1
|
Moncaleano-Niño AM, Luna-Acosta A, Gómez-Cubillos MC, Villamil L, Ahrens MJ. Cholinesterase activity in the cup oyster Saccostrea sp. exposed to chlorpyrifos, imidacloprid, cadmium and copper. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 151:242-254. [PMID: 29353174 DOI: 10.1016/j.ecoenv.2017.12.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/18/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
In the present study, the sensitivity and concentration dependence of three functionally-defined components of cholinesterase activity (total: T-ChE; eserine-sensitive: Es-ChE; and eserine-resistant: Er-ChE) were quantified in the gill, digestive gland and adductor muscle of the tropical cup oyster Saccostrea sp., following acute (96h) aqueous exposure to commercial formulations of the organophosphate (OP) insecticide chlorpyrifos and the neonicotinoid (NN) imidacloprid (concentration range: 0.1-100mg/L), as well as to dissolved cadmium and copper (concentration range: 1-1000μg/L). Oysters (1.5-5.0cm shell length), field-collected from a boating marina in Santa Marta, Colombia (Caribbean Sea) were exposed in the laboratory to each substance at five concentrations. T-ChE, Es-ChE, and Er-ChE activity were quantified in the three tissues in pools of 5 individuals (3 replicates per concentration), before and after inhibition with the total cholinesterase inhibitor eserine (physostigmine, 100µM). Oysters exposed to chlorpyrifos, imidacloprid and Cd showed reduced T-ChE and Es-ChE activity in gills at highest exposure concentrations, with Es-ChE activity being inhibited proportionally more so than T-ChE, whereas Er-ChE activity showed no significant concentration-response. Digestive gland also showed diminished T-ChE, Es-ChE and Er-ChE activity for highest chlorpyrifos and Cd concentrations relative to controls, but an increase of T-ChE and Er-ChE activity at the highest imidacloprid concentration (100mg/L). For Cu, T-ChE, Es-ChE and Er-ChE activities in gills and digestive gland were elevated relative to controls in oysters exposed to Cu concentrations > 100µg/L. In adductor muscle, T-ChE, Es-ChE and Er-ChE activity showed no apparent pattern for any of the four xenobiotics and concentration levels tested. Although this study confirms acute (96h) concentration-dependent reduction of tissue T-ChE and Es-ChE activity in gills and digestive glands of Saccostrea sp. exposed to high concentrations of chlorpyrifos (100mg/L), significant changes in T-ChE, Es-ChE and Er-ChE were also caused by exposure to Cd and Cu at concentrations > 100µg/L and by exposure to imidacloprid (100mg/L), indicating that cholinesterase activity is not a specific biomarker of organophosphate exposure in this species, but, rather, a biomarker of diverse xenobiotic exposure.
Collapse
Affiliation(s)
- Angela M Moncaleano-Niño
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia
| | - Andrea Luna-Acosta
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia
| | - Maria Camila Gómez-Cubillos
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia
| | - Luisa Villamil
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia
| | - Michael J Ahrens
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia.
| |
Collapse
|
2
|
Nogueira DJ, Mattos JJ, Dybas PR, Flores-Nunes F, Sasaki ST, Taniguchi S, Schmidt ÉC, Bouzon ZL, Bícego MC, Melo CMR, Toledo-Silva G, Bainy ACD. Effects of phenanthrene on early development of the Pacific oyster Crassostrea gigas (Thunberg, 1789). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:50-61. [PMID: 28800408 DOI: 10.1016/j.aquatox.2017.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
Phenanthnere (PHE) is a polycyclic aromatic hydrocarbon continuously discarded in the marine environment and bioavailable to many aquatic species. Although studies about PHE toxicity have been documented for adult oysters, the effects on early developmental stages are poorly characterized in bivalves. In this study, the effects of PHE (0.02 and 2.0μg.L-1) were evaluated on the embryogenesis and larval development of Crassostrea gigas. Toxicity bioassays, growth and deformities assessment, analysis of shell calcium abundance and transcript levels of genes related to xenobiotic biotransformation (CYP2AU2, CYP30C1), immune system (Cg-Tal) and tissue growth and shell formation (Ferritin, Insulin-like, Cg-Try, Calmodulin and Nacrein) were assayed in D-shape larvae after 24h of PHE exposure. At the highest concentration (2.0μg.L-1), PHE decreased the frequency of normal development (19.7±2.9%) and shell size (53.5±2.8mm). Developmental deformities were mostly related to abnormal mantle and shell formation. Lower calcium levels in oyster shells exposed to PHE 2.0μg.L-1 were observed, suggesting effects on shell structure. At this same PHE concentration, CYP30C1, Cg-Tal, Cg-Tyr, Calmodulin were upregulated and CYP2AU2, Ferritin, Nacrein, and Insulin-Like were downregulated compared to control larvae. At the lowest PHE concentration (0.02μg.L-1), it was observed a minor decrease in normal larval development (89,6±6%) and the remaining parameters were not affected. This is the first study to provide evidences that exposure to PHE can affect early oyster development at the molecular and morphological levels, possibly threatening this bivalve species.
