1
|
Ran X, Yan X, Ma G, Liang Z, Zhuang H, Tang X, Chen X, Cao X, Liu X, Huang Y, Wang Y, Zhang X, Luo P, Shen L. Integration of proteomics and metabolomics analysis investigate mechanism of As-induced immune injury in rat spleen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116913. [PMID: 39208582 DOI: 10.1016/j.ecoenv.2024.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Arsenic (As) is a widespread metalloid and human carcinogen found in the natural environment, and multiple toxic effects have been shown to be associated with As exposure. As can be accumulated in the spleen, the largest peripheral lymphatic organ, and long-term exposure to As can lead to splenic injury. In this study, a Sprague-Dawley (SD) rat model of As-poisoned was established, aiming to explore the molecular mechanism of As-induced immune injury through the combined analysis of proteomics and metabolomics of rats' spleen. After feeding the rats with As diet (50 mg/kg) for 90 days, the spleen tissue of the rats in the As-poisoned group was damaged, the level of As was significantly higher than that of the control group (P < 0.001), and the level of inflammatory cytokine interleukin-6 (IL-6) was decreased (P < 0.01). Proteomics and metabolomics results showed that a total of 134 differentially expressed proteins (DEPs) (P < 0.05 and fold change > 1.2) and 182 differentially expressed metabolites (DEMs) (VIP >1 and P < 0.05) were identified in the spleens of the As poisoned group compared to the control group (As/Ctrl). The proteomic results highlight the role of hypoxia-inducible factors (HIF), natural killer cell mediated cytotoxicity, and ribosomes. The major pathways of metabolic disruption included arachidonic acid (AA) metabolism, glycerophospholipid metabolism and folate single-carbon pool. The integrated analysis of these two omics suggested that Hmox1, Stat3, arachidonic acid, phosphatidylcholine and leukotriene B4 may play key roles in the mechanism of immune injury to the spleen by As exposure. The results indicate that As exposure can cause spleen damage in rats. Through proteomic and metabolomic analysis, the key proteins and metabolites and their associated mechanisms were obtained, which provided a basis for further understanding of the molecular mechanism of spleen immune damage caused by As exposure.
Collapse
Affiliation(s)
- Xiaoqian Ran
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xi Yan
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Guanwei Ma
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaolu Chen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yuhan Huang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yi Wang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xinglai Zhang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Peng Luo
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China; Guizhou Ecological Food Innovation Engineering Research Center, Guiyang 561113, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
| | - Liming Shen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
2
|
Ding LY, Tang GY, Chen MZ, Wang FP, Wang JF, Ye HJ, Li QS. Bioaccessibility and human health risks of arsenic from geological origin in lateritic red soil on construction land. CHEMOSPHERE 2024; 358:142192. [PMID: 38701862 DOI: 10.1016/j.chemosphere.2024.142192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/06/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Current human health risk assessments of soil arsenic (As) contamination rarely consider bioaccessibility (IVBA), which may overestimate the health risks of soil As. The IVBA of As (As-IVBA) may differ among various soil types. This investigation of As-IVBA focused As from geological origin in a typical subtropical soil, lateritic red soil, and its risk control values. The study used the SBRC gastric phase in vitro digestion method and As speciation sequential extraction based upon phosphorus speciation extraction method. Two construction land sites (CH and HD sites) in the Pearl River Delta region were surveyed. The results revealed a high content of residual As (including scorodite, mansfieldite, orpiment, realgar, and aluminum arsenite) in the lateritic red soils at both sites (CH: 84.9%, HD: 91.7%). The content of adsorbed aluminum arsenate (CH: 3.24%, HD: 0.228%), adsorbed ferrum arsenate (CH: 8.55%, HD: 5.01%), and calcium arsenate (CH: 7.33%, HD: 3.01%) were found to be low. The bioaccessible As content was significantly positively correlated with the As content in adsorbed aluminum arsenate, adsorbed ferrum arsenate, and calcium arsenate. A small portion of these sequential extractable As speciation could be absorbed by the human body (CH: 14.9%, HD: 3.16%), posing a certain health risk. Adsorbed aluminum arsenate had the highest IVBA, followed by calcium arsenate, and adsorbed ferrum arsenate had the lowest IVBA. The aforementioned speciation characteristics of As from geological origin in lateritic red soil contributed to its lower IVBA compared to other soils. The oxidation state of As did not significantly affect As-IVBA. Based on As-IVBA, the carcinogenic and non-carcinogenic risks of soil As in the CH and HD sites decreased greatly in human health risk assessment. The results suggest that As-IVBA in lateritic red soil should be considered when assessing human health risks on construction land.
