1
|
Yang Z, Zhou J, Zhu L, Chen A, Cheng Y. Label-free quantification proteomics analysis reveals acute hyper-osmotic responsive proteins in the gills of Chinese mitten crab (Eriocheir sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101009. [PMID: 35777161 DOI: 10.1016/j.cbd.2022.101009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Chinese mitten crab (Eriocheir sinensis) is a typical euryhaline crustacean to study osmotic regulation of crustaceans. Osmotic-regulation of Chinese mitten crab is a complex process. In order to study the osmotic-regulation related proteins of Chinese mitten crab, we domesticated Chinese mitten crab for 144 h with 25 salinity sea water (SW) and 0 salinity fresh water (FW) respectively, and then analyzed the proteome of its posterior gills. A total of 1453 proteins were identified by label free proteomics. Under the threshold of 2 fold change (FC), 242 differentially expressed proteins (DEPs) were screened, including 122 up-regulated DEPs and 120 down-regulated DEPs. GO database and KEGG database were used to annotate and enrich DEPs. It was found that DEPs were significantly enriched in energy metabolism, signal transduction, ion transport, actin cytoskeleton, immunity, lipid metabolism, amino acid metabolism and other biological functions. After 144 h of high salinity stress, the energy metabolism of Chinese mitten crab decreased and the expression of actin and cytoskeleton protein increased. In order to cope with oxidative damage caused by high salinity, Chinese mitten crab improved its immunity and antioxidant capacity.
Collapse
Affiliation(s)
- Zhigang Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Junyu Zhou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Liangliang Zhu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Aqin Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yongxu Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Ma Y, Liu H, Du X, Shi Z, Liu X, Wang R, Zhang S, Tian Z, Shi L, Guo H, Zhang H. Advances in the toxicology research of microcystins based on Omics approaches. ENVIRONMENT INTERNATIONAL 2021; 154:106661. [PMID: 34077854 DOI: 10.1016/j.envint.2021.106661] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs) are the most widely distributed cyanotoxins, which can be ingested by animals and human body in multiple ways, resulting in a threat to human health and the biodiversity of wildlife. Therefore, the study on toxic effects and mechanisms of MCs is one of the focuses of attention. Recently, the Omics techniques, i.e. genomics, transcriptomics, proteomics and metabolomics, have significantly contributed to the comprehensive understanding and revealing of the molecular mechanisms about the toxicity of MCs. This paper mainly reviews current literature using the Omics approaches to explore the toxicity mechanism of MCs in liver, gonad, spleen, brain, intestine and lung of multiple species. It was found that MCs can exert strong toxic effects on various metabolic activities and cell signal transduction in cell cycle, apoptosis, destruction of cell cytoskeleton and redox disorder, at protein, transcription and metabolism level. Meanwhile, it was also revealed that the alteration