Collapse
Affiliation(s)
- Diego J Nogueira
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88034-257, Brazil
| | - Jacó J Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, Florianópolis, SC 88034-257, Brazil
| | - Patrick R Dybas
- Laboratory of Marine Mollusks, Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, SC 88051-000, Brazil
| | - Fabrıcio Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88034-257, Brazil
| | - Silvio Tarou Sasaki
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, SP 05508-120, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, SP 05508-120, Brazil
| | - Éder C Schmidt
- Laboratory of Plant Cell Biology, Department of Cell Biology, Embryology and Genetic, Federal University of Santa Catarina, Florianópolis, SC 88049-900, Brazil
| | - Zenilda L Bouzon
- Laboratory of Plant Cell Biology, Department of Cell Biology, Embryology and Genetic, Federal University of Santa Catarina, Florianópolis, SC 88049-900, Brazil
| | - Márcia C Bícego
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, SP 05508-120, Brazil
| | - Claudio M R Melo
- Laboratory of Marine Mollusks, Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, SC 88051-000, Brazil
| | - Guilherme Toledo-Silva
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88034-257, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88034-257, Brazil.
| |
Collapse
|
3
|
Granger Joly de Boissel P, Fournier M, Rodriguez-Lecompte JC, McKenna P, Kibenge F, Siah A. Functional and molecular responses of the blue mussel Mytilus edulis' hemocytes exposed to cadmium - An in vitro model and transcriptomic approach. FISH & SHELLFISH IMMUNOLOGY 2017; 67:575-585. [PMID: 28600193 DOI: 10.1016/j.fsi.2017.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 05/21/2017] [Accepted: 06/03/2017] [Indexed: 05/24/2023]
Abstract
The bivalve mollusk, Mytilus edulis, is used as a sentinel species in several monitoring programs due to its ability to bio-accumulate contaminants. Its immune system consists of hemocytes and humoral components, which constitute the main part of the hemolymph. The present study is aimed at understanding the effects of Cd on the differentially expressed genes involved in the phagocytosis of M. edulis' hemocytes. Our approach focuses on an in vitro model by exposing hemocytes to different concentrations of Cd ranging from 10-9 M to 10-3 M. Phagocytosis and cell viability as functional markers were measured using flow cytometry. The molecular mechanisms regulated by Cd were investigated using RNA-seq and DGE analysis. Results showed that viability and phagocytosis of hemocytes exposed to 10-3 M of Cd were significantly decreased after 21 h of exposure. RNA sequencing data showed that 1112 transcripts (out of 352,976 contigs) were differentially regulated by the highest concentration of Cd. Among these identified transcripts, 1028 and 84 were up and down-regulated respectively. The induction of super oxide dismutase (SOD), glutathion-s-transferase (GST), cytochrome P450 2C8 (CYP2C8), multidrug resistance protein (MRP1) and heat shock protein 70 (HSP70) suggests that Cd can regulate key molecular mechanisms. In addition, several toll-like receptors (TLR) as well as genes involved in phagocytosis (actin and CDC42) and apoptosis (caspase 8 and XIAP/IAP) were induced by Cd. Thus, our model highlights the effect of Cd on the phagocytic function of M. edulis' hemocytes along with the regulation of gene expression involved in innate immunity, detoxification and apoptosis. Further investigations need to be pursued to unravel the effects of Cd on the molecular mechanisms identified in this study.