Collapse
Affiliation(s)
- Lu-Yao Ding
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, China.
| | - Guang-Yong Tang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, China.
| | - Ming-Zhu Chen
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, China.
| | - Fo-Peng Wang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, China.
| | - Jun-Feng Wang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, China.
| | - Han-Jie Ye
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, China.
| | - Qu-Sheng Li
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, China.
| |
Collapse
|
3
|
Ji S, Qu Y, Sun Q, Zhao F, Qiu Y, Li Z, Li Y, Song H, Zhang M, Zhang W, Fu H, Cai J, Zhang Z, Zhu Y, Cao Z, Lv Y, Shi X. Mediating Role of Liver Dysfunction in the Association between Arsenic Exposure and Diabetes in Chinese Adults: A Nationwide Cross-Sectional Study of China National Human Biomonitoring (CNHBM) 2017-2018. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2693-2703. [PMID: 38285630 DOI: 10.1021/acs.est.3c08718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Inconsistent results have been reported regarding the association between low-to-moderate arsenic (As) exposure and diabetes. The effect of liver dysfunction on As-induced diabetes remains unclear. The cross-sectional study included 10,574 adults from 2017-2018 China National Human Biomonitoring. Urinary total As (TAs) levels were analyzed as markers of As exposure. Generalized linear mixed models and restricted cubic splines models were used to examine the relationships among TAs levels, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) concentrations, and diabetes prevalence. Mediating analysis was performed to assess whether liver dysfunction mediated the association between TAs and diabetes. Overall, the OR (95% CI) of diabetes in participants in the second, third, and fourth quartiles of TAs were 1.08 (0.88, 1.33), 1.17 (0.94, 1.45), and 1.52 (1.22, 1.90), respectively, in the fully adjusted models compared with those in the lowest quartile. Serum ALT was positively associated with TAs and diabetes. Additionally, mediation analyses showed that ALT mediated 4.32% of the association between TAs and diabetes in the overall population and 8.86% in the population without alcohol consumption in the past year. This study suggested that alleviating the hepatotoxicity of As could have implications for both diabetes and liver disease.
Collapse
Affiliation(s)
- Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qi Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yidan Qiu
- Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Zheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Haocan Song
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Miao Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wenli Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hui Fu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jiayi Cai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zhuona Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zhaojin Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| |
Collapse
|
4
|
Zhang J, Hu T, Wang Y, Zhang X, Zhang H, Lin J, Tang X, Liu X, Chen M, Khan NU, Shen L, Luo P. Investigating the Neurotoxic Impacts of Arsenic and the Neuroprotective Effects of Dictyophora Polysaccharide Using SWATH-MS-Based Proteomics. Molecules 2022; 27:1495. [PMID: 35268596 PMCID: PMC8911851 DOI: 10.3390/molecules27051495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Arsenic (As) is one of the most important toxic elements in the natural environment. Currently, although the assessment of the potential health risks of chronic arsenic poisoning has received great attention, the research on the effects of arsenic on the brain is still limited. It has been reported that dictyophora polysaccharide (DIP), a common bioactive natural compound found in dietary plants, could reduce arsenic toxicity. Following behavioral research, comparative proteomics was performed to explore the molecular mechanism of arsenic toxicity to the hippocampi of SD (Sprague Dawley) rats and the protective effect of DIP. The results showed that exposure to arsenic impaired the spatial learning and memory ability of SD rats, while DIP treatment improved both the arsenic-exposed rats. Proteomic analysis showed that arsenic exposure dysregulated the expression of energy metabolism, apoptosis, synapse, neuron, and mitochondria related proteins in the hippocampi of arsenic-exposed rats. However, DIP treatment reversed or restored the expression levels of these proteins, thereby improving the spatial learning and memory ability of arsenic-exposed rats. This study is the first to use high-throughput proteomics to reveal the mechanism of arsenic neurotoxicity in rats as well as the protective mechanism of DIP against arsenic neurotoxicity.
