1
|
Ribeiro O, Ribeiro C, Félix L, Gaivão I, Carrola JS. Effects of acute metaphedrone exposure on the development, behaviour, and DNA integrity of zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49567-49576. [PMID: 36781667 PMCID: PMC10104909 DOI: 10.1007/s11356-023-25233-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023]
Abstract
The presence of new psychoactive substances (NPS), like metaphedrone (3-MMC), in aquatic environments raises concern about the potential negative effects on ichthyofauna. Therefore, the aim of this study was to evaluate the potential effects of 3-MMC on zebrafish embryonic development, behaviour, and DNA integrity. For that, embryos were exposed during 96 h post-fertilization to 3-MMC (0.1, 1, 10, and 100 µg/L). Overall, an increase in the eye area of zebrafish larvae was observed for the concentrations of 1 μg/L (increase of 24%) and 100 μg/L (increase of 25%) in comparison with the control group. Genetic damage was noted at the highest concentration (100 µg/L) with an increase of DNA damage (increase of 48%) and hyperactivity and disorganised swimming pattern characterised by an increase in speed (increase of 49%), total distance moved (increase of 53%), and absolute turn angle (increase of 48%) of zebrafish larvae. These findings pointed that, at environmental low levels, 3-MMC harmful effects are not expected to occur during critical development life stages of fish.
Collapse
Affiliation(s)
- Ondina Ribeiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Cláudia Ribeiro
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, 4585-116, Gandra, CRL, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício Do Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos S/N, 4050-208, Matosinhos, Portugal
| | - Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, Vila Real, Portugal
| | - Isabel Gaivão
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - João Soares Carrola
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, Vila Real, Portugal.
- Department of Biology and Environment (DeBA/ECVA), University of Trás-os-Montes and Alto Douro, CITAB, Vila Real, Portugal.
| |
Collapse
|
2
|
Binelli A, Della Torre C, Nigro L, Riccardi N, Magni S. A realistic approach for the assessment of plastic contamination and its ecotoxicological consequences: A case study in the metropolitan city of Milan (N. Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150574. [PMID: 34592284 DOI: 10.1016/j.scitotenv.2021.150574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The study of the contamination of plastic mixtures sampled in natural environments is currently focused on their qualitative and quantitative assessment, while the evaluation of their effects on organisms is normally performed by experiments carried out at exposure conditions (size, shape, polymers) often far from the environmental ones. To improve the ecological realism, the aim of this study was to collect different plastic mixtures in 9 sampling stations located in 7 watercourses within the metropolitan city of Milan, one of the most anthropized and industrialized European areas, to evaluate both their qualitative and quantitative characteristics and, at the same time, to assess their ecotoxicological effects by exposing for 7 days some specimens of the freshwater bivalve Dreissena polymorpha to the mixtures collected in the sampling sites. The plastic characterization was performed by a Fourier-Transform Infrared spectrometer coupled with an optical microscope (μFT-IR), after several stages aimed to sample cleaning, separation of plastics and visual sorting. The possible effects caused by the plastic mixtures were carried out by the measurements of a biomarker suite to evaluate many cellular and molecular endpoints in mussel tissues. The main results showed a widespread and heterogeneous contamination of plastics in the entire metropolitan area, with contamination peaks found above all in the only two rivers of natural origin (Olona River and Lambro River) where comparable or higher values were reached than plastic concentrations measured in several European rivers. Despite this worrying contamination, the ecotoxicological data obtained after the exposures to the plastic mixtures collected in the selected water bodies showed only a mild effect on oxidative stress and on the variation of some antioxidant enzymes.
