1
|
Lai WJ, Shen WY, Yang LC, Huang FM, Chang YC. Triethylene-glycol-dimethacrylate induces caspase-mediated apoptotic cell death in cementoblasts by the regulation of JNK and p38 pathways-an in vitro study. J Dent Sci 2025; 20:1060-1067. [PMID: 40224089 PMCID: PMC11993049 DOI: 10.1016/j.jds.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 11/28/2024] [Indexed: 04/15/2025] Open
Abstract
Background/Purpose Triethylene-glycol-dimethacrylate (TEGDMA) is one of the monomers used in composite resin matrix. Residual TEGDMA can be eluted from bulk fill composite resins and the amounts also increased with time. Composite resin used as root-end filling materials may invoke the critical biologic reactions in surrounding tissues. However, little is known about the effects of TEGDMA on cementoblasts. The aim of this study was to investigate the possible detrimental effects of murine cementoblast (OCCM.30) by TEGDMA in vitro. Materials and methods OCCM.30 cells were exposed to TEGDMA (0, 1, 2, 4 mM) for 24 h. Cell viability was determined by microculture tetrazolium assay. Flow cytometry was conducted to evaluate the cell cycle distribution and the type of cell death. Caspase-mediated apoptotic cascade and mitogen-activated protein kinase (MAPK) pathways were analyzed by Western blot. Results The concentrations of TEGDMA≧1 mM were found to significantly inhibit OCCM.30 cell viability in a dose-dependent manner (P < 0.05). TEGDMA dose-dependently induced apoptosis by the increase of sub-G1 population, early apoptotic cells, and later apoptotic cells. TEDGMA-induced apoptotic mechanisms were found to activate caspase 8, 9, and 3 in OCCM.30 cells, respectively (P < 0.05). In addition, both c-Jun N-terminal kinase (JNK) inhibitor JNK-in-8 and p38 inhibitor SB203580 dramatically reduced TEGDMA-induced caspase 8, 9, and 3 activations in OCCM.30 cells, respectively (P < 0.05). Conclusion Taken together, our results demonstrated that TEDGMA decreased cell viability and induced the apoptotic cell death in cementoblast. In addition, caspase-mediated cell apoptosis was found to be associated with JNK and p38 signal transduction pathways.
Collapse
Affiliation(s)
- Wei-Ju Lai
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Yuan Rung Medical Foundation, Yuan Rung Hospital, Changhua, Taiwan
| | | | - Li-Chiu Yang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Fu-Mei Huang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Chao Chang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
2
|
Darmani H, Ali RRA. Long-term effect of exposure to triethylene glycol dimethacrylate (TEGDMA) on male mouse reproduction. Eur J Oral Sci 2024; 132:e12988. [PMID: 38664917 DOI: 10.1111/eos.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
Our study investigated the impact on male mouse fertility and reproduction of long-term (14 weeks) exposure to triethylene glycol dimethacrylate (TEGDMA), a co-monomer of resin-based compounds, at doses of 0.01, 0.1, 1, and 10 ppm. Test and control mice were then paired with sexually mature untreated female mice and their fertility evaluated. Females paired with males exposed to all TEGDMA doses exhibited a significant decline in pregnancy rates, and significant increases in the total embryonic resorption-to-implantation ratio, except for males exposed to 0.01 ppm TEGDMA. Males in the highest dose group (10 ppm) showed significant increases in seminal vesicle and preputial gland weights. They also had significantly higher serum levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) than the controls, and the 0.01 ppm dosage group for FSH levels. TEGDMA exposure resulted in notable histopathological alterations in the testis, with detachment of germ cells and shedding of germinal epithelium into the tubule lumen. These results strongly indicate that TEGDMA exposure has detrimental consequences on the reproductive abilities and functions in male mice through disruption of the standard hormonal regulation of the reproductive system, leading to changes in spermatogenesis and ultimately leading to decreased fertility.
Collapse
Affiliation(s)
- Homa Darmani
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Razan Ramiz Abbas Ali
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
3
|
Hassan SA, Beleidy M, El-din YA. Biocompatibility and Surface Roughness of Different Sustainable Dental Composite Blocks: Comprehensive In Vitro Study. ACS OMEGA 2022; 7:34258-34267. [PMID: 36188235 PMCID: PMC9520711 DOI: 10.1021/acsomega.2c03745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
The study purposed to investigate the biocompatibility and sustainability of two computer-aided design/computer-aided manufacturing (CAD/CAM) resin-based composites compared to a resin-modified ceramic in terms of surface roughness, biofilm formation, cytotoxicity, genotoxicity, and cellular changes observed under transmission electron microscopy (TEM). Three CAD/CAM blocks were used, two resin-based composites [Brilliant Crios (BC) and Cerasmart, (CS) and one hybrid ceramic (Vita Enamic (EN)]. Each block was sectioned into 10 × 12 × 2 mm specimens, followed by finishing and polishing. Each specimen was evaluated for surface roughness using 3D optical profilometry and scanned by scanning electron microscopy. Biofilm formation and its relation to surface roughness have been investigated for all tested materials. A Hep-2 cell line was used to investigate the viability through MTT assay. The cytotoxicity of the materials was measured at 24, 48, and 168 h. The activity of P53, caspase 3, and cytochrome C was evaluated to detect the genotoxicity of different groups, followed by TEM tracking of the cellular changes. Statistical analysis was implemented by utilizing a one-way analysis of variance test. The significance was set at P ≤ 0.05. With regard to the surface roughness, no statistically significant differences were shown between groups. BC possessed the highest biofilm formation value, followed by EN and CS, with no significance between them. No correlation between surface roughness of tested materials and biofilm formation was shown. Considering viability, the highest values were recorded for EN, whereas BC showed the lowest values. P53-fold changes in EN were significantly the lowest, indicating less genotoxicity. Within the current study's limitations, BC showed the highest biofilm formation. However, no significant surface roughness difference or correlation with biofilm formation was observed in tested materials. EN showed the lowest cytotoxicity and the highest viability. EN revealed the best compatibility performance among tested materials. On the contrary, the BC exhibited fewer preferences.