Collapse
Affiliation(s)
- Jun Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; (J.Z.); (T.H.); (Y.W.); (X.Z.)
| | - Ting Hu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; (J.Z.); (T.H.); (Y.W.); (X.Z.)
| | - Yi Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; (J.Z.); (T.H.); (Y.W.); (X.Z.)
| | - Xinglai Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; (J.Z.); (T.H.); (Y.W.); (X.Z.)
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China; (H.Z.); (J.L.); (X.T.); (X.L.); (N.U.K.)
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China; (H.Z.); (J.L.); (X.T.); (X.L.); (N.U.K.)
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China; (H.Z.); (J.L.); (X.T.); (X.L.); (N.U.K.)
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China; (H.Z.); (J.L.); (X.T.); (X.L.); (N.U.K.)
| | - Margy Chen
- Department of Psychology, Emory University, Atlanta, GA 30322, USA;
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China; (H.Z.); (J.L.); (X.T.); (X.L.); (N.U.K.)
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China; (H.Z.); (J.L.); (X.T.); (X.L.); (N.U.K.)
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; (J.Z.); (T.H.); (Y.W.); (X.Z.)
| |
Collapse
|
5
|
Liang C, Han Y, Ma L, Wu X, Huang K, Yan S, Li Z, Xia X, Pan W, Sheng J, Wang Q, Tong S, Cao Y, Tao F. Low levels of arsenic exposure during pregnancy and maternal and neonatal thyroid hormone parameters: The determinants for these associations. ENVIRONMENT INTERNATIONAL 2020; 145:106114. [PMID: 33035893 DOI: 10.1016/j.envint.2020.106114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The potential maternal and neonatal thyrotoxicity associated with exposure to arsenic during pregnancy is very limited and unclear. OBJECTIVES This study aimed to examine the associations between arsenic exposure levels in maternal and cord serum and maternal and neonatal thyroid hormone parameters in a prospective birth cohort study. METHODS The study including 2089 mother-neonate pairs was based upon Ma'an Shan birth cohort study in China. The exposure variables including maternal serum arsenic levels in the first, second and third trimester and average arsenic exposure level during pregnancy and cord serum arsenic level. Maternal serum TSH and FT4 levels in the first, second and third trimester and cord serum TSH and FT4 levels were determined using the electrochemiluminescence immunoassay with Cobas Elecsys 411. Linear mixed models were used to examine associations between arsenic exposure variables during pregnancy and maternal thyroid hormone parameters, and multiple linear regression analyses were used to examine associations between arsenic exposure during pregnancy and neonatal thyroid hormone parameters. Bayesian kernal machine regression (BKMR) analyses based on a kernel function were also used to examine the effects of exposure to metal mixtures (arsenic, mercury, cadmium and selenium). RESULTS The geometric means of arsenic exposure levels across 3 trimesters were 1.74 μg/L, 1.81 μg/L and 1.99 μg/L, respectively, and 1.90 μg/L in cord serum; the geometric means of maternal FT4 levels across 3 trimesters were 16.91 pmol/L, 11.91 pmol/L and 13.16 pmol/L, respectively, and 16.10 pmol/L in cord serum; the geometric means of maternal TSH levels across 3 trimesters were 1.27 μIU/mL, 2.32 μIU/mL and 2.08 μIU/mL, respectively, and 8.47 μIU/mL in cord serum. Maternal serum arsenic levels in the first, seond, third trimester and average arsenic exposure level during pregnancy were all not associated with maternal thyroid hormone parameters after adjustment for all the covariates, the adjusted β (95% CI) were -0.002 (-0.10 to 0.09), 0.05 (-0.05 to 0.16), -0.09 (-0.17 to 0.003) and -0.05 (-0.22 to 0.11) for maternal FT4, respectively; and -0.005 (-0.04 to 0.03), -0.003 (-0.04 to 0.03), -0.004 (-0.03 to 0.02) and -0.01 (-0.06 to 0.04) for maternal lnTSH, respectively. Maternal serum arsenic levels in the first, second trimester and average arsenic exposure level during pregnancy were all inversely associated with neonatal FT4 level after adjustment for all the confounders, the adjusted β (95% CI) were -0.19 (-0.31 to -0.07), -0.14 (-0.26 to -0.01), -0.22 (-0.42 to -0.02), respectively; and cord serum arsenic level was positively related with neonatal TSH level, the adjusted β (95% CI) were 0.04 (0.001 to 0.08). The adverse joint toxic effect of the four metals in maternal serum in the first trimester and in cord serum on neonatal thyroid hormone parameters were also found. CONCLUSIONS In this study, exposure to low levels of arsenic during pregnancy could directly affect neonatal thyroid hormone parameters without being mediated by maternal effect of exposure, and maternal serum arsenic levels in the first, second trimester and average arsenic exposure level during pregnancy and cord serum arsenic level may be risk factors affecting neonatal thyroid hormones. These findings indicate that neonates are more sensitive to the thyrotoxicity of arsenic exposure even at low levels. In addition, the adverse joint toxic effect of metal mixtures is also worthy of attention.
