chunyan Xu
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Chao Wang
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Jingwen Chen
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Lixing Dong
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Qian Zhao
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Aiguo Wang
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China.
| |
Collapse
|
21
|
Miltonprabu S, Thangapandiyan S. Epigallocatechin gallate potentially attenuates Fluoride induced oxidative stress mediated cardiotoxicity and dyslipidemia in rats. J Trace Elem Med Biol 2015; 29:321-35. [PMID: 25282272 DOI: 10.1016/j.jtemb.2014.08.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 01/14/2023]
Abstract
The present study was undertaken to evaluate the cardioprotective role of (-)-epigallocatechin-gallate (EGCG) against Fluoride (F) induced oxidative stress mediated cardiotoxicity in rats. The animals exposed to F as sodium Fluoride (NaF) (25mg/kg BW) for 4 weeks exhibited a significant increase in the levels of cardiac troponins T and I (cTnT & I), cardiac serum markers, lipid peroxidative markers and plasma total cholesterol (TC), triglycerides (TG), phospholipids (PL), free fatty acids (FFA), low density lipoprotein cholesterol, very low density lipoprotein cholesterol as well as cardiac lipids profile (TC, TG and FFA) with the significant decrease of high density lipoprotein cholesterol and cardiac phospholipids. F intoxication also decreased the levels of mitochondrial enzymes such as ICDH, SDH, MDH, α-KGDH and NADH in the cardiac tissue of rats. The mitochondrial Ca(2+) ion level was also significantly reduced along with the significant decrease in the levels of enzymatic and non enzymatic antioxidants. Furthermore, F treatment significantly increased the DNA fragmentation, up regulate cardiac pro-apoptotic markers, inflammatory markers and down-regulate the anti-apoptotic markers in the cardiac tissue. Pre administration of EGCG (40mg/kg/bw) in F intoxicated rats remarkably recovered all these altered parameters to near normalcy through its antioxidant nature. Thus, results of the present study clearly demonstrated that treatment with EGCG prior to F intoxication has a significant role in protecting F-induced cardiotoxicity and dyslipidemia in rats.
Collapse
Affiliation(s)
- S Miltonprabu
- Department of Zoology, Annamalai University, Annamalainagar 608002, Tamilnadu, India.
| | - S Thangapandiyan
- Department of Zoology, Annamalai University, Annamalainagar 608002, Tamilnadu, India
| |
Collapse
|
22
|
Atsuta I, Liu S, Miura Y, Akiyama K, Chen C, An Y, Shi S, Chen FM. Mesenchymal stem cells inhibit multiple myeloma cells via the Fas/Fas ligand pathway. Stem Cell Res Ther 2014; 4:111. [PMID: 24025590 PMCID: PMC3854680 DOI: 10.1186/scrt322] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/10/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022] Open
Abstract
Introduction Cell-based therapy represents a new frontier in the treatment of a wide variety of human diseases traditionally associated with morbidity outcomes, including those involving inflammation, autoimmunity, tissue damage, and cancer. However, the use of mesenchymal stem cells (MSCs) to treat multiple myeloma (MM) bone disease has raised concerns. Specifically, evidence has shown that infused MSCs might support tumor growth and metastasis. Methods In this study, we used a standard disseminated MM model in mice to identify the in vivo effects of intravenous MSC infusion. In addition, a series of in vitro co-culture assays were preformed to explore whether Fas/Fas ligand (Fas-L) is involved in the inhibitory effects of MSCs on MM cells. Results In the MM mouse model, treatment of MSCs with highly expressed Fas ligand (Fas-Lhigh MSCs) showed remarkable inhibitory effects on MM indenization in terms of extending the mouse survival rate and inhibiting tumor growth, bone resorption in the lumbus and collum femoris, and MM cell metastasis in the lungs and kidneys. In addition, reduced proliferation and increased apoptosis of MM cells was observed when co-cultured with Fas-Lhigh MSCs in vitro. Furthermore, mechanistically, the binding between Fas and Fas-L significantly induced apoptosis in MM cells, as evidenced through an increase in the expression of apoptosis marker and Fas in MM cells. In contrast, Fas-Lnull MSCs promote MM growth. Conclusions These data suggest that Fas/Fas-L-induced MM apoptosis plays a crucial role in the MSC-based inhibition of MM growth. Although whether MSCs inhibit or promote cancer growth remains controversial, the levels of Fas-L expression in MSCs determine, at least partially, the effects of MSCs on MM cell growth.