Collapse
Affiliation(s)
- Philippine Granger Joly de Boissel
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Michel Fournier
- INRS - Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, QC H7V 1B7, Canada.
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Patty McKenna
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Frederick Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Ahmed Siah
- British Columbia Centre for Aquatic Health Sciences, 871A Island Highway, Campbell River, BC V9W 2C2, Canada.
| |
Collapse
|
4
|
Moncaleano-Niño AM, Barrios-Latorre SA, Poloche-Hernández JF, Becquet V, Huet V, Villamil L, Thomas-Guyon H, Ahrens MJ, Luna-Acosta A. Alterations of tissue metallothionein and vitellogenin concentrations in tropical cup oysters (Saccostrea sp.) following short-term (96h) exposure to cadmium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 185:160-170. [PMID: 28222366 DOI: 10.1016/j.aquatox.2017.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
Metallothioneins and vitellogenins are low molecular weight proteins that have been used widely in environmental monitoring as biomarkers of exposure and damage to metals and estrogenic compounds, respectively. In the present study, the responses of metallothionein and vitellogenin tissue concentrations were measured following acute (96h) aqueous exposures to cadmium in Saccostrea sp., a tropical cup oyster native to the Western Pacific Ocean that has recently established itself in the Caribbean Sea. Adult oysters (1.5-5.0cm shell length) collected from the municipal marina of Santa Marta, Colombia (Caribbean Sea) and acclimated for 5days in the laboratory, were exposed to Cd at five concentrations (0, 1, 10, 100 and 1000μg/L) and their tissues (gills, digestive gland and adductor muscle) were analyzed in pools of 5 individuals (3 replicates per concentration). Metallothioneins in digestive glands of oysters exposed to Cd concentrations≥100μg/L showed a significant increase, from 8.0 to 14.8μg MT/mg total protein, whereas metallothionein concentrations in gills increased to lesser extent, and no differences were observed in adductor muscle. Metallothionein concentrations in digestive gland and gills correlated directly with whole soft tissue Cd concentrations (ranging from 2 to 297μg/g dw Cd). Vitellogenin in homogenates of oyster gonad tissue, after 96h of exposure to 1000μg/L Cd, were significantly lower (0.04mg P/g gonad) compared to control oysters (0.68mg P/g gonad), suggestive of an anti-estrogenic effect of Cd at high concentrations, whereas no significant changes in vitellogenin concentrations were observed at intermediate Cd exposure concentrations. This study confirms acute responses of metallothionein and vitellogenin concentrations in tissues of Saccostrea sp. exposed to high concentrations of cadmium (Cd≥100μg/L, 96h). The present results are first step towards validating the use of these two proteins as biomarkers of metal exposure in this species.
Collapse
Affiliation(s)
- Angela M Moncaleano-Niño
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia
| | - Sergio A Barrios-Latorre
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia
| | - Javier F Poloche-Hernández
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia
| | - Vanessa Becquet
- Littoral Environnement et Sociétés (LIENSs) - UMR 7266, CNRS-Université de La Rochelle, Bâtiment ILE 2, rue Olympe de Gouges, 17 000 La Rochelle, France
| | - Valérie Huet
- Littoral Environnement et Sociétés (LIENSs) - UMR 7266, CNRS-Université de La Rochelle, Bâtiment ILE 2, rue Olympe de Gouges, 17 000 La Rochelle, France
| | - Luisa Villamil
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia
| | - Hélène Thomas-Guyon
- Littoral Environnement et Sociétés (LIENSs) - UMR 7266, CNRS-Université de La Rochelle, Bâtiment ILE 2, rue Olympe de Gouges, 17 000 La Rochelle, France
| | - Michael J Ahrens
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia.