Collapse
Affiliation(s)
- Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Lara Nigro
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | | | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
3
|
Magni S, Nigro L, Della Torre C, Binelli A. Characterization of plastics and their ecotoxicological effects in the Lambro River (N. Italy). JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125204. [PMID: 33513553 DOI: 10.1016/j.jhazmat.2021.125204] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
This study had the dual objective of both the qualitative and quantitative assessment of plastic mixtures sampled in 5 different sites located along the Lambro River (northern Italy), and the contemporarily determination of the ecotoxicological effects of the same mixtures sampled, through 21-day laboratory exposures of the freshwater bivalve Dreissena polymorpha. The monitoring survey was carried out by a Fourier Transform Infrared Microscope System, while the ecotoxicological assessment was performed by the mussel mortality, a biomarker suite and the proteomics. The main results of the monitoring have highlighted some critical points, related to the concentration of plastics detected at Milan and, especially at the southernmost sampling station, where a daily flow of more than 6 million plastic debris has been estimated, ending directly into the Po River, the main Italian river. The ecotoxicological analysis highlighted how the toxicity is not exclusively due to the plastic concentration, but that the different characteristics of the polymers probably become more important. Furthermore, we observed an extensive mortality of bivalves exposed to the sampled mixtures in the two southernmost sampling stations, while the battery of biomarkers and the results of proteomics have highlighted how the sampled plastic mixtures caused an imbalance in the redox state, already indicated as a classic effect due to plastic exposure, but also an impact on energy stock and on some fundamental cellular pathways always linked to energy metabolism.
Collapse
Affiliation(s)
- Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Lara Nigro
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
4
|
Fontes MK, Maranho LA, Pereira CDS. Review on the occurrence and biological effects of illicit drugs in aquatic ecosystems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30998-31034. [PMID: 32361972 DOI: 10.1007/s11356-020-08375-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Illicit drugs (IDs) and their metabolites are recognized as contaminants of emerging concern. After consumption, illicit drugs are partially metabolized and excreted unchanged in urine and feces or as active metabolites reaching wastewater treatment plants (WWTPs). Furthermore, most WWTPs are insufficient in the treatment of effluents containing IDs, which may be released into aquatic ecosystems. Once in the water or sediment, these substances may interact and affect non-target organisms and some evidences suggest that illicit drugs may exhibit pseudo-persistence because of a continuous environmental input, resulting in long-term exposure to aquatic organisms that may be negatively affected by these biologically active compounds. We reviewed the literature on origin and consumption, human metabolism after consumption, aquatic occurrences, and toxicity of the major groups of illicit drugs (opioids, cannabis, synthetic drugs, and cocaine). As a result, it could be concluded that illicit drugs and their metabolites are widespread in diverse aquatic ecosystems in levels able to trigger sublethal effects to non-target organisms, besides to concentrate in seafood. This class of emerging contaminants represents a new environmental concern to academics, managers, and policymakers, whose would be able to assess risks and identify proper responses to reduce environmental impacts.
Collapse
Affiliation(s)
| | | | - Camilo Dias Seabra Pereira
- Department of Ecotoxicology, Santa Cecília University, Santos, São Paulo, Brazil.
- Department of Marine Sciences, Federal University of São Paulo, Santos, São Paulo, Brazil.
| |
Collapse
|
5
|
Magni S, Bonasoro F, Della Torre C, Parenti CC, Maggioni D, Binelli A. Plastics and biodegradable plastics: ecotoxicity comparison between polyvinylchloride and Mater-Bi® micro-debris in a freshwater biological model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137602. [PMID: 32325584 DOI: 10.1016/j.scitotenv.2020.137602] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/10/2020] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
The improper release of plastic items and wastes is nowadays one of the main environmental and social problems, whose solution or mitigation represents a great challenge worldwide. In this context, the growing use of the so-called biodegradable plastics could represent a possible solution in the short to medium term. The few information known about the ecological impact of these materials on freshwater organisms, especially the ones relative to the micro-debris derived from their aging, prompted us to study the comparison of the sub-lethal effects eventually caused by plastic and biodegradable plastic micro-debris on the mussel Dreissena polymorpha, which represents an excellent biological model for the freshwater ecosystems. We selected two powders of polyvinylchloride (PVC) and Mater-Bi® administered at 1 mg/L to D. polymorpha specimens in semi-static conditions for 14 days. The presence of micro-debris was evaluated on mussel tissues and pseudo-faeces using advanced microscopy techniques. The sub-lethal effects were investigated on exposed mussels at 6 and 14 days using a suite of biomarkers of cellular stress, oxidative damage, and genotoxicity. Lastly, we compared the ecotoxicity of these two materials integrating each endpoint in the Biomarker Response Index. Microscopy observations highlighted the surprising absence of micro-debris in the gut lumen and tissues of exposed mussels, but the presence of both PVC and Mater-Bi® micro-debris in the pseudo-faeces, suggesting a possible efficient elimination mechanism adopted by mussels to avoid the micro-debris gulping. Consequently, we did not observe significant sub-lethal effects, except for the glutathione-S-transferase activity modulation after 6 days of exposure.
