1
|
Wang S, Mu C, Zhang F, Tang H, Ning W. Acupuncture or moxibustion adjuvant chemotherapy for advanced non-small cell lung cancer: Systematic review and network meta-analysis. Medicine (Baltimore) 2023; 102:e35000. [PMID: 37861487 PMCID: PMC10589565 DOI: 10.1097/md.0000000000035000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/08/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND To compare the advantages and disadvantages of different acupuncture and moxibustion methods by network meta-analysis, in order to find out the best acupuncture and moxibustion adjuvant chemotherapy scheme of non-small cell lung cancer (NSCLC). METHODS Randomized controlled trials of acupuncture and moxibustion adjuvant chemotherapy in the treatment of NSCLC were searched in PubMed, Cochrane Library, Web of science, EMbase, China National Knowledge Infrastructure, Wanfang, VIP database and SinoMed. The retrieval time was up to December 03, 2022. ROB2 was used to evaluate publication bias, and Stata16 was used for network meta-analysis. RESULTS A total of 14 studies involving 921 patients were included. The results of network Meta-analysis showed that the effect of acupuncture combined with chemotherapy was better than that of chemotherapy (RR = 1.28, 95%CI (1.04,1.58), P < .0001). The effect of acupuncture combined with chemotherapy was better than that of chemotherapy in improving KPS score (MD = 9.01, 95%CI (3.35,14.67), P < .0001). The safety of acupuncture combined with chemotherapy (RR = 0.35, 95%CI (0.15,0.83), P < .0001) was better than that of chemotherapy. CONCLUSION Acupuncture combined with chemotherapy has the best comprehensive effect.
Collapse
Affiliation(s)
- Shiheng Wang
- Youjiang Medical University for Nationalities, Youjiang, China
- China Institute for History of Medicine and Medical Literature, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chaochao Mu
- Traditional Chinese medicine department, Tianjin Nankai District Bainian Renyitang Traditional Chinese Medicine Clinic, Tianjin, China
| | - Fengxia Zhang
- China Institute for History of Medicine and Medical Literature, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanqing Tang
- Youjiang Medical University for Nationalities, Youjiang, China
| | - Wanling Ning
- Youjiang Medical University for Nationalities, Youjiang, China
- China Institute for History of Medicine and Medical Literature, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese medicine department, Tianjin Nankai District Bainian Renyitang Traditional Chinese Medicine Clinic, Tianjin, China
- Department of Cardiology, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Mentana A, Orsière T, Malard V, Lamartiniere Y, Grisolia C, Tassistro V, Iaria O, Guardamagna I, Lonati L, Baiocco G. Gaining insight into genotoxicity with the comet assay in inhomogenoeous exposure scenarios: The effects of tritiated steel and cement particles on human lung cells in an inhalation perspective. Toxicol In Vitro 2023; 92:105656. [PMID: 37532108 DOI: 10.1016/j.tiv.2023.105656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/28/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
The comet assay was recently applied for the first time to test the genotoxicity of micrometric stainless steel and cement particles, representative of those produced in the dismantling of nuclear power plants. A large dataset was obtained from in vitro exposure of BEAS-2B lung cells to different concentrations of hydrogenated (non-radiative control) and tritiated particles, to assess the impact of accidental inhalation. Starting from the distributions of the number of nuclei scored at different extent of DNA damage (% tail DNA values), we propose a new comet data treatment designed to consider the inhomogeneity of the action of such particles. Indeed, due to particle behavior in biological media and concentration, a large fraction of cells remains undamaged, and standard averaging of genotoxicity indicators leads to a misinterpretation of experimental results. The analysis we propose reaches the following goals: genotoxicity in human lung cells is assessed for stainless steel and cement microparticles; the role of radiative damage due to tritium is disentangled from particulate stress; the fraction of damaged cells and their average level of DNA damage are assessed separately, which is essential for carcinogenesis implications and sets the basis for a better-informed risk management for human exposure to radioactive particles.
Collapse
Affiliation(s)
- Alice Mentana
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Thierry Orsière
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, F-13005 Marseille, France
| | - Véronique Malard
- Aix Marseille Univ, CEA, CNRS, BIAM, IPM, F-13108 Saint Paul-Lez-Durance, France
| | | | | | - Virginie Tassistro
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, F-13005 Marseille, France
| | - Ombretta Iaria
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Isabella Guardamagna
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Leonardo Lonati
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Giorgio Baiocco
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy.