Collapse
Affiliation(s)
- Soha A. Hassan
- Associate
Professor of Cell Biology and Genetics Faculty of Dentistry-October
6 University, Giza 12511, Egypt
| | - Marwa Beleidy
- Lecturer
of Fixed Prosthodontics, Faculty of Dentistry, October 6 University, Giza 12511, Egypt
| | - Yasmine Alaa El-din
- Lecturer
of Oral & Maxillofacial Pathology, Faculty of Dentistry, October 6 University, Giza 12511, Egypt
| |
Collapse
|
4
|
Biodegradation of Dental Resin-Based Composite—A Potential Factor Affecting the Bonding Effect: A Narrative Review. Biomedicines 2022; 10:biomedicines10092313. [PMID: 36140414 PMCID: PMC9496159 DOI: 10.3390/biomedicines10092313] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/04/2022] [Accepted: 09/15/2022] [Indexed: 12/02/2022] Open
Abstract
In recent years, although resin composite has played an important role in the restoration of tooth defects, it still has several disadvantages, including being biodegraded by saliva, bacteria and other enzymes in the oral cavity, which may result in repair failure. This factor is not conducive to the long-term survival of the prosthesis in the mouth. In this article, we review the causes, influencing factors and prevention methods of resin biodegradation. Biodegradation is mainly caused by esterase in saliva and bacteria, which breaks the ester bond in resin and causes the release of monomers. The mechanical properties of the prosthesis can then be affected. Meanwhile, cathepsin and MMPs are activated on the bonding surface, which may decompose the dentin collagen. In addition, neutrophils and residual water on the bonding surface can also aggravate biodegradation. Currently, the primary methods to prevent biodegradation involve adding antibacterial agents to resin, inhibiting the activity of MMPs and enhancing the crosslinking of collagen fibers. All of the above indicates that in the preparation and adhesion of resin materials, attention should be paid to the influence of biodegradation to improve the prosthesis’s service life in the complex environment of the oral cavity.
Collapse
|
5
|
Cytotoxicity and Genotoxicity of Epoxy Resin-Based Root Canal Sealers before and after Setting Procedures. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060847. [PMID: 35743878 PMCID: PMC9227444 DOI: 10.3390/life12060847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Epoxy resin-based sealers are commonly used for successful endodontic treatment. This study aimed to evaluate the cytotoxicity and genotoxicity of epoxy resin-based sealers under unset and set conditions. Three epoxy resin-based sealers were used: Adseal, AH Plus, and Dia-Proseal. To test cytotoxicity, an agar overlay test and a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay were performed using unset and set sealers on L929 mouse fibroblasts. The genotoxicity test of the comet assay was performed using the same cell line. Extract dilutions in the culture media were used as test materials for the MTT and comet assays. The comet tail produced by the damaged DNA was calculated by image analyses. Statistical analyses were performed using one-way analysis of variance and Tukey’s post hoc test. Unset sealers did not show defined decolorized areas. Hardened specimens of resin-based sealers showed circular discolored zones in the agar overlay test. Dia-Proseal was the least cytotoxic after hardening. These results were confirmed in the MTT assay. Cell viability was significantly higher in cells treated with hardened sealers in both groups than that in cells treated with freshly mixed sealers in the MTT assay. Unset AH Plus® and Dia-Proseal™ significantly increased cell viability with decreasing dilution. Adseal™ was the least cytotoxic. Freshly mixed Adseal™ was more genotoxic when freshly mixed than when set. Unset epoxy resin-based sealers were generally more cytotoxic and genotoxic than set materials. Cytotoxicity does not always match the genotoxicity results; therefore, various test tools are required to test toxicity. It is necessary to properly evaluate the toxic effects to establish a biocompatibility test that mimics clinical conditions.