Collapse
Affiliation(s)
- Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Francesco Bonasoro
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | | | - Daniela Maggioni
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
6
|
Binelli A, Pietrelli L, Di Vito S, Coscia L, Sighicelli M, Torre CD, Parenti CC, Magni S. Hazard evaluation of plastic mixtures from four Italian subalpine great lakes on the basis of laboratory exposures of zebra mussels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134366. [PMID: 31683209 DOI: 10.1016/j.scitotenv.2019.134366] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Studies related to the evaluation of plastics in freshwaters have been increasing in recent years because approximately 80% of plastic items found in the sea are from inland waters. Despite the ecological relevance of these surveys, no information has been available until now about the hazard related to plastic mixtures in freshwaters. To fill this knowledge gap, we carried out a study aimed to assess the environmental risk associated with the "cocktail" of plastics and environmental pollutants adsorbed on their surface in one of the larger European freshwater basins. Plastic debris was collected by a manta trawl along one transect each in four of the Italian subalpine great lakes (Lake Maggiore, Como, Iseo and Garda) and administered to zebra mussels (Dreissena polymorpha), a useful freshwater biological model present in all these lakes. We estimated a plastic density from 4908 MPs/km2 (Lake Iseo) to 272,261 MPs/km2 (Lake Maggiore), while the most common polymers found were polyethylene and polypropylene, with percentages varying between 73% and 100%. A biomarkers suite consisting of 10 different endpoints was performed after 7 days of exposure to investigate the molecular and cellular effects of plastics and related adsorbed pollutants. The main results highlighted a diffuse but different toxicity due to plastics for each lake, and there were significant changes in the antioxidant and detoxifying enzyme activities in Lake Maggiore, Iseo and Garda, an increase in protein carbonylation in L. Como, and a cellular viability decrease of approximately 30% for zebra mussels from L. Iseo and Garda. Despite this variability in the endpoints' responses, the application of the biomarker response index showed a similar environmental hazard due to plastics for all the sampled lakes.
Collapse
Affiliation(s)
- Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Loris Pietrelli
- ENEA, CR Casaccia, Via Anguillarese 301, 00123 S. Maria di Galeria, Rome, Italy
| | - Stefania Di Vito
- Legambiente, Legambiente Onlus, Via Salaria 403, 00199, Rome, Italy
| | - Lucia Coscia
- Legambiente, Legambiente Onlus, Via Salaria 403, 00199, Rome, Italy
| | - Maria Sighicelli
- ENEA, CR Casaccia, Via Anguillarese 301, 00123 S. Maria di Galeria, Rome, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | | | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
7
|
Magni S, Della Torre C, Garrone G, D'Amato A, Parenti CC, Binelli A. First evidence of protein modulation by polystyrene microplastics in a freshwater biological model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:407-415. [PMID: 31022646 DOI: 10.1016/j.envpol.2019.04.088] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Microplastics (MPs) are now one of the major environmental problems due to the large amount released in aquatic and terrestrial ecosystems, as well as their diffuse sources and potential impacts on organisms and human health. Still the molecular and cellular targets of microplastics' toxicity have not yet been identified and their mechanism of actions in aquatic organisms are largely unknown. In order to partially fill this gap, we used a mass spectrometry based functional proteomics to evaluate the modulation of protein profiling in zebra mussel (Dreissena polymorpha), one of the most useful freshwater biological model. Mussels were exposed for 6 days in static conditions to two different microplastic mixtures, composed by two types of virgin polystyrene microbeads (size = 1 and 10 μm) each one. The mixture at the lowest concentration contained 5 × 105 MP/L of 1 μm and 5 × 105 MP/L of 10 μm, while the higher one was arranged with 2 × 106 MP/L of 1 μm and 2 × 106 MP/L of 10 μm. Proteomics' analyses of gills showed the complete lack of proteins' modulation after the exposure to the low-concentrated mixture, while even 78 proteins were differentially modulated after the exposure to the high-concentrated one, suggesting the presence of an effect-threshold. The modulated proteins belong to 5 different classes mainly involved in the structure and function of ribosomes, energy metabolism, cellular trafficking, RNA-binding and cytoskeleton, all related to the response against the oxidative stress.