Collapse
Affiliation(s)
- Chunmei Liang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yan Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Liya Ma
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan 243011, China
| | - Zhijuan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xun Xia
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Weijun Pan
- Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan 243011, China
| | - Jie Sheng
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Qunan Wang
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shilu Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China; School of Public Health and Social Work and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| | - Yunxia Cao
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
6
|
Li J, Guo Y, Duan X, Li B. Tissue- and Region-Specific Accumulation of Arsenic Species, Especially in the Brain of Mice, After Long-term Arsenite Exposure in Drinking Water. Biol Trace Elem Res 2020; 198:168-176. [PMID: 31925743 DOI: 10.1007/s12011-020-02033-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023]
Abstract
Arsenic is identified as a known carcinogen and ubiquitously exists in nature. It appears that accumulation of inorganic arsenic (iAs) and its methylated metabolites in various tissues is closely correlated with the long-term toxicity and carcinogenicity of this metalloid. In this study, various arsenic species in murine tissues, especially in the cerebral cortex, cerebellum, and hippocampus, were determined after long-term exposure to 25, 50, 100, and 200 mg/L sodium arsenite in drinking water for 1 and 12 months. Our data showed that the amount of total arsenic (TAs) increased in an obvious dose-dependent manner in various tissues, and TAs levels were in the order of urinary bladder > brain > lung > liver > kidney > spleen. Furthermore, iAsIII and DMA could be observed in all tissues and brain regions with DMA being the predominant metabolite. The bladder, brain, and lung orderly contained the higher levels of DMA, while the liver, kidney, and spleen accumulated the higher proportion of iAsIII. MMA was preferentially accumulated in the lung and bladder of mice regardless of arsenic exposure doses or duration. What's more, amazingly higher levels of MMA were observed in the hippocampus, which was distinguished from the cerebral cortex and cerebellum. Together with these results, our study clearly demonstrates that the accumulation of iAs and its methylated metabolites is tissue-specific and even not homogeneous among different brain regions in mice by long-term exposure to arsenite. Our study thus provides crucial information for recognizing arsenical neurotoxicity, and reducing the uncertainty in the risk assessment for this toxic metalloid.
Collapse
Affiliation(s)
- Jinlong Li
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, No.77 Pu he Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China
- Department of Occupational and Environmental Health, Key Laboratory of Occupational Health and Safety for Coal Industry in Hebei Province, School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Yuanyuan Guo
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, No.77 Pu he Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, China
| | - Bing Li
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, No.77 Pu he Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China.
