1
|
Zhong B, Ling X, Meng J, Han Y, Zhang H, Liu Z, Chen J, Zhang H, Pan Z, Liu L. Hsa_circ_0001944 regulates apoptosis by regulating the binding of PARP1 and HuR in leukemia and malignant transformed cells induced by hydroquinone. ENVIRONMENTAL TOXICOLOGY 2023; 38:381-391. [PMID: 36448377 DOI: 10.1002/tox.23719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 11/13/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Hydroquinone (HQ) is one of the major metabolites of benzene and can cause abnormal gene expression. It is a known carcinogen that alters cell cycle disruption and cell proliferation. However, its chemical mechanism remain a mystery. Circular RNAs (circRNAs) are a subtype of noncoding RNAs (ncRNAs) that play a variety of roles in biological processes. Hsa_circ_001944 expression was upregulated in 30 leukemia patients and HQ-induced malignant transformed TK6 cells. Hsa_circ_001944 silencing inhibited the growth of HQ-TK6 cells and halted the cell cycle. The silencing of hsa_circ_0001944 led to increased cell accumulation in G1 versus S phase, increased apoptosis in the sh1944 versus the shNC group, and increased levels of DNA damage (γ-H2AX), leading to cell cycle arrest. In summary, inhibition of hsa_circ_001944 restricted cell growth by inhibiting cell cycle arrest and induced growth of HQ-TK6 cells by modulating PARP1 expression. Hsa_circ_0001944 targeted HuR, which is a kind of RNA-binding protein, to control PARP1 expression via RNAinter, RBPmap, and RBPdb. Fluorescence in situ hybridization combined with immunofluorescent labeling and western blotting experiments showed that hsa_circ_001944 was able to dissociate HuR and PARP1 binding in HQ-TK6 cells, control PARP1 production, and ultimately alter the PARP1/H-Ras pathway.
Collapse
Affiliation(s)
- Bohuan Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Xiaoxuan Ling
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Jinxue Meng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Yali Han
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Haiqiao Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Hospital Infection Management, Dongguan Maternal and Child Health Care Hospital, Dongguan, People's Republic of China
| | - Zhidong Liu
- Department of Occupational Disease, Huizhou Hospital for Occupational Disease Prevention and Treatment, Huizhou, People's Republic of China
| | - Jialong Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - He Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Zhijie Pan
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Linhua Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| |
Collapse
|
2
|
Phillips RV, Wei L, Cardenas A, Hubbard AE, McHale CM, Vermeulen R, Wei H, Smith MT, Zhang L, Lan Q, Rothman N. Epigenome-wide association studies of occupational exposure to benzene and formaldehyde. Epigenetics 2022; 17:2259-2277. [PMID: 36017556 PMCID: PMC9665125 DOI: 10.1080/15592294.2022.2115604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Sufficient evidence supports a relationship between certain myeloid neoplasms and exposure to benzene or formaldehyde. DNA methylation could underlie benzene- and formaldehyde-induced health outcomes, but data in exposed human populations are limited. We conducted two cross-sectional epigenome-wide association studies (EWAS), one in workers exposed to benzene and another in workers exposed to formaldehyde. Using HumanMethylation450 BeadChips, we investigated differences in blood cell DNA methylation among 50 benzene-exposed subjects and 48 controls, and among 31 formaldehyde-exposed subjects and 40 controls. We performed CpG-level and regional-level analyses. In the benzene EWAS, we found genome-wide significant alterations, i.e., FWER-controlled P-values <0.05, in the mean and variance of methylation at 22 and 318 CpG sites, respectively, and in mean methylation of a large genomic region. Pathway analysis of genes corresponding to benzene-associated differential methylation sites revealed an impact on the AMPK signalling pathway. In formaldehyde-exposed subjects compared to controls, 9 CpGs in the DUSP22 gene promoter had genome-wide significant decreased methylation variability and a large region of the HOXA5 promoter with 44 CpGs was hypomethylated. Our findings suggest that DNA methylation may contribute to the pathogenesis of diseases related to benzene and formaldehyde exposure. Aberrant expression and methylation of HOXA5 previously has been shown to be clinically significant in myeloid leukaemias. The tumour suppressor gene DUSP22 is a potential biomarker of exposure to formaldehyde, and irregularities have been associated with multiple exposures and diseases.