Collapse
|
6
|
Development of New Experimental Dental Enamel Resin Infiltrants-Synthesis and Characterization. MATERIALS 2022; 15:ma15030803. [PMID: 35160748 PMCID: PMC8836872 DOI: 10.3390/ma15030803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
The aim of the present study was to obtain experimental infiltration materials, intended for the treatment of dental white spots, and to investigate them. Two series of infiltrants (P1–P6)/(P1F–P6F) were obtained, based on different monomer mixtures, without/with glass filler (with fluoride release ability). Each infiltrant from the second series contained the same amount of glass powder, and each infiltrant from the (P–PF) group contained the same resin composition. The characteristics of the experimental infiltrants were investigated by degree of conversion (DC), mechanical strength, water sorption (WS), and fluoride release, in addition to residual monomer for (P1F–P6F) infiltrants. The results were compared with those obtained for commercial Icon infiltrant. For the experimental infiltrants, without/with filler, the recorded DC was in the range of 58.27–89.70%/60.62–89.99%, compared with Icon (46.94%) 24 h after polymerization. The release of fluoride depends on the permeability of the polymer matrix, with respect to the water sorption, which may help to diffuse ions in the storage medium but which can also influence the release of residual monomers. The highest flexural strengths were recorded for the (TEGDMA/HEMA/Bis-GMA) infiltrants (133.94 ± 16.389 MPa/146.31 ± 7.032 MPa). The best experimental infiltrants were P2 and P2F (Bis-GMA/HEMA/TEGDMA).
Collapse
|
7
|
De Angelis F, Sarteur N, Buonvivere M, Vadini M, Šteffl M, D'Arcangelo C. Meta-analytical analysis on components released from resin-based dental materials. Clin Oral Investig 2022; 26:6015-6041. [PMID: 35870020 PMCID: PMC9525379 DOI: 10.1007/s00784-022-04625-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Resin-based materials are applied in every branch of dentistry. Due to their tendency to release substances in the oral environment, doubts have been raised about their actual safety. This review aims to provide a comprehensive analysis of the last decade literature regarding the concentrations of elutable substances released from dental resin-based materials in different type of solvents. MATERIALS AND METHODS All the literature published on dental journals between January 2010 and April 2022 was searched using international databases (PubMed, Scopus, Web of Science). Due to strict inclusion criteria, only 23 papers out of 877 were considered eligible. The concentration of eluted substances related to surface and volume of the sample was analyzed, considering data at 24 h as a reference. The total cumulative release was examined as well. RESULTS The most eluted substances were HEMA, TEGDMA, and BPA, while the less eluted were Bis-GMA and UDMA. Organic solvents caused significantly higher release of substances than water-based ones. A statistically significant inverse correlation between the release of molecules and their molecular mass was observed. A statistically significant positive correlation between the amount of released molecule and the specimen surface area was detected, as well as a weak positive correlation between the release and the specimen volume. CONCLUSIONS Type of solvent, molecular mass of eluates, and specimen surface and volume affect substances release from materials. CLINICAL RELEVANCE It could be advisable to rely on materials based on monomers with a reduced elution tendency for clinical procedures.
Collapse
Affiliation(s)
- Francesco De Angelis
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy.
| | - Nela Sarteur
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Matteo Buonvivere
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Mirco Vadini
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Michal Šteffl
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Camillo D'Arcangelo
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| |
Collapse
|
8
|
Choi BBR, Choi JH, Lee HY, Lee HJ, Song KW, Kim GC. Protective effects of non-thermal plasma on triethylene glycol dimethacrylate-induced damage in odontoblast-like MDPC-23 cells. Int Endod J 2021; 54:1548-1556. [PMID: 33938023 DOI: 10.1111/iej.13541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/28/2021] [Indexed: 12/15/2022]
Abstract
AIM To evaluate whether the use of non-thermal plasma (NTP) could reduce triethylene glycol dimethacrylate (TEGDMA)-mediated damage in MDPC-23 cells. METHODOLOGY The effects of NTP and TEGDMA on MDPC-23 cell proliferation were tested using WST-1 assays after pretreatment with NTP for 1 min and exposure to TEGDMA. Live/Dead assays were used to visualize cell death. To monitor the effects of NTP and TEGDMA on the cell cycle and apoptotic cell death, flow cytometry was performed. Western blotting was used to assess changes in protein levels mediated by NTP and TEGDMA treatment, and enzyme-linked immunosorbent assays were performed to evaluate the effects of NTP and TEGDMA on prostaglandin E2 (PGE2 ) expression. One-way analysis of variance and Duncan's post hoc tests were used for statistical analysis. RESULTS NTP treatment effectively protected cells from TEGDMA-mediated cell damage and blocked TEGDMA-mediated cell growth inhibition (p < .05). NTP appeared to protect cells from death (p < .05) and blocked TEGDMA-mediated apoptotic cell death. Additionally, NTP reduced TEGDMA-mediated apoptotic activation of poly (ADP) ribose polymerase-1 and caspase-3 (p < .05). Furthermore, NTP effectively reduced TEGDMA-mediated expression of cyclooxygenase-2 and PGE2 proteins by inhibiting nuclear factor-κB protein expression (p < .05). CONCLUSIONS NTP alleviated TEGDMA-mediated adverse effects by reducing cytotoxicity and inflammatory reactions in cells exposed to TEGDMA.