| |
Collapse
|
7
|
Zhang RY, Tu JB, Ran RT, Zhang WX, Tan Q, Tang P, Kuang T, Cheng SQ, Chen CZ, Jiang XJ, Chen C, Han TL, Zhang T, Cao XQ, Peng B, Zhang H, Xia YY. Using the Metabolome to Understand the Mechanisms Linking Chronic Arsenic Exposure to Microglia Activation, and Learning and Memory Impairment. Neurotox Res 2020; 39:720-739. [PMID: 32955723 DOI: 10.1007/s12640-020-00286-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022]
Abstract
The activation of microglia is a hallmark of neuroinflammation and contributes to various neurodegenerative diseases. Chronic inorganic arsenic exposure is associated with impaired cognitive ability and increased risk of neurodegeneration. The present study aimed to investigate whether chronic inorganic arsenic-induced learning and memory impairment was associated with microglial activation, and how organic (DMAV 600 μM, MMAV 0.1 μM) and inorganic arsenic (NaAsO2 0.6 μM) affect the microglia. Male C57BL/6J mice were divided into two groups: a control group and a group exposed to arsenic in their drinking water (50 mg/L NaAsO2 for 24 weeks). The Morris water maze was performed to analyze neuro-behavior and transmission electron microscopy was used to assess alterations in cellular ultra-structures. Hematoxylin-eosin and Nissl staining were used to observe pathological changes in the cerebral cortex and hippocampus. Flow cytometry was used to reveal the polarization of the arsenic-treated microglia phenotype and GC-MS was used to assess metabolomic differences in the in vitro microglia BV-2 cell line model derived from mice. The results showed learning and memory impairments and activation of microglia in the cerebral cortex and dentate gyrus (DG) zone of the hippocampus, in mice chronically exposed to arsenic. Flow cytometry demonstrated that BV-2 cells were activated with the treatment of different arsenic species. The GC-MS data showed three important metabolites to be at different levels according to the different arsenic species used to treat the microglia. These included tyrosine, arachidonic acid, and citric acid. Metabolite pathway analysis showed that a metabolic pathways associated with tyrosine metabolism, the dopaminergic synapse, Parkinson's disease, and the citrate cycle were differentially affected when comparing exposure to organic arsenic and inorganic arsenic. Organic arsenic MMAV was predominantly pro-inflammatory, and inorganic arsenic exposure contributed to energy metabolism disruptions in BV-2 microglia. Our findings provide novel insight into understanding the neurotoxicity mechanisms of chronic arsenic exposure and reveal the changes of the metabolome in response to exposure to different arsenic species in the microglia.
Collapse
Affiliation(s)
- Rui-Yuan Zhang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jie-Bai Tu
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Rui-Tu Ran
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wen-Xuan Zhang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qiang Tan
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ping Tang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Tao Kuang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shu-Qun Cheng
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Cheng-Zhi Chen
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xue-Jun Jiang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ting-Li Han
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ting Zhang
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xian-Qing Cao
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Bin Peng
- Department of Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Hua Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yin-Yin Xia
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
8
|
Liang C, Wu X, Huang K, Yan S, Li Z, Xia X, Pan W, Sheng J, Tao R, Tao Y, Xiang H, Hao J, Wang Q, Tong S, Tao F. Domain- and sex-specific effects of prenatal exposure to low levels of arsenic on children's development at 6 months of age: Findings from the Ma'anshan birth cohort study in China. ENVIRONMENT INTERNATIONAL 2020; 135:105112. [PMID: 31881426 DOI: 10.1016/j.envint.2019.105112] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
The relationship between prenatal arsenic exposure at low levels and poor development in children, especially in regard to neurodevelopment, has aroused several concerns, but the conclusions have been inconsistent. It still remains unclear whether such adverse effect is associated with a specific profile of the developing brain in early life. To investigate the association between arsenic exposure in utero and children's development and behaviour, we performed a large prospective birth cohort study including 2315 mother-infant pairs in Anhui Province, China. The Ages and Stages Questionnaire of China (ASQ-C) was used to assess the status of children's development and behaviour at 6 months postpartum, and the levels of arsenic were determined in umbilical cord serum samples. Odds ratios for suspected developmental delay (SDD) in each domain of the ASQ-C clusters were estimated using logistic regression models. Compared with low arsenic levels group, medium and high arsenic levels were significantly associated with the increased risks of SDD in the personal-social domain among infants aged 6 months after adjustment for all potential confounders (OR = 1.33, 95% CI (1.01, 1.75) and OR = 1.47, 95% CI (1.08, 2.00), respectively). Sex stratification analysis demonstrated that this association was stronger in females. The sensitivity analyses also showed that high cord serum arsenic levels were associated with a 1.80-fold (95% CIs (1.12, 2.90)) higher risk of a more severe developmental delay in the personal-social domain among six-month-old females. Our results suggest that low-level arsenic exposure in utero could have an adverse domain-specific effect on children's development at 6 months of age, particularly among females. Further studies are warranted to support the findings and explore the mechanism of these domain-and sex-specific associations.