| |
Collapse
|
3
|
Cyto-Genotoxicity of Tritiated Stainless Steel and Cement Particles in Human Lung Cell Models. Int J Mol Sci 2022; 23:ijms231810398. [PMID: 36142309 PMCID: PMC9499181 DOI: 10.3390/ijms231810398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
During the decommissioning of nuclear facilities, the tritiated materials must be removed. These operations generate tritiated steel and cement particles that could be accidentally inhaled by workers. Thus, the consequences of human exposure by inhalation to these particles in terms of radiotoxicology were investigated. Their cyto-genotoxicity was studied using two human lung models: the BEAS-2B cell line and the 3D MucilAirTM model. Exposures of the BEAS-2B cell line to particles (2 and 24 h) did not induce significant cytotoxicity. Nevertheless, DNA damage occurred upon exposure to tritiated and non-tritiated particles, as observed by alkaline comet assay. Tritiated particles only induced cytostasis; however, both induced a significant increase in centromere negative micronuclei. Particles were also assessed for their effects on epithelial integrity and metabolic activity using the MucilAirTM model in a 14-day kinetic mode. No effect was noted. Tritium transfer through the epithelium was observed without intracellular accumulation. Overall, tritiated and non-tritiated stainless steel and cement particles were associated with moderate toxicity. However, these particles induce DNA lesions and chromosome breakage to which tritium seems to contribute. These data should help in a better management of the risk related to the inhalation of these types of particles.
Collapse
|
4
|
Boyles MSP, Brown D, Knox J, Horobin M, Miller MR, Johnston HJ, Stone V. Assessing the bioactivity of crystalline silica in heated high-temperature insulation wools. Inhal Toxicol 2018; 30:255-272. [PMID: 30328741 PMCID: PMC6334780 DOI: 10.1080/08958378.2018.1513610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
High-Temperature Insulation Wools (HTIW), such as alumino silicate wools (Refractory Ceramic Fibers) and Alkaline Earth Silicate wools, are used in high-temperature industries for thermal insulation. These materials have an amorphous glass-like structure. In some applications, exposure to high temperatures causes devitrification resulting in the formation of crystalline species including crystalline silica. The formation of this potentially carcinogenic material raises safety concerns regarding after-use handling and disposal. This study aims to determine whether cristobalite formed in HTIW is bioactive in vitro. Mouse macrophage (J774A.1) and human alveolar epithelial (A549) cell lines were exposed to pristine HTIW of different compositions, and corresponding heat-treated samples. Cell death, cytokine release, and reactive oxygen species (ROS) formation were assessed in both cell types. Cell responses to aluminum lactate-coated fibers were assessed to determine if responses were caused by crystalline silica. DQ12 α-quartz was used as positive control, and TiO2 as negative control. HTIW did not induce cell death or intracellular ROS, and their ability to induce pro-inflammatory mediator release was low. In contrast, DQ12 induced cytotoxicity, a strong pro-inflammatory response and ROS generation. The modest pro-inflammatory mediator responses of HTIW did not always coincide with the formation of cristobalite in heated fibers; therefore, we cannot confirm that devitrification of HTIW results in bioactive cristobalite in vitro. In conclusion, the biological responses to HTIW observed were not attributable to a single physicochemical characteristic; instead, a combination of physicochemical characteristics (cristobalite content, fiber chemistry, dimensions and material solubility) appear to contribute to induction of cellular responses.
Collapse
Affiliation(s)
- Matthew S P Boyles
- a Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University , Edinburgh , UK
| | - David Brown
- a Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University , Edinburgh , UK
| | - Jilly Knox
- b Morgan Advanced Materials, Thermal Ceramics , Bromborough, UK
| | - Michael Horobin
- b Morgan Advanced Materials, Thermal Ceramics , Bromborough, UK
| | - Mark R Miller
- c Centre for Cardiovascular Science , University of Edinburgh , Edinburgh , UK
| | - Helinor J Johnston
- a Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University , Edinburgh , UK
| | - Vicki Stone
- a Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University , Edinburgh , UK
| |
Collapse
|
5
|
Longhin E, Holme JA, Gualtieri M, Camatini M, Øvrevik J. Milan winter fine particulate matter (wPM2.5) induces IL-6 and IL-8 synthesis in human bronchial BEAS-2B cells, but specifically impairs IL-8 release. Toxicol In Vitro 2018; 52:365-373. [PMID: 30048734 DOI: 10.1016/j.tiv.2018.07.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/11/2018] [Accepted: 07/20/2018] [Indexed: 01/19/2023]
Abstract
Inflammatory responses have an important role in the onset of many lung diseases associated with urban airborne particulate matter (PM). Here we investigate effects and mechanisms linked to PM-induced expression and release of two main interleukins, IL-6 and IL-8, in human bronchial epithelial BEAS-2B cells. The cells were exposed to well characterized Milan city PM, winter PM2.5 (wPM2.5) and summer PM10 (sPM10), representing combustion and non-combustion sources, respectively. Both wPM2.5 and sPM10 increased mRNA-synthesis and intracellular protein levels of IL-6 and IL-8. Exposure to sPM10 also resulted in continuous and time-dependent increases in release of IL-6 and IL-8 for up to 48 h. By comparison, in wPM2.5-exposed cells IL-8 release was not significantly augmented, while extracellular IL-6 levels were increased but remained constant beyond 24 h exposure. Moreover, wPM2.5 also reduced the lipopolysaccharide (LPS)-increased release of IL-8. No cytotoxicity or significant adsorption of cytokines to wPM2.5 were observed. Immunofluorescence microscopy revealed an accumulation of IL-8 in intracellular vesicles and alterations in actin filament organization in wPM2.5 exposed cells, suggesting that the trafficking of vesicles carrying interleukins to the plasma membrane might be inhibited. Thus, wPM2.5 appeared to impair cytokine release in BEAS-2B cells, in particular of IL-8, possibly by damaging cytoskeletal function involved in protein secretion.