Collapse
Affiliation(s)
| | | | | | - Hae-June Lee
- Department of Electrical Engineering, Pusan National University, Busan, Korea
| | - Ki Won Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Gyoo-Cheon Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan, Korea
| |
Collapse
|
9
|
Lovász BV, Berta G, Lempel E, Sétáló G, Vecsernyés M, Szalma J. TEGDMA (Triethylene Glycol Dimethacrylate) Induces Both Caspase-Dependent and Caspase-Independent Apoptotic Pathways in Pulp Cells. Polymers (Basel) 2021; 13:polym13050699. [PMID: 33669057 PMCID: PMC7956203 DOI: 10.3390/polym13050699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022] Open
Abstract
Monomers leached from resin-based composites (RBCs) may reach intrapulpal concentrations of the millimolar (mM) range, which could contribute to inflammation. The aim of this investigation was to assess the cytotoxicity of triethylene glycol dimethacrylate (TEGDMA) monomers on pulp cells as well as to identify molecular mechanisms leading to apoptosis. Pulp cells were harvested from molars extracted for orthodontic reasons and cultured through an explant method. To assess cytotoxicity, cells underwent a 5-day exposure to 0.75, 1.5, and 3 mM TEGDMA and were subject to cell counting and WST-1 staining. Based on the findings, cells were subsequently exposed to 0.1, 0.2, 0.75, 1.5, and 3 mM TEGDMA for 24 h to uncover the details of apoptosis. Changes in the production or cleavage of the apoptosis-specific proteins caspase-8, caspase-9, caspase-3, caspase-12, and Apoptosis-Inducing Factor (AIF) were measured by Western blot. The 5-day study showed concentration- and time-dependent cytotoxicity. Significant cell death was detected after 24 h with TEGDMA concentrations of 1.5 and 3 mM. One-day exposure to TEGDMA led to the activation of caspase-8, -9, -3, and -12 and an increased AIF production. Results suggest that relevant concentrations of TEGDMA monomers, leached from RBCs, induce apoptosis in pulp cells through both caspase-dependent as well as caspase-independent mechanisms. Endoplasmic reticulum stress and the activation of caspase-independent apoptotic pathways may be further mechanisms by which monomers induce apoptosis in pulp cells.
Collapse
Affiliation(s)
- Bálint Viktor Lovász
- Department of Oral and Maxillofacial Surgery, University of Pécs, Medical School, 5. Dischka St., 7621 Pécs, Hungary;
- Correspondence: ; Tel.: +4-479-8860-0193
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs Medical School, 12. Szigeti St., 7624 Pécs, Hungary; (G.B.); (G.S.J.); (M.V.)
- Szentágothai Research Centre, University of Pécs, Ifjúság Street 20, 7624 Pécs, Hungary
| | - Edina Lempel
- Department of Restorative Dentistry, University of Pécs, Medical School, 5. Dischka St., 7621 Pécs, Hungary;
| | - György Sétáló
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs Medical School, 12. Szigeti St., 7624 Pécs, Hungary; (G.B.); (G.S.J.); (M.V.)
- Szentágothai Research Centre, University of Pécs, Ifjúság Street 20, 7624 Pécs, Hungary
| | - Mónika Vecsernyés
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs Medical School, 12. Szigeti St., 7624 Pécs, Hungary; (G.B.); (G.S.J.); (M.V.)
| | - József Szalma
- Department of Oral and Maxillofacial Surgery, University of Pécs, Medical School, 5. Dischka St., 7621 Pécs, Hungary;
| |
Collapse
|
10
|
Bioenergetic Impairment of Triethylene Glycol Dimethacrylate- (TEGDMA-) Treated Dental Pulp Stem Cells (DPSCs) and Isolated Brain Mitochondria are Amended by Redox Compound Methylene Blue †. MATERIALS 2020; 13:ma13163472. [PMID: 32781723 PMCID: PMC7475988 DOI: 10.3390/ma13163472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Triethylene glycol dimethacrylate (TEGDMA) monomers released from resin matrix are toxic to dental pulp cells, induce apoptosis, oxidative stress and decrease viability. Recently, mitochondrial complex I (CI) was identified as a potential target of TEGDMA. In isolated mitochondria supported by CI, substrates oxidation and ATP synthesis were inhibited, reactive oxygen species production was stimulated. Contrary to that, respiratory Complex II was not impaired by TEGDMA. The beneficial effects of electron carrier compound methylene blue (MB) are proven in many disease models where mitochondrial involvement has been detected. In the present study, the bioenergetic effects of MB on TEGDMA-treated isolated mitochondria and on human dental pulp stem cells (DPSC) were analyzed. METHODS Isolated mitochondria and DPSC were acutely exposed to low millimolar concentrations of TEGDMA and 2 μM concentration of MB. Mitochondrial and cellular respiration and glycolytic flux were measured by high resolution respirometry and by Seahorse XF extracellular analyzer. Mitochondrial membrane potential was measured fluorimetrically. RESULTS MB partially restored the mitochondrial oxidation, rescued membrane potential in isolated mitochondria and significantly increased the impaired cellular O2 consumption in the presence of TEGDMA. CONCLUSION MB is able to protect against TEGDMA-induced CI damage, and might provide protective effects in resin monomer exposed cells.