Collapse
Affiliation(s)
- Chunmei Liang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Health (MCH) Center, Ma'anshan, China
| | - Zhijuan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Xun Xia
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Weijun Pan
- Ma'anshan Maternal and Child Health (MCH) Center, Ma'anshan, China
| | - Jie Sheng
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Ruiwen Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Yiran Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Haiyun Xiang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Jiahu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Qunan Wang
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Shilu Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China; School of Public Health and Social Work and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China.
| |
Collapse
|
9
|
Souza ACF, Bastos DSS, Santos FC, Sertorio MN, Ervilha LOG, Gonçalves RV, de Oliveira LL, Machado-Neves M. Arsenic aggravates oxidative stress causing hepatic alterations and inflammation in diabetic rats. Life Sci 2018; 209:472-480. [PMID: 30144451 DOI: 10.1016/j.lfs.2018.08.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/08/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023]
Abstract
AIMS Studies have shown that exposure to either environmental toxicants or hyperglycemia causes hepatic injuries. However, it is unclear the extent to which their combined exposure may influence liver functions. Therefore, we aimed to evaluate morphological and functional hepatic parameters in diabetic rats exposed to arsenic. METHODS Diabetes was induced in male rats by intraperitoneal streptozotocin injection. While healthy and diabetic animals received saline solution (negative control and diabetes control, respectively), other animals received 10 mg/L sodium arsenate (arsenic control and diabetes + arsenic groups, respectively) for 40 days in drinking water. Liver tissue was subjected to antioxidant enzymes analysis, cytokine assay, arsenic determination, and histopathological evaluation. Functional markers of hepatic damage were analyzed using serum samples. KEY FINDINGS Arsenate exposure reduced the antioxidant enzymes activity in healthy rats, and it worsened the reduction of GST in diabetic animals. Consequently, arsenate-exposed animals showed increased malondialdehyde and carbonyl protein levels, being this increase worsened in diabetes + arsenic animals. Arsenate-exposed groups also showed hepatic inflammatory process with high number of mast cells and TNF-α production mainly in diabetes + arsenic animals. Vascular alterations, such as congestion, bleeding, and hemosiderin deposition were intensified in diabetes + arsenic animals, whereas glycogen storage reduced in these animals. SIGNIFICANCE We concluded that arsenate exposure was able to intensify morphological and functional damages in liver tissue of diabetic animals.
Collapse
Affiliation(s)
| | - Daniel Silva Sena Bastos
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | - Felipe Couto Santos
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | | | | | | | | | - Mariana Machado-Neves
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil.
| |
Collapse
|
10
|
Mónaco NM, Bartos M, Dominguez S, Gallegos C, Bras C, Esandi MDC, Bouzat C, Giannuzzi L, Minetti A, Gumilar F. Low arsenic concentrations impair memory in rat offpring exposed during pregnancy and lactation: Role of α7 nicotinic receptor, glutamate and oxidative stress. Neurotoxicology 2018; 67:37-45. [DOI: 10.1016/j.neuro.2018.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/09/2018] [Accepted: 04/15/2018] [Indexed: 10/17/2022]
|
11
|
Souza ACF, Marchesi SC, de Almeida Lima GD, Machado-Neves M. Effects of Arsenic Compounds on Microminerals Content and Antioxidant Enzyme Activities in Rat Liver. Biol Trace Elem Res 2018; 183:305-313. [PMID: 28879625 DOI: 10.1007/s12011-017-1147-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/29/2017] [Indexed: 02/08/2023]
Abstract
Interactions of arsenic with essential trace elements may result in disturbances on body homeostasis. In the present study, we aimed to investigate the effects of different arsenic compounds on micromineral content and antioxidant enzyme activities in rat liver. Male Wistar rats were randomly divided into five groups and exposed to sodium arsenite and sodium arsenate at 0.01 and 10 mg/L for 8 weeks in drinking water. The concentration of arsenic increased in the liver of all arsenic-exposed animals. The proportion of zinc and copper increased in animals exposed to 0.01 mg/L sodium arsenite. In addition, these animals presented a reduction in magnesium and sodium content. Superoxide dismutase activity decreased mainly in arsenite-exposed animals, whereas catalase activity decreased in animals exposed to 10 mg/L sodium arsenate. Further, exposure to sodium arsenate at 10 mg/L altered copper and magnesium content in the liver, and reduced total protein levels. Overall, both arsenic compounds altered the liver histology, with reduction in the proportion of cytoplasm and hepatocyte, and increased the percentage of sinusoidal capillaries and macrophages. In conclusion, our findings showed that oral exposure to arsenic compounds disturbs the trace elements balance in the liver, especially at low concentration, altering enzymatic and stereological parameters. We concluded that despite the increase in trace elements content, the antioxidant enzyme activities were downregulated and did not prevent morphological alterations in the liver of animals exposed to both arsenic compounds.