Collapse
Affiliation(s)
- Eleonora Longhin
- Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, Milan 20126, Italy.
| | - Jørn A Holme
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo N-0403, Norway
| | - Maurizio Gualtieri
- Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, Milan 20126, Italy
| | - Marina Camatini
- Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, Milan 20126, Italy
| | - Johan Øvrevik
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo N-0403, Norway
| |
Collapse
|
6
|
Enhanced levels of interleukin-8 are associated with hepatitis B virus infection and resistance to interferon-alpha therapy. Int J Mol Sci 2014; 15:21286-98. [PMID: 25407531 PMCID: PMC4264225 DOI: 10.3390/ijms151121286] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 12/24/2022] Open
Abstract
The objective of this study was to analyze the expression levels of IL-8 in serum and liver tissues from patients with chronic hepatitis B (CHB) infection and to investigate whether IL-8 may antagonize interferon-alpha (IFN-α) antiviral activity against HBV. IL-8 expression in serum was determined by enzyme linked immunosorbent assay (ELISA), and fluorescence-based quantitative real-time PCR (RT-qPCR) was used to measure IL-8 mRNA in peripheral blood mononuclear cells (PBMCs) in patients with CHB. IL-8 protein expression was detected in liver biopsy tissues by immunohistochemistry. In addition, the differences in serum IL-8 and PBMCs mRNA levels were also observed in patients with different anti-viral responses to IFN-α. Compared to normal controls, serum IL-8 protein and mRNA levels were increased in CHB patients, IL-8 levels were positively correlated with the severity of liver inflammation/fibrosis. Moreover, serum IL-8 protein and mRNA levels were positively correlated with serum alanine aminotransferase (ALT) level and negatively correlated with serum prealbumin (PA) level. IL-8 expression was mainly located in portal area of liver tissues and was increased with the severity of liver inflammation and fibrosis stage. The expression serum and mRNA levels of IL-8 in the CHB patients with a complete response to IFN-α are significantly lower than that of the patients with non-response to IFN-α treatment. It is suggested that IL-8 might play important roles in the pathogenesis of CHB. Moreover, interferon resistance may be related to the up-regulation of IL-8 expression in the patients did not respond to IFN-α treatment.
Collapse
|
7
|
Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clin Exp Metastasis 2010; 28:13-25. [PMID: 20953899 PMCID: PMC2998640 DOI: 10.1007/s10585-010-9354-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 09/25/2010] [Indexed: 11/21/2022]
Abstract
The incidence of brain metastasis is increasing, however, little is known about molecular mechanism responsible for lung cancer-derived brain metastasis and their development in the brain. In the present study, brain pathology was examined in an experimental model system of brain metastasis as well as in human brain with lung cancer metastasis. In an experimental model, after 3–6 weeks of intracardiac inoculation of human lung cancer-derived (HARA-B) cells in nude mice, wide range of brain metastases were observed. The brain sections showed significant increase in glial fibrillary acidic protein (GFAP)-positive astrocytes around metastatic lesions. To elucidate the role of astrocytes in lung cancer proliferation, the interaction between primary cultured mouse astrocytes and HARA-B cells was analyzed in vitro. Co-cultures and insert-cultures demonstrated that astrocytes were activated by tumor cell-oriented factors; macrophage migration inhibitory factor (MIF), interleukin-8 (IL-8) and plasminogen activator inhibitor-1 (PAI-1). Activated astrocytes produced interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1 β (IL-1β), which in turn promoted tumor cell proliferation. Semi-quantitative immunocytochemistry showed that increased expression of receptors for IL-6 and its subunits gp130 on HARA-B cells. Receptors for TNF-α and IL-1β were also detected on HARA-B cells but down-regulated after co-culture with astrocytes. Insert-culture with astrocytes also stimulated the proliferation of other lung cancer-derived cell lines (PC-9, QG56, and EBC-1). These results suggest that tumor cells and astrocytes stimulate each other and these mutual relationships may be important to understand how lung cancer cells metastasize and develop in the brain.
Collapse
|