Collapse
Affiliation(s)
- Rachael V. Phillips
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Linqing Wei
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Andres Cardenas
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Alan E. Hubbard
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Cliona M. McHale
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Roel Vermeulen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Universiteit Utrecht (UU), Utrecht, The Netherlands
| | - Hu Wei
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, NCI, NIH, DHHS, Bethesda, MD, USA
| | - Martyn T. Smith
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Luoping Zhang
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, NCI, NIH, DHHS, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, NCI, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
3
|
Yang X, Li C, Yu G, Sun L, Guo S, Sai L, Bo C, Xing C, Shao H, Peng C, Jia Q. Ligand-independent activation of AhR by hydroquinone mediates benzene-induced hematopoietic toxicity. Chem Biol Interact 2022; 355:109845. [DOI: 10.1016/j.cbi.2022.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022]
|
4
|
Chiou JT, Huang CH, Lee YC, Wang LJ, Shi YJ, Chen YJ, Chang LS. Compound C induces autophagy and apoptosis in parental and hydroquinone-selected malignant leukemia cells through the ROS/p38 MAPK/AMPK/TET2/FOXP3 axis. Cell Biol Toxicol 2020; 36:315-331. [PMID: 31900833 DOI: 10.1007/s10565-019-09495-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022]
Abstract
Hydroquinone (HQ), a major metabolic product of benzene, causes acute myeloid leukemia (AML) elicited by benzene exposure. Past studies found that continuous exposure of human AML U937 cells to HQ selectively produces malignant U937/HQ cells in which FOXP3 upregulation modulates malignant progression. Other studies revealed that AMPK promotes TET2 activity on DNA demethylation and that TET2 activity is crucial for upregulating FOXP3 expression. This study was conducted to elucidate whether compound C, an AMPK inhibitor, blocked the AMPK-TET2-FOXP3 axis in AML and in HQ-selected malignant cells. We found higher levels of AMPKα, TET2, and FOXP3 expression in U937/HQ cells compared to U937 cells. Treatment of parental Original Article and HQ-selected malignant U937 cells with compound C induced ROS-mediated p38 MAPK activation, leading to a suppression of AMPKα, TET2, and FOXP3 expression. Moreover, compound C induced apoptosis and mTOR-independent autophagy. The suppression of the autophagic flux inhibited the apoptosis of compound C-treated U937 and U937/HQ cells, whereas co-treatment with rapamycin, a mTOR inhibitor, sensitized the two cell lines to compound C cytotoxicity. Overexpression of AMPKα1 or pretreatment with autophagic inhibitors abrogated compound C-induced autophagy and suppression of TET2 and FOXP3 expression. Restoration of AMPKα1 or FOXP3 expression increased cell survival after treatment with compound C. In conclusion, our results show that compound C suppresses AMPK/TET2 axis-mediated FOXP3 expression and induces autophagy-dependent apoptosis in parental and HQ-selected malignant U937 cells, suggesting that the AMPK/TET2/FOXP3 axis is a promising target for improving AML therapy and attenuating benzene exposure-induced AML progression.
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan. .,Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
5
|
Xu Y, Gao Y, Huang Z, Zheng Y, Teng W, Zheng D, Zheng X. LKB1 suppresses androgen synthesis in a mouse model of hyperandrogenism via IGF-1 signaling. FEBS Open Bio 2019; 9:1817-1825. [PMID: 31433577 PMCID: PMC6768104 DOI: 10.1002/2211-5463.12723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/30/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a major cause of anovulatory sterility in women, and most PCOS patients exhibit hyperandrogenism (HA). Liver kinase b1 (LKB1) is a tumor suppressor that has recently been reported to be involved in PCOS. However, the mechanism by which LKB1 affects HA has not previously been elucidated. We report here that ovarian LKB1 levels are significantly decreased in a female mouse model of HA. Moreover, we report that LKB1 expression is inhibited by elevated androgens via activation of androgen receptors. In addition, LKB1 treatment was observed to suppress androgen synthesis in theca cells and promote estrogen production in granulosa cells by regulating steroidogenic enzyme expression. As expected, LKB1 knockdown inhibited estrogen levels and enhanced androgen levels, and LKB1-transgenic mice were protected against HA. The effect of LKB1 appears to be mediated via IGF-1 signaling. In summary, we describe here a key role for LKB1 in controlling sex hormone levels.