Collapse
Affiliation(s)
- Ana Cláudia Ferreira Souza
- Department of General Biology, Federal University of Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Sarah Cozzer Marchesi
- Department of General Biology, Federal University of Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Graziela Domingues de Almeida Lima
- Department of General Biology, Federal University of Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Mariana Machado-Neves
- Department of General Biology, Federal University of Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
12
|
Wang H, Zhu J, Li L, Li Y, Lv H, Xu Y, Sun G, Pi J. Effects of Nrf2 deficiency on arsenic metabolism in mice. Toxicol Appl Pharmacol 2017; 337:111-119. [DOI: 10.1016/j.taap.2017.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023]
|
13
|
Pandey R, Rai V, Mishra J, Mandrah K, Kumar Roy S, Bandyopadhyay S. From the Cover: Arsenic Induces Hippocampal Neuronal Apoptosis and Cognitive Impairments via an Up-Regulated BMP2/Smad-Dependent Reduced BDNF/TrkB Signaling in Rats. Toxicol Sci 2017; 159:137-158. [DOI: 10.1093/toxsci/kfx124] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
14
|
Tyler CR, Weber JA, Labrecque M, Hessinger JM, Edwards JS, Allan AM. ChIP-Seq analysis of the adult male mouse brain after developmental exposure to arsenic. Data Brief 2015; 5:248-54. [PMID: 26543888 PMCID: PMC4589800 DOI: 10.1016/j.dib.2015.08.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 01/12/2023] Open
Abstract
Exposure to the common environmental contaminant arsenic impacts the epigenetic landscape, including DNA methylation and histone modifications, of several cell types. Developmental arsenic exposure (DAE) increases acetylation and methylation of histone proteins and the protein expression of several chromatin-modifying enzymes in the dentate gyrus (DG) subregion of the adult male mouse brain [26]. To complement and support these data, ChIP-Seq analysis of DNA associated with trimethylation of histone 3 lysine 4 (H3K4me3) derived from the adult male DG after DAE was performed. DAE induced differential H3K4me3 enrichment on genes in pathways associated with cellular development and growth, cell death and survival, and neurological disorders, particularly as they relate to cancer, in the adult male brain. Comparison of H3K4me3 enrichment in controls revealed mechanisms that are potentially lacking in arsenic-exposed animals, including neurotransmission, neuronal growth and development, hormonal regulation, protein synthesis, and cellular homeostasis. New pathways impacted by arsenic include cytoskeleton organization, cell signaling, and potential disruption of immune function and warrant further investigation using this DAE paradigm in the mouse brain.
Collapse
Affiliation(s)
- Christina R Tyler
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Jessica A Weber
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Matthew Labrecque
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Justin M Hessinger
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Jeremy S Edwards
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA ; Department of Chemical & Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131, USA ; Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA ; Cancer Research & Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Andrea M Allan
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
15
|
Allan AM, Hafez AK, Labrecque MT, Solomon ER, Shaikh MN, Zheng X, Ali A. Sex-Dependent effects of developmental arsenic exposure on methylation capacity and methylation regulation of the glucocorticoid receptor system in the embryonic mouse brain. Toxicol Rep 2015; 2:1376-1390. [PMID: 26855884 PMCID: PMC4741109 DOI: 10.1016/j.toxrep.2015.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Previously we have shown that prenatal moderate arsenic exposure (50 ppb) disrupts glucocorticoid receptor (GR) programming and that these changes continue into adolescence in males. However, it was not clear what the molecular mechanisms were promoting these GR programming changes or if these changes occurred in arsenic-exposed females. In the present studies, we assessed the effects of arsenic on protein and mRNA of the glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase (Hsd) isozymes and compared the levels of methylation within the promoters of the Nr3c1 and Hsd11b1 genes in female fetal brain at embryonic days (E) 14 and 18. Prenatal arsenate exposure produced sex specific effects on the glucocorticoid system. Compared to males, females were resistant to arsenic induced changes in GR, 11β-Hsd-1 and 11β-Hsd-2 protein levels despite observed elevations in Nr3c1 and Hsd11b2 mRNA. This sex-specific effect was not due to differences in the methylation of the GR promoter as methylation of the Nr3c1 gene was either unchanged (region containing the egr-1 binding site) or similarly reduced (region containing the SP-1 transcription factor binding site) in both males and females exposed to arsenic. Arsenic did produce sex and age-specific changes in the methylation of Hsd11b1 gene, producing increased methylation in females at E14 and decreased methylation at E18.These changes were not attributed to changes in DNMT levels. Since arsenate metabolism could interfere with the generation of methyl donor groups, we assessed glutathione (GSH), S-adenosylmethionine (SAM) and As 3 methyltransferase (As3MT). Exposed males and females had similar levels of As3MT and SAM; however, females had higher levels of GSH/GSSH. It is possible that this greater anti-oxidative capacity within the females provides protection against low to moderate arsenate. Our data suggest that the GR signaling system in female offspring was not as affected by prenatal arsenic and predicts that female arsenic-exposed mice should have normal GR feedback regulation.