Collapse
Affiliation(s)
- S Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - C Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - G Garrone
- UNITECH OMICS Platform, University of Milan, Viale Ortles 22/4, 20139, Milan, Italy
| | - A D'Amato
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via Mangiagalli 25, 20133, Milan, Italy
| | - C C Parenti
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - A Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
8
|
Magni S, Binelli A, Pittura L, Avio CG, Della Torre C, Parenti CC, Gorbi S, Regoli F. The fate of microplastics in an Italian Wastewater Treatment Plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:602-610. [PMID: 30368189 DOI: 10.1016/j.scitotenv.2018.10.269] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 04/14/2023]
Abstract
The emerged threat of microplastics (MPs) in aquatic ecosystems is posing a new challenges in environmental management, in particular the civil Wastewater Treatment Plants (WWTPs) which can act both as collectors of MPs from anthropic use and as a source to natural environments. In this study, MP fate was investigated in one of the biggest WWTPs of Northern Italy, built at the beginning of the 2000s and which serves a population equivalent of about 1,200,000, by evaluating their presence at the inlet (IN), the removal efficiency after the settler (SET) and at the outlet (OUT), and their transfer to sludge. Samples were collected in three days of a week and plastic debris was characterized in terms of shape, size and polymer composition using the Fourier Transform Infrared Microscope System (μFT-IR). The number of detected MPs was 2.5 ± 0.3 MPs/L in the IN, 0.9 ± 0.3 MPs/L after the SET and 0.4 ± 0.1 MPs/L in the OUT, indicating a total removal efficiency of 84%. However, considering that this WWTP treats about 400,000,000 L wastewaters/day, the potential release of MPs to the receiving aquatic system would be approximately 160,000,000 MPs/day, mainly polyesters (35%) and polyamide (17%). Furthermore, a great amount of MPs removed from wastewater was detected in the recycled activated sludge, with 113 ± 57 MPs/g sludge dry weight, corresponding to about 3,400,000,000 MPs deposited in the 30 tons of sludge daily produced by this WWTP. Given the possible re-use of WWTP sludge in fertilizers for agriculture, our results highlight that WWTPs could represent a potential source of MPs also to agroecosystems.
Collapse
Affiliation(s)
- Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Lucia Pittura
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Carlo Giacomo Avio
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | | | - Stefania Gorbi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; National Inter-University Consortium for Marine Sciences, CoNISMa, U.L.R., Ancona, Italy
| | - Francesco Regoli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; National Inter-University Consortium for Marine Sciences, CoNISMa, U.L.R., Ancona, Italy
| |
Collapse
|
9
|
Parenti CC, Ghilardi A, Della Torre C, Mandelli M, Magni S, Del Giacco L, Binelli A. Environmental concentrations of triclosan activate cellular defence mechanism and generate cytotoxicity on zebrafish (Danio rerio) embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1752-1758. [PMID: 30273734 DOI: 10.1016/j.scitotenv.2018.09.283] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
Triclosan (TCS, 5‑chloro‑2‑(2,4‑dichlorophenoxy) phenol) is becoming a major surface waters pollutant worldwide at concentrations ranging from ng L-1 to μg L-1. Up to now, the adverse effects on aquatic organisms have been investigated at concentrations higher than the environmental ones, and the pathways underlying the observed toxicity are still not completely understood. Therefore, the aim of this study was to investigate the toxic effects of TCS at environmental concentrations on zebrafish embryos up to 120 hours post fertilization (hpf). The experimental design was planned considering both the quantity and the exposure time for the effects on the embryos, exposing them to two different concentrations (0.1 μg L-1, 1 μg L-1) of TCS, for 24 h (from 96 to 120 hpf) and for 120 h (from 0 to 120 hpf). A suite of biomarkers was applied to measure the induction of embryos defence system, the possible increase of oxidative stress and the DNA damage. We measured the activity of glutathione‑S‑transferase (GST), P‑glycoprotein efflux and ethoxyresorufin‑o‑deethylase (EROD), the level of ROS, the oxidative damage through the Protein Carbonyl Content (PCC) and the activity of antioxidant enzymes. The genetic damage was evaluated through DNA Diffusion Assay, Micronucleus test (MN test), and Comet test. The results showed a clear response of embryos defence mechanism, through the induction of P-gp efflux functionality and the activity of detoxifying/antioxidant enzymes, preventing the onset of oxidative damage. Moreover, the significant increase of cell necrosis highlighted a strong cytotoxic potential for TCS. The overall results obtained with environmental concentrations and both exposure time, underline the critical risk associated to the presence of TCS in the aquatic environment.