Collapse
|
11
|
Toxic Effects of Urethane Dimethacrylate on Macrophages Through Caspase Activation, Mitochondrial Dysfunction, and Reactive Oxygen Species Generation. Polymers (Basel) 2020; 12:polym12061398. [PMID: 32580382 PMCID: PMC7361960 DOI: 10.3390/polym12061398] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 01/12/2023] Open
Abstract
Urethane dimethacrylate (UDMA) is a dimethacrylate-based resin monomer that can react with other related monomers and inorganic particles, causing hydrophobic polymerization through cross-linking upon light activation. UDMA polymers are commonly used for the reconstruction and reinforcement of teeth and bones. UDMA can become unbound and be released from light-cured polymer resins. Thus far, no evidence exists on the toxic effects of UDMA and its related working mechanisms for macrophages. Therefore, in the present study, we investigated the cytotoxicity, mode of cell death, DNA damage, caspase activities, mitochondrial dysfunction, and reactive oxygen species (ROS) generation in RAW264.7 macrophages treated with UDMA using the lactate dehydrogenase (LDH) assay kit, Annexin V-FITC and PI assays, micronucleus formation and comet assay, caspase fluorometric assay, JC-1 assay, and 2ʹ,7ʹ-dichlorofluorescin diacetate (DCFH-DA) assay, respectively. Our results show that UDMA induced cytotoxicity; apoptosis and necrosis; genotoxicity, which is also called DNA damage; increased caspase-3, -8, and -9 activities; mitochondrial dysfunction; and intracellular ROS generation in a concentration-dependent manner in RAW264.7 macrophages. Thus, based on the observed inhibited concentration parallel trends, we concluded that UDMA induces toxic effects in macrophages. Furthermore, UDMA-induced intracellular ROS generation, cytotoxicity, and DNA damage were reduced by N-acetyl-L-cysteine.
Collapse
|
12
|
Alamoush RA, Kushnerev E, Yates JM, Satterthwaite JD, Silikas N. Response of two gingival cell lines to CAD/CAM composite blocks. Dent Mater 2020; 36:1214-1225. [PMID: 32561116 DOI: 10.1016/j.dental.2020.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study aimed to investigate the influence of CAD/CAM composite materials on human gingival fibroblasts (HGF) and gingival keratinocytes (HGK). METHODS Four materials were investigated: two resin-composite blocks (RCB), Grandio Blocs (GR) and Block HC (HC); one polymer-infiltrated ceramic network (PICN) (Enamic, EN); and one conventional resin-composite, Grandioso (GND). HGF and HGK were cultured as per the supplier's protocol (ATCC, UK). Cell proliferation and cytotoxicity were evaluated at 1, 3, 5 and 10 days using LDH and Alamar Blue assays. Indirect immunostaining was used to assess the Caspase-3 activity. Data were analysed via two-way ANOVA, one-way ANOVA and Tukey's post hoc test (α = 0.05 for all tests). RESULTS There was significant difference in cell proliferation of the HGK and HGF cells in contact with different composite materials but no significant differences in their cytotoxicity. There was a significant effect on cell proliferation and cytotoxicity with different exposure times, for each type of resin-composite. HGF cell proliferation was higher than HGK with almost all investigated materials and at all time points. No Caspase-3 activity was detected in either cell lines. SIGNIFICANCE HGK proliferation and cytotoxicity appeared to be more influenced by composite materials compared to HGF, demonstrating EN cytotoxic effects in HGK. Different manufacturing techniques of resin-composites (photo curing versus heat/pressure curing) had no significant effect on their biocompatibility.
Collapse
Affiliation(s)
- Rasha A Alamoush
- Prosthodontic Department, School of Dentistry, University of Jordan, Amman, Jordan; Dentistry, School of Medical Sciences, The University of Manchester, Manchester, UK
| | - Evgeny Kushnerev
- Dentistry, School of Medical Sciences, The University of Manchester, Manchester, UK
| | - Julian M Yates
- Dentistry, School of Medical Sciences, The University of Manchester, Manchester, UK
| | | | - Nick Silikas
- Dentistry, School of Medical Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
13
|
Shahi S, Özcan M, Maleki Dizaj S, Sharifi S, Al-Haj Husain N, Eftekhari A, Ahmadian E. A review on potential toxicity of dental material and screening their biocompatibility. Toxicol Mech Methods 2019; 29:368-377. [PMID: 30642212 DOI: 10.1080/15376516.2019.1566424] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVES A wide range of compounds are utilized in dentistry such as dental composites, resins, and implants. The successful clinical use of dental materials relies on theirm physiochemical properties as well as biological and toxicological reliability. Different local and systemic toxicities of dental materials have been reported. Placement of these materials in oral cavity for a long time period might yield unwanted reactions. An extensive variety of materials is used in dentistry including filling materials, restorative materials, intracanal medicines, prosthetic materials, different types of implants, liners, and irrigants. The increasing rate in development of the novel materials with applications in the dental field has led to an increased consciousness of the biological risks and tempting restrictions of these materials. The biocompatibility of a biomaterial used for the replacement or filling of biological tissue such as teeth always had a high concern within the health care disciplines for patients. MATERIALS AND METHODS Any material used in humans should be tested before clinical application. There are many tests evaluating biocompatibility of these materials at the point of in vitro, in vivo, and clinical investigations. RESULTS The current review discusses the potential toxicity of dental material and screening of their biocompatibility. CLINICAL RELEVANCE It is essential to use healthy and safe materials medical approaches. In dentistry, application of different materials in long-term oral usage demands low or nontoxic agents gains importance for both patients and the staff. Furthermore, screening tests should evaluate any potential toxicity before clinical application.