Collapse
Affiliation(s)
- Andrea M Allan
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Alexander K Hafez
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Matthew T Labrecque
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Elizabeth R Solomon
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - M Nabil Shaikh
- Department of Civil Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Xianyun Zheng
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Abdulmehdi Ali
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
16
|
Zhang Q, Li Y, Liu J, Wang D, Zheng Q, Sun G. Differences of urinary arsenic metabolites and methylation capacity between individuals with and without skin lesions in Inner Mongolia, Northern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:7319-32. [PMID: 25046631 PMCID: PMC4113878 DOI: 10.3390/ijerph110707319] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/25/2014] [Accepted: 07/09/2014] [Indexed: 11/27/2022]
Abstract
Incomplete arsenic (As) methylation has been considered a risk factor of As-related diseases. This study aimed to examine the difference of urinary As metabolites and the methylation capacity between subjects with and without skin lesions. Urinary inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) were analyzed. The percentage of each As species (iAs%, MMA%, and DMA%), the primary methylation index (PMI) and secondary methylation index (SMI) were calculated. The results showed that subjects with skin lesions have higher levels of urinary iAs (99.08 vs. 70.63 μg/g Cr, p = 0.006) and MMA (69.34 vs. 42.85 μg/g Cr, p = 0.016) than subjects without skin lesions after adjustment for several confounders. Significant differences of urianry MMA% (15.49 vs. 12.11, p = 0.036) and SMI (0.74 vs. 0.81, p = 0.025) were found between the two groups. The findings of the present study suggest that subjects with skin lesions may have a lower As methylation capacity than subjects without skin lesions.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22, Qi Xiang Tai Road, Heping District, Tianjin 300070, China.
| | - Yongfang Li
- Environment and Non-Communicable Disease Research Center, School of Public Health, China Medical University, No. 92, Bei Er Road, Heping District, Shenyang 110001, China.
| | - Juan Liu
- Library of Tianjin Medical University, Tianjin Medical University, No. 22, Qi Xiang Tai Road, Heping District, Tianjin 300070, China.
| | - Da Wang
- Environment and Non-Communicable Disease Research Center, School of Public Health, China Medical University, No. 92, Bei Er Road, Heping District, Shenyang 110001, China.
| | - Quanmei Zheng
- Environment and Non-Communicable Disease Research Center, School of Public Health, China Medical University, No. 92, Bei Er Road, Heping District, Shenyang 110001, China.
| | - Guifan Sun
- Environment and Non-Communicable Disease Research Center, School of Public Health, China Medical University, No. 92, Bei Er Road, Heping District, Shenyang 110001, China.
| |
Collapse
|
17
|
Chandravanshi LP, Yadav RS, Shukla RK, Singh A, Sultana S, Pant AB, Parmar D, Khanna VK. Reversibility of changes in brain cholinergic receptors and acetylcholinesterase activity in rats following early life arsenic exposure. Int J Dev Neurosci 2014; 34:60-75. [DOI: 10.1016/j.ijdevneu.2014.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/25/2014] [Accepted: 01/31/2014] [Indexed: 11/27/2022] Open
Affiliation(s)
| | - Rajesh S. Yadav
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
- Department of Criminology and Forensic ScienceHarisingh Gour UniversitySagar470003India
| | - Rajendra K. Shukla
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
| | - Anshuman Singh
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
| | - Sarwat Sultana
- Neurotoxicology LaboratoryDepartment of Medical Elementology and ToxicologyJamia HamdardNew Delhi110 062India
| | - Aditya B. Pant
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
| | - Devendra Parmar
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
| | - Vinay K. Khanna
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
| |
Collapse
|