Collapse
|
23
|
Zhang H, Li X, Zhang Y, Luan X. Luteolin induces apoptosis by activating Fas signaling pathway at the receptor level in laryngeal squamous cell line Hep-2 cells. Eur Arch Otorhinolaryngol 2014; 271:1653-9. [DOI: 10.1007/s00405-014-2903-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/17/2014] [Indexed: 11/30/2022]
|
24
|
Yang HB, Song W, Chen LY, Li QF, Shi SL, Kong HY, Chen P. Differential expression and regulation of prohibitin during curcumin-induced apoptosis of immortalized human epidermal HaCaT cells. Int J Mol Med 2014; 33:507-14. [PMID: 24402549 PMCID: PMC3926502 DOI: 10.3892/ijmm.2014.1621] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/11/2013] [Indexed: 11/13/2022] Open
Abstract
Prohibitin (PHB), also known as inhibin, is important in cell proliferation, differentiation and apoptosis. This protein localizes to the inner membrane of mitochondria, where it acts as a chaperone protein, and is also found in the nucleus, where it negatively regulates transcription. The tumor-suppressive role of PHB in cell proliferation appears to be contradictory. In this study, we investigated the existence, localization and alterations in the expression of PHB in the whole cell and nuclear matrix and analyzed its co-localization with the expression products of related genes. The western blot analysis results revealed that PHB exists in the composition of nuclear matrix proteins and that the expression level of PHB is significantly increased in the whole cell and markedly decreased in the nuclear matrix after curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) treatment. The laser confocal scanning microscope results demonstrated the co-localization of PHB with p53, c-Myc, Bax, and Fas in HaCaT cells, and this co-localization region was transferred as a result of curcumin treatment. In addition, the results of the GST pull-down assay demonstrated the direct interaction of PHB with p53, c-Myc and Bax but not Fas in vitro. Results of the present study confirmed that the expression and distribution of PHB, which is a nuclear matrix protein, affect the apoptosis of HaCaT cells and its co-localization with specific gene products connected with cell apoptosis.
Collapse
Affiliation(s)
- Hai-Bo Yang
- School of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, P.R. China
| | - Wei Song
- School of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, P.R. China
| | - Lan-Ying Chen
- School of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, P.R. China
| | - Qi-Fu Li
- Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Song-Lin Shi
- Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Hai-Yan Kong
- Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Pu Chen
- School of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, P.R. China
| |
Collapse
|
25
|
Agalakova NI, Gusev GP. Molecular Mechanisms of Cytotoxicity and Apoptosis Induced by Inorganic Fluoride. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/403835] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fluoride (F) is ubiquitous natural substance and widespread industrial pollutant. Although low fluoride concentrations are beneficial for normal tooth and bone development, acute or chronic exposure to high fluoride doses results in adverse health effects. The molecular mechanisms underlying fluoride toxicity are different by nature. Fluoride is able to stimulate G-proteins with subsequent activation of downstream signal transduction pathways such as PKA-, PKC-, PI3-kinase-, Ca2+-, and MAPK-dependent systems. G-protein-independent routes include tyrosine phosphorylation and protein phosphatase inhibition. Along with other toxic effects, fluoride was shown to induce oxidative stress leading to excessive generation of ROS, lipid peroxidation, decrease in the GSH/GSSH ratio, and alterations in activities of antioxidant enzymes, as well as to inhibit glycolysis thus causing the depletion of cellular ATP and disturbances in cellular metabolism. Fluoride triggers the disruption of mitochondria outer membrane and release of cytochrome c into cytosol, what activates caspases-9 and -3 (intrinsic) apoptotic pathway. Extrinsic (death receptor) Fas/FasL-caspase-8 and -3 pathway was also described to be implicated in fluoride-induced apoptosis. Fluoride decreases the ratio of antiapoptotic/proapoptotic Bcl-2 family proteins and upregulates the expression of p53 protein. Finally, fluoride changes the expression profile of apoptosis-related genes and causes endoplasmic reticulum stress leading to inhibition of protein synthesis.