Collapse
Affiliation(s)
- Shahriar Shahi
- a Dental and Periodontal Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mutlu Özcan
- b Dental Materials Unit, Center for Dental and Oral Medicine, Clinic for Fixed and Removable Prosthodontics and Dental Materials Science , University of Zürich , Zurich , Switzerland
| | - Solmaz Maleki Dizaj
- a Dental and Periodontal Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Simin Sharifi
- a Dental and Periodontal Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Nadin Al-Haj Husain
- c Specialization Candidate, Department of Reconstructive Dentistry and Gerodontology , School of Dental Medicine, University of Bern , Bern , Switzerland
| | - Aziz Eftekhari
- d Pharmacology and Toxicology Department , Maragheh University of Medical Sciences , Maragheh , Iran
| | - Elham Ahmadian
- a Dental and Periodontal Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,e Students' Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
14
|
Chien KJ, Yang ML, Tsai PK, Su CH, Chen CH, Horng CT, Yeh CH, Chen WY, Lin ML, Chen CJ, Chian CY, Kuan YH. Safrole induced cytotoxicity, DNA damage, and apoptosis in macrophages via reactive oxygen species generation and Akt phosphorylation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:94-100. [PMID: 30312850 DOI: 10.1016/j.etap.2018.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/20/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Safrole is a natural compound categorized as a group 2B carcinogen extracted from betel quid chewing, which is a common practice of psychoactive habits integrated into social and cultural ceremonies among serveral million people, especially in Southern or Southeastern Asia. Safrole is one of the major risk compunds for development of oral squamous cell carcinoma and hepatocellular carcinoma via DNA adduction. In innate immunity, macrophages are the predominant cells for non-specific first line defense against pathogens in oral tissue. Up to now, there is no evidence to implicate the potential toxicological effect of safrole on macrophages. In this study, we found safrole induced the generation of reactive oxygen species (ROS) and myeloperoxidase (MPO) in RAW264.7 macrophages in a concentration-dependent manner. Furthermore, cytotoxicity, DNA damage, and apoptosis were caused by safrole in a concentration-dependent manner. While the activation of antioxidative enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) was reduced, the phosphorylation of Akt was induced by safrole in a concentration-dependent manner. These results indicated that the induction of cytotoxicity, DNA damage, and apoptosis in macrophages by safrole was through generation of ROS and inhibition of antioxidative enzymes possibly via Akt phosphorylation.
Collapse
Affiliation(s)
- Kuang-Jen Chien
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ping-Kun Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Internal Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chun-Hung Su
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Hui Chen
- Department of Hair Styling and Design, Hung-Kuang University, Taichung, Taiwan
| | - Chi-Ting Horng
- Department of Ophthalmology, Fooying University Hospital, Pingtung Taiwan; Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Chung-Hsin Yeh
- Department of Nursing, College of Nursing and Health, Da-Yen University, Changhua, Taiwan; Department of Neurology, Yuan Rung Hospital, Changhua, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Meng-Liang Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chen-Yu Chian
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
15
|
Lee CY, Su CH, Tsai PK, Yang ML, Ho YC, Lee SS, Chen CH, Chen WY, Lin ML, Chen CJ, Chian CY, Huang-Liu R, Chang YL, Kuan YH. Cadmium nitrate-induced neuronal apoptosis is protected by N-acetyl-l-cysteine via reducing reactive oxygen species generation and mitochondria dysfunction. Biomed Pharmacother 2018; 108:448-456. [PMID: 30241048 DOI: 10.1016/j.biopha.2018.09.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 01/01/2023] Open
Abstract
Cigarette smoking is a well-established risk factor for various diseases, such as cardiovascular diseases, neurodegeneration, and cancer. Cadmium nitrate (Cd(NO3)2) is one of the major products from the cigarette smoke. Up to now, no supporting evidence on Cd(NO3)2-induced apoptosis and its related working mechanism in neurons has been found. In present study, the mode of cell death, caspase activities, reactive oxygen species (ROS) generation, and mitochondrial dysfunction in N2a cells, which are neuron-like cells, were assessed by Annexin V-FITC and PI assays, caspase fluorometric assay, DCFH-DA fluorescence assay, and JC-1 fluorescence assay respectively. The results showed that not only Cd(NO3)2 induced apoptosis and necrosis but also the activities of caspase-3 and -9 expressed in a concentration-dependent manner. In addition, Cd(NO3)2 also induced both mitochondrial dysfunction and ROS generation in a concentration-dependent manner. All these indicated that in N2a cells parallel trends could be observed in apoptosis, caspase-3 and -9 activities, mitochondrial dysfunction, and ROS generation when induced by Cd(NO3)2. Furthermore, Cd(NO3)2-induced apoptosis, caspases activities, mitochondrial dysfunction, and ROS generation were reduced by N-acetyl-l-cysteine (NAC). These results indicated that Cd(NO3)2-induced neuronal apoptosis was reduced by NAC via intrinsic apoptotic caspase cascade activities and their up-stream factors, including mitochondrial dysfunction and ROS generation.