Collapse
Affiliation(s)
| | - Anna Ghilardi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Matteo Mandelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Luca Del Giacco
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
10
|
Gajski G, Žegura B, Ladeira C, Pourrut B, Del Bo’ C, Novak M, Sramkova M, Milić M, Gutzkow KB, Costa S, Dusinska M, Brunborg G, Collins A. The comet assay in animal models: From bugs to whales – (Part 1 Invertebrates). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:82-113. [DOI: 10.1016/j.mrrev.2019.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 01/09/2023]
|
11
|
Magni S, Gagné F, André C, Della Torre C, Auclair J, Hanana H, Parenti CC, Bonasoro F, Binelli A. Evaluation of uptake and chronic toxicity of virgin polystyrene microbeads in freshwater zebra mussel Dreissena polymorpha (Mollusca: Bivalvia). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:778-788. [PMID: 29544181 DOI: 10.1016/j.scitotenv.2018.03.075] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 04/14/2023]
Abstract
Microplastics (MPs), plastic debris smaller than 5mm, are widely found in both marine and freshwater ecosystems. However, few studies regarding their hazardous effects on inland water organisms, have been conducted. For this reason, the aim of our research was the evaluation of uptake and chronic toxicity of two mixtures (MIXs) of virgin polystyrene microbeads (PMs) of 10μm and 1μm in size (MIX 1, with 5×105 of 1μmsizePMs/L and 5×105 of 10μmsizePMs/L, and MIX 2 with 2×106 of 1μmsizePMs/L and 2×106 of 10μmsizePMs/L) on freshwater zebra mussel Dreissena polymorpha (Mollusca: Bivalvia) during 6 exposure days. The PM uptake in the mussel body and hemolymph was assessed using confocal microscopy, while the chronic toxicity of PMs was evaluated on exposed mussels using a comprehensive battery of biomarkers of cellular stress, oxidative damage and neuro- genotoxicity. Confocal microscopy analyses showed that MPs concentrated in the gut lumen of exposed mussels, absorbed and transferred firstly in the tissues and then in the hemolymph. The results revealed that PMs do not produce oxidative stress and genetic damage, with the exception of a significant modulation of catalase and glutathione peroxidase activities in mussels exposed to MIX 1. Regarding neurotoxicity, we observed only a significant increase of dopamine concentration in mussels exposed to both MIXs, suggesting a possible implication of this neurotransmitter in an elimination process of accumulated PMs. This research represents a first study about the evaluation of virgin MP toxicity in zebra mussel and more research is warranted concerning the long term neurological effects of virgin MPs.