Collapse
Affiliation(s)
- Ying Xu
- Department of Obstetrics and Gynecologythe 476th Hospital of PLAFuzhouChina
- Fuzong Clinical CollegeFujian Medical UniversityFuzhouChina
| | - Yongxing Gao
- Department of Obstetrics and GynecologyZhongda Hospital Southeast UniversityNanjingChina
| | - Zufang Huang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of EducationFujian Provincial Key Laboratory of Photonics TechnologyFujian Normal UniversityFuzhouChina
| | - Yan Zheng
- Department of Obstetrics and Gynecologythe 476th Hospital of PLAFuzhouChina
| | - Wenjuan Teng
- Department of Obstetrics and Gynecologythe 476th Hospital of PLAFuzhouChina
| | - Deyan Zheng
- Department of Obstetrics and Gynecologythe 476th Hospital of PLAFuzhouChina
| | - Xiaohua Zheng
- Department of Obstetrics and Gynecologythe 476th Hospital of PLAFuzhouChina
| |
Collapse
|
6
|
Protective Effects of Aqueous Extracts of Flos lonicerae Japonicae against Hydroquinone-Induced Toxicity in Hepatic L02 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4528581. [PMID: 30581530 PMCID: PMC6276457 DOI: 10.1155/2018/4528581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/21/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Abstract
Hydroquinone (HQ) is widely used in food stuffs and is an occupational and environmental pollutant. Although the hepatotoxicity of HQ has been demonstrated both in vitro and in vivo, the prevention of HQ-induced hepatotoxicity has yet to be elucidated. In this study, we focused on the intervention effect of aqueous extracts of Flos lonicerae Japonicae (FLJ) on HQ-induced cytotoxicity. We demonstrated that HQ reduced cell viability in a concentration-dependent manner by administering 160 μmol/L HQ for 12 h as the positive control of cytotoxicity. The aqueous FLJ extracts significantly increased cell viability and decreased LDH release, ALT, and AST in a concentration-dependent manner compared with the corresponding HQ-treated groups in hepatic L02 cells. This result indicated that aqueous FLJ extracts could protect the cytotoxicity induced by HQ. HQ increased intracellular MDA and LPO and decreased the activities of GSH, GSH-Px, and SOD in hepatic L02 cells. In addition, aqueous FLJ extracts significantly suppressed HQ-stimulated oxidative damage. Moreover, HQ promoted DNA double-strand breaks (DSBs) and the level of 8-hydroxy-2'-deoxyguanosine and apoptosis. However, aqueous FLJ extracts reversed HQ-induced DNA damage and apoptosis in a concentration-dependent manner. Overall, our results demonstrated that the toxicity of HQ was mediated by intracellular oxidative stress, which activated DNA damage and apoptosis. The findings also proved that aqueous FLJ extracts exerted protective effects against HQ-induced cytotoxicity in hepatic L02 cells.