Collapse
Affiliation(s)
- Chien-Ying Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Hung Su
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ping-Kun Tsai
- Department of Internal Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yung-Chyuan Ho
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Hui Chen
- Department of Hair Styling and Design, Hung-Kuang University, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Meng-Liang Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chen-Yu Chian
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Rosa Huang-Liu
- School of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Ya-Lan Chang
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
16
|
Huang FM, Chang YC, Lee SS, Ho YC, Yang ML, Lin HW, Kuan YH. Bisphenol A exhibits cytotoxic or genotoxic potential via oxidative stress-associated mitochondrial apoptotic pathway in murine macrophages. Food Chem Toxicol 2018; 122:215-224. [PMID: 30312649 DOI: 10.1016/j.fct.2018.09.078] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/10/2018] [Accepted: 09/29/2018] [Indexed: 01/28/2023]
Abstract
Bisphenol A (BPA) is primarily used in production of polycarbonate plastics and epoxy resins including plastic containers. BPA is an endocrine disruptor and supposes to induce asthma and cancer. However, so far only a few evidences have shown the BPA-induced toxic effect and its related mechanism in macrophages. BPA demonstrated cytotoxic effect on RAW264.7 macrophages in a concentration and time-dependent manner. BPA induces necrosis, apoptosis, and genotoxicity in a concentration-dependent manner. Phosphorylation of cytochrome C (cyto C) and p53 was due to mitochondrial disruption via BCL2 and BCL-XL downregulation and BAX, BID, and BAD upregulation. Both caspase-dependent, including caspase-9, caspase-3, and PARP-1 cleavage, and caspase-independent, such as nuclear translocation of AIF, pathways were activated by BPA. Furthermore, generation of reactive oxygen species (ROS) and reduction of antioxidative enzyme activities were induced by BPA. Parallel trends were observed in the effect of BPA on cytotoxicity, apoptosis, genotoxicity, p53 phosphorylation, BCL2 family expression exchange, caspase-dependent and independent apoptotic pathways, and ROS generation in RAW264.7 macrophages. Finally, BPA-exhibited cytotoxicity, apoptosis, and genotoxicity could be inhibited by N-acetylcysteine. These results indicated that the toxic effect of BPA was functioning via oxidative stress-associated mitochondrial apoptotic pathway in macrophages.
Collapse
Affiliation(s)
- Fu-Mei Huang
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chao Chang
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Yung-Chyuan Ho
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Wen Lin
- Department of Optometry, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
17
|
Triethylene glycol dimethacrylate impairs bioenergetic functions and induces oxidative stress in mitochondria via inhibiting respiratory Complex I. Dent Mater 2018; 34:e166-e181. [DOI: 10.1016/j.dental.2018.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 01/22/2018] [Accepted: 03/23/2018] [Indexed: 11/23/2022]
|
18
|
Öncel Torun Z, Torun D, Baykal B, Öztuna A, Yeşildal F, Avcu F. Effects of triethylene glycol dimethacrylate (TEGDMA) on the odontoclastic differentiation ability of human dental pulp cells. J Appl Oral Sci 2018; 25:631-640. [PMID: 29211284 PMCID: PMC5701533 DOI: 10.1590/1678-7757-2016-0626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/19/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES The primary purpose of this study was to examine the effects of triethylene glycol dimethacrylate (TEGDMA) on odontoclastic differentiation in the dental pulp tissue. MATERIAL AND METHODS The effects of different TEGDMA dosages on the odontoclastic differentiation capability of dental pulp cells were analyzed in vitro using the following methodologies: i) flow cytometry and tartrate-resistant acid phosphatase (TRAP) staining; ii) apoptotic effects using Annexin V staining; iii) mRNA expression of osteoprotegerin (OPG) and receptor activator of nuclear factor (NF)-kB ligand (RANKL) genes by quantitative Real-time PCR (qRT-PCR); and iv) OPG and RANKL protein expression by enzyme-linked immunosorbent assay (ELISA). RESULTS TEGDMA caused relatively less odontoclastic differentiation in comparison with the control group; however, odontoclastic differentiation augmented with increasing doses of TEGDMA (p<0.05). The mRNA and protein expression of OPG was lower in TEGDMA treated pulp cells than in the control group (p<0.05). While the mRNA expression of RANKL remained unchanged compared to the control group (p>0.05), its protein expression was higher than the control group (p<0.05). In addition, TEGDMA increased the apoptosis of dental pulp cells dose dependently. CONCLUSIONS TEGDMA reduced the odontoclastic differentiation ability of human dental pulp cells. However, odontoclastic differentiation ratios increased proportionally with the increasing dose of TEGDMA.