Collapse
Affiliation(s)
- Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - François Gagné
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, H2Y 2E7 Montréal, Québec, Canada
| | - Chantale André
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, H2Y 2E7 Montréal, Québec, Canada
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Joëlle Auclair
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, H2Y 2E7 Montréal, Québec, Canada
| | - Houda Hanana
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, H2Y 2E7 Montréal, Québec, Canada
| | | | - Francesco Bonasoro
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
12
|
Magni S, Parolini M, Della Torre C, de Oliveira LF, Catani M, Guzzinati R, Cavazzini A, Binelli A. Multi-biomarker investigation to assess toxicity induced by two antidepressants on Dreissena polymorpha. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 578:452-459. [PMID: 27839760 DOI: 10.1016/j.scitotenv.2016.10.208] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 06/06/2023]
Abstract
Antidepressants are one of the main pharmaceutical classes detected in the aquatic environment. Nevertheless, there is a dearth of information regarding their potential adverse effects on non-target organisms. Thus, the aim of this study was the evaluation of sub-lethal effects on the freshwater mussel Dreissena polymorpha of two antidepressants commonly found in the aquatic environment, namely Fluoxetine (FLX) and Citalopram (CT). D. polymorpha specimens were exposed to FLX and CT alone and to their mixture (MIX) at the environmental concentration of 500ng/L for 14days. We evaluated the sub-lethal effects in the mussel soft tissues by means of a biomarker suite: the activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and the activity of the phase II detoxifying enzyme glutathione-S-transferase (GST). The oxidative damage was evaluated by lipid peroxidation (LPO) and protein carbonylation (PCC), while genetic damage was tested on D. polymorpha hemocytes by Single Cell Gel Electrophoresis (SCGE) assay, DNA diffusion assay and micronucleus test (MN test). Finally, the functionality of the ABC transporter P-glycoprotein (P-gp) was measured in D. polymorpha gills. Our results highlight that CT, MIX and to a lesser extent FLX, caused a significant alteration of the oxidative status of bivalves, accompanied by a significant reduction of P-gp efflux activity. However, only FLX induced a slight, but significant, increase in apoptotic and necrotic cell frequencies. Considering the variability in biomarker response and to perform a toxicity comparison of tested molecules, we integrated each endpoint into the Biomarker Response Index (BRI). The data integration showed that 500ng/L of FLX, CT and their MIX have the same toxicity on bivalves.
Collapse
Affiliation(s)
- Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Marco Parolini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | | | - Martina Catani
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Roberta Guzzinati
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; ENEA SSPT-USER-R4R, Via Martiri Monte Sole 4, 40129 Bologna, Italy
| | - Alberto Cavazzini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
13
|
Matozzo V, Bertin V, Battistara M, Guidolin A, Masiero L, Marisa I, Orsetti A. Does the antibiotic amoxicillin affect haemocyte parameters in non-target aquatic invertebrates? The clam Ruditapes philippinarum and the mussel Mytilus galloprovincialis as model organisms. MARINE ENVIRONMENTAL RESEARCH 2016; 119:51-8. [PMID: 27219711 DOI: 10.1016/j.marenvres.2016.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/09/2016] [Accepted: 05/17/2016] [Indexed: 05/07/2023]
Abstract
Amoxicillin (AMX) is one of the most widely used antibiotics worldwide, and its levels in aquatic ecosystems are expected to be detectable. At present, information concerning the toxic effects of AMX on non-target aquatic organisms, such as bivalves, is scarce. Consequently, in this study, we investigated for the first time the effects of AMX on the haemocyte parameters of two bivalve species, the clam Ruditapes philippinarum and the mussel Mytilus galloprovincialis, which share the same habitat in the Lagoon of Venice, in order to compare the relative sensitivity of the two species. The bivalves were exposed to 100, 200 and 400 μg AMX/L for 1, 3 and 7 days, and the effects on the total haemocyte count (THC), the diameter and volume of the haemocytes, haemocyte proliferation, lactate dehydrogenase (LDH) activity in cell-free haemolymph, the haemolymph pH, and the formation of micronuclei were evaluated. The actual concentrations of AMX in the seawater samples from the experimental tanks were also measured. Overall, the obtained results demonstrated that AMX affected slightly the haemocyte parameters of bivalves. In addition, no clear differences in terms of sensitivity to AMX exposure were recorded between the two bivalve species.
Collapse
Affiliation(s)
- Valerio Matozzo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| | - Valeria Bertin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Margherita Battistara
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Angelica Guidolin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Luciano Masiero
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Ilaria Marisa
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Alessandro Orsetti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
14
|
Draft Genome Sequence of Agrobacterium sp. Strain R89-1, a Morphine Alkaloid-Biotransforming Bacterium. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00196-16. [PMID: 27056219 PMCID: PMC4824252 DOI: 10.1128/genomea.00196-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Agrobacterium sp. strain R89-1 isolated from composted wastes of Papaver somniferum can effectively biotransform codeine/morphine into 14-OH-derivatives. Here, we present a 4.7-Mb assembly of the R89-1 strain genome. The draft shows that the strain R89-1 represents a distinct phylogenetic lineage within the genus Agrobacterium.
Collapse
|