Collapse
|
7
|
Liu J, Yuan Q, Ling X, Tan Q, Liang H, Chen J, Lin L, Xiao Y, Chen W, Liu L, Tang H. PARP‑1 may be involved in hydroquinone‑induced apoptosis by poly ADP‑ribosylation of ZO‑2. Mol Med Rep 2017; 16:8076-8084. [PMID: 28983606 PMCID: PMC5779892 DOI: 10.3892/mmr.2017.7643] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 05/17/2017] [Indexed: 02/07/2023] Open
Abstract
Hydroquinone (HQ), a major reactive metabolite of benzene, contributes to benzene-induced leukemia. The molecular mechanisms that underlie this activity remain to be elucidated. Poly ADP-ribosylation (PARylation) is a type of reversible posttranslational modification that is performed by enzymes in the PAR polymerase (PARP) family and mediates different biological processes, including apoptosis. Zona occludens 2 (ZO-2) is a tight junction scaffold protein, which is involved in cell proliferation and apoptosis. The present study investigated the activity and mechanisms regulated by PARP-1 during HQ-induced apoptosis using TK6 lymphoblastoid cells and PARP-1-silenced TK6 cells. The results revealed that exposure to 10 µM HQ for 72 h induced apoptosis in TK6 cells and that apoptosis was attenuated in PARP-1-silenced TK6 cells. In cells treated with HQ, inhibition of PARP-1 increased the expression of B cell leukemia/lymphoma 2 (Bcl-2), increased ATP production and reduced reactive oxygen species (ROS) production relative to the levels observed in cells treated with HQ alone. Co-localization of ZO-2 and PAR (or PARP-1 protein) was determined using immunofluorescence confocal microscopy. The findings of the present study revealed that ZO-2 was PARylated via an interaction with PARP-1, which was consistent with an analysis of protein expression that was performed using western blot analysis, which determined that ZO-2 protein expression was upregulated in HQ-treated control cells and downregulated in HQ-treated PARP-1-silenced TK6 cells. These findings indicated that prolonged exposure to a low dose of HQ induced TK6 cells to undergo apoptosis, whereas inhibiting PARP-1 attenuates cellular apoptosis by activating Bcl-2 and energy-saving processes and reducing ROS. The present study determined that PARP-1 was involved in HQ-induced apoptosis by PARylation of ZO-2.
Collapse
Affiliation(s)
- Jiaxian Liu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Qian Yuan
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Xiaoxuan Ling
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Qiang Tan
- General Office, Foshan Institute of Occupational Disease Prevention and Control, Foshan, Guangdong 528000, P.R. China
| | - Hairong Liang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Jialong Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lianzai Lin
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yongmei Xiao
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wen Chen
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Linhua Liu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
8
|
Tao HY, Qu ZY, Wei GM, Sheng J, Wang WL, Wan LX. Role of LKB1 in proliferation and apoptosis of gastric cancer cells. Shijie Huaren Xiaohua Zazhi 2016; 24:3262-3269. [DOI: 10.11569/wcjd.v24.i21.3262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the role of LKB1 in gastric cancer cells and the related mechanism.
METHODS: Real-time PCR and Western blot were used to detect the expression of LKB1 in SGC7901 cells carrying LKB1 expression vector or siRNA against LKB1. Flow cytometry was used to detect the apoptosis of SGC7901 cells after LKB1 overexpression or knockdown. Reactive oxygen detection kits were applied to detect the impact of LKB1 on ROS production. MTT method was used to determine intracellular ROS production after NAC inhibition. Western blot was used to detect the expression of apoptosis related proteins in SGC7901 cells after LKB1 overexpression or knockdown.
RESULTS: LKB1 expression was efficiently enhanced or silenced by LKB1 expression vector or siRNA against LKB1, respectively. The number of SGC7901 cells decreased as its proliferation rate decreased and apoptosis rate increased (3.54% vs 1.29%). Intracellular ROS production was increased but blunted by the use of NAC. The apoptosis of SGC7901 cells was significantly reduced following the inhibition of intracellular ROS, but the siRNA transfected group exhibited an opposite trend. Western blot analysis showed that LKB1 overexpression up-regulated the expression of cleaved Caspase3 in SGC7901 cells significantly (about 3.12 times), compared with control cells, but the expression of cleaved Caspase3 in the siRNA transfected group was decreased.
CONCLUSION: LKB1 raises the production of ROS and up-regulates the expression of cleaved Caspase3 to promote gastric cancer cell apoptosis. Hence, LKB1 plays an important role in the development of gastric cancer and it may be a valuable target for chemotherapy of gastric cancer.
Collapse
|