Collapse
Affiliation(s)
| | - Deniz Torun
- University of Health Sciences, Gulhane Faculty of Medicine, Department of Medical Genetics, Ankara, Turkey
| | - Barış Baykal
- University of Health Sciences, Gulhane Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
| | - Ali Öztuna
- University of Health Sciences, Gulhane Faculty of Medicine, Department of Medical Genetics, Ankara, Turkey
| | - Fatih Yeşildal
- Diyarbakır Selahaddin Eyyubi Public Hospital, Department of Medical Biochemistry, Diyarbakır, Turkey
| | - Ferit Avcu
- Memorial Ankara Hospital, Ankara, Turkey
| |
Collapse
|
19
|
Bielecka-Kowalska A, Czarny P, Wigner P, Synowiec E, Kowalski B, Szwed M, Krupa R, Toma M, Drzewiecka M, Majsterek I, Szemraj J, Sliwinski T, Kowalski M. Ethylene glycol dimethacrylate and diethylene glycol dimethacrylate exhibits cytotoxic and genotoxic effect on human gingival fibroblasts via induction of reactive oxygen species. Toxicol In Vitro 2017; 47:8-17. [PMID: 29107684 DOI: 10.1016/j.tiv.2017.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 10/18/2017] [Accepted: 10/27/2017] [Indexed: 12/25/2022]
Abstract
Although methacrylic acid derivatives in their polymeric form are considered to be safe, insufficient polymerization and the release of monomers due to either mechanical or enzymatical factors can lead to their reaching millimolar concentrations in local tissue. The present study evaluates the effect of two methacrylate monomers - ethylene glycol dimethacrylate (EGDMA) and diethylene glycol dimethacrylate (DEGDMA) - on human gingival fibroblasts (HGFs). Both monomers were found to reduce cells viability in MTT assay, increase apoptosis and cause cell cycle arrest in G1/G0 phase. They also increased intracellular reactive oxygen species (ROS) production as measured by DCFH-DA and DHE probes and increased expression of GPx4 and SOD2. Both monomers increased DNA damage in comet assay. Moreover, HGFs were not able to repair those lesions within 120min of repair incubation. However, the monomers were not found to have any effect on the integrity of isolated plasmids. We postulate that EGDMA and DEGDMA exhibit their cytotoxic and genotoxic properties via increased production of ROS, which cause DNA damage, affect apoptosis, viability and cell cycle. Further studies are needed to better understand the properties of methacrylic acid monomers and to evaluate the risk that they cause for patients, dentists and dental technicians.
Collapse
Affiliation(s)
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Paulina Wigner
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Bartosz Kowalski
- Department of Maxillofacial Surgery, Medical University of Lodz, Lodz, Poland
| | - Marzena Szwed
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Renata Krupa
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Malgorzata Drzewiecka
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| | | |
Collapse
|
20
|
Cell responses to cariogenic microorganisms and dental resin materials—Crosstalk at the dentin-pulp interface? Dent Mater 2017; 33:514-524. [DOI: 10.1016/j.dental.2017.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 12/22/2022]
|
21
|
Wang CC, Yang ML, Yang CP, Liang CH, Lee CY, Lin HW, Kuan YH. Cadmium nitrate-induced cytotoxicity and genotoxicity via caspases in Neuro-2A neurons. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1313276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chuan-Cheng Wang
- Division of Hematology & Oncology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan,
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan,
| | - Ching-Ping Yang
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan,
| | - Ching-Hui Liang
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan,
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan,
| | - Chien-Ying Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan,
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan,
| | - Hui-Wei Lin
- Department of Optometry, Asia University, Taichung, Taiwan,
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan,
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan,
| |
Collapse
|
22
|
Manojlovic D, Dramićanin MD, Miletic V, Mitić-Ćulafić D, Jovanović B, Nikolić B. Cytotoxicity and genotoxicity of a low-shrinkage monomer and monoacylphosphine oxide photoinitiator: Comparative analyses of individual toxicity and combination effects in mixtures. Dent Mater 2017; 33:454-466. [DOI: 10.1016/j.dental.2017.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 01/28/2017] [Accepted: 02/10/2017] [Indexed: 11/30/2022]
|
23
|
Zhu L, Zhang J, Xiao L, Liu S, Yu J, Chen W, Zhang X, Peng B. Autophagy in resin monomer-initiated toxicity of dental mesenchymal cells: a novel therapeutic target of N-acetyl cysteine. J Mater Chem B 2015; 3:6820-6836. [PMID: 32262475 DOI: 10.1039/c5tb00894h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A proposed schematic model of autophagy involvement in resin monomer-initiated toxicity of dental mesenchymal cells and as a novel therapeutic target of NAC.
Collapse
Affiliation(s)
- Lingxin Zhu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education
- School & Hospital of Stomatology
- Wuhan University
- Wuhan 430079
- China
| | - Jie Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education
- School & Hospital of Stomatology
- Wuhan University
- Wuhan 430079
- China
| | - Lan Xiao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education
- School & Hospital of Stomatology
- Wuhan University
- Wuhan 430079
- China
| | - Shan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education
- School & Hospital of Stomatology
- Wuhan University
- Wuhan 430079
- China
| | - Jingjing Yu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education
- School & Hospital of Stomatology
- Wuhan University
- Wuhan 430079
- China
| | - Weihai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan
- China
| | - Xianzheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan
- China
| | - Bin Peng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education
- School & Hospital of Stomatology
- Wuhan University
- Wuhan 430079
- China
| |
Collapse
|