Collapse
Affiliation(s)
- Natalia Ivanovna Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 M. Thorez Avenue, Sankt-Petersburg 194223, Russia
| | - Gennadii Petrovich Gusev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 M. Thorez Avenue, Sankt-Petersburg 194223, Russia
| |
Collapse
|
26
|
Wang JH, Peng Y, Yang LL, Wang YB, Wu BG, Zhang Y, He P. Escherichia coli induces apoptosis in human monocytic U937 cells through the Fas/FasL signaling pathway. Mol Cell Biochem 2011; 358:95-104. [PMID: 21691772 DOI: 10.1007/s11010-011-0925-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/07/2011] [Indexed: 01/06/2023]
Abstract
Apoptosis is a genetically regulated cellular suicide mechanism that plays an essential role in development and in defense of multicellular organism. Escherichia coli (E. coli) can induce monocyte apoptosis; however, the mechanism is not clear. This study determines if Fas/FasL regulates E. coli-induced human monocyte line U937 cell apoptosis. We found that infection of U937 cells with E. coli induced rapid cell death in a dose- and time-dependent manner displaying the characteristic features of apoptosis. Moreover, opsonized E. coli induced U937 apoptosis with a higher apoptotic rate (53.29 ± 5.83%) than non-opsonized E. coli (19.37 ± 2.56%). Studying the underlying mechanisms we found that the E. coli-induced apoptosis was associated with a more prominent induction expression of Fas/FasL in a time- and dose-dependent manner. Furthermore, E. coli treatment resulted in a significant increase in the levels of DR5, TRAIL, and FADD, but exerted no statistically significant effects on the levels of DR4. The activity of caspase-8 enzyme increased in infection groups, positively correlated with apoptosis rate. Taken together, these results clearly indicate that receptor-mediated phagocytosis of E. coli induces apoptosis. Moreover, our findings suggest a possible regulatory role of Fas/FasL in the pathway of E. coli infection.
Collapse
Affiliation(s)
- Jia-He Wang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Fluoride-induced death of rat erythrocytes in vitro. Toxicol In Vitro 2011; 25:1609-18. [PMID: 21704696 DOI: 10.1016/j.tiv.2011.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 11/21/2022]
Abstract
Although fluoride (F) in low concentrations is essential for teeth and bone development, its excessive consumption causes numerous deleterious abnormalities in cellular metabolism and physiology often leading to cell death. The present study was performed to establish the toxic F effects inducing the death of rat erythrocytes in vitro. The cells were cultured in the presence of 0.5-16 mM NaF for 1, 5 and 24 h. The progression of erythrocyte death was monitored by cell viability (calcein assay), membrane integrity (hemolysis assay), alterations in the cell morphology (light microscopy) and size (flow cytometry forward scatter), plasma membrane scrambling (annexin V binding). To elucidate the molecular mechanisms underlying F-induced cell death, the cytosolic Ca2+ activity (Fluo-3 fluorescence) and ceramide formation (binding of FITC-labeled antibodies) were determined. Exposure of the rat erythrocytes to NaF considerably suppressed their viability and caused partial cell hemolysis within 24 h. The cells underwent dramatic morphological alterations resulted in appearance of shrunken echinocytes after 1h and swollen spherocytes within 24 h. The development of NaF-induced erythrocyte death was accompanied by progressive PS externalization at the outer cell membrane, ∼45% of the cells were annexin V-positive in response to 16 mM NaF within 24 h with a small cell population exhibiting necrotic features. The cell death was preceded by considerable accumulation of the free cytosolic Ca2+, with statistically significant increase in the number of Fluo-3-positive erythrocytes observed as early as during 1-h incubation with 0.5 mM NaF. NaF also induced moderate ceramide formation. Overall, exposure of the rat erythrocytes to NaF triggers rapid progression of their death in a dose- and time-dependent manner, with appearance of apoptotic cells after 1 and 5 h and transition to necrosis within 24 h. An increase in intracellular [Ca2+] appears to be crucial mechanism implicated in development of NaF-induced apoptosis in rat erythrocytes.
Collapse
|
28
|
Barbier O, Arreola-Mendoza L, Del Razo LM. Molecular mechanisms of fluoride toxicity. Chem Biol Interact 2010; 188:319-33. [DOI: 10.1016/j.cbi.2010.07.011] [Citation(s) in RCA: 638] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 01/27/2023]
|