| | - Andrea Luna-Acosta
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia
| |
Collapse
|
5
|
Liu X, Wang WX. Antioxidant and detoxification responses of oysters Crassostrea hongkongensis in a multimetal-contaminated estuary. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2798-2805. [PMID: 27071024 DOI: 10.1002/etc.3455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/29/2016] [Accepted: 04/07/2016] [Indexed: 06/05/2023]
Abstract
The contaminated oysters discovered in the Pearl River Estuary (Guangdong province, China) contained high levels of metals in their tissues, especially Cu and Zn, indicating that this large and densely urbanized estuary in Southern China suffers from serious metal pollution. The present study aimed to investigate the impacts of multimetal pollution in the Pearl River Estuary on oyster antioxidant and detoxification systems. The responses of various biochemical biomarkers in the ecologically important oyster Crassostrea hongkongensis collected from 7 sites in the Pearl River Estuary were quantified. Significant correlations were demonstrated between the accumulation of Cu and Zn and oxidative stress (lipid peroxidation) and oxidative stress defenses (catalase, glutathione peroxidase) in the oyster gills. Significant correlations between the accumulation of Cd and Cu and detoxification (glutathione and glutathione transferase) in the gills were also documented. Interestingly, metallothionein concentrations were positively correlated with Cd, but negatively correlated with Cu, Ni, and Zn concentrations in the gills. These measurements indicated that Cu in the Pearl River Estuary induced various biochemical responses in the oysters and influenced the susceptibility of oysters to environmental stress. The present study has provided the first evidence of antioxidant and detoxification responses in native contaminated oysters from a field environment seriously contaminated by metals. Coupling biomarkers with tissue metal concentration measurements was a promising approach to identify the metals causing biological impacts in a multimetal-contaminated estuary. Environ Toxicol Chem 2016;35:2798-2805. © 2016 SETAC.
Collapse
Affiliation(s)
- Xuan Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| | - Wen-Xiong Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong.
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China.
| |
Collapse
|
6
|
Raftos DA, Melwani AR, Haynes PA, Muralidharan S, Birch GF, Amaral V, Thompson EL, Taylor DA. The biology of environmental stress: molecular biomarkers in Sydney rock oysters (Saccostrea glomerata). ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:1129-1139. [PMID: 27548823 DOI: 10.1039/c6em00322b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This review describes our recent work on environmental stress in Sydney rock oysters, focusing on the identification of molecular biomarkers for ecotoxicological analysis. We begin by describing the environmental pressures facing coastal estuaries in Australia, with particular reference to Sydney Harbour. After providing that context, we summarise our transcriptional and proteomic analyses of Sydney rock oysters responding to chemical contamination and other forms of environmental stress. This work has shown that the intracellular processes of oysters are highly responsive to environmental threats. Our data agree with the broader literature, which suggests that there is a highly conserved intracellular stress response in oysters involving a limited number of biological processes. We conclude that many effective molecular markers for environmental biomonitoring are likely to lie within these biological pathways.
Collapse
Affiliation(s)
- D A Raftos
- Department of Biological Sciences, Macquarie University, Sydney Institute of Marine Science, North Ryde, 2109, NSW, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Liu X, Wang WX. Time changes in biomarker responses in two species of oyster transplanted into a metal contaminated estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 544:281-290. [PMID: 26657374 DOI: 10.1016/j.scitotenv.2015.11.120] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/02/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
The Jiulong Estuary in Southern China suffers from serious metal pollution, leading to the appearance of 'colored' oysters in this estuary. In this study, two species of oysters Crassostrea hongkongensis and Crassostrea angulata were transplanted to three sites in the Jiulong Estuary over a two-month period. The time-series changes of various biomarkers were measured, coupled with simultaneous quantification of metal bioaccumulation (Ag, Cd, Cr, Cu, Ni and Zn). Cu and Zn accumulation increased linearly and reached up to 2% and 1.5% dry tissue weight by the end of exposure. Negative correlations between the tissue Cu or Zn accumulation and catalase or superoxide dismutase activities strongly indicated that Cu and Zn in 'colored' oysters induced the adjustments of oyster antioxidant systems. Metallothionein (MT) detoxification was insufficient for sequestering all the absorbed metals and its concentrations in the oysters were suppressed following an initial increase, primarily due to the high metal accumulation in the tissues. Interestingly, gradual recoveries of lysosomal membrane stability after the initial strong inhibitions were observed in both oysters. We also documented an increasing 'watering' of oyster tissues presumably as a result of rupturing of tissue cells under metal stress. This study demonstrated the complexity of biomarker responses under field condition, therefore the time changes of biomarker responses to metals need to be considered in evaluating the biological impacts of metal pollution on estuarine organisms.
Collapse
Affiliation(s)
- Xuan Liu
- Division of Life Science, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| | - Wen-Xiong Wang
- Division of Life Science, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong.
| |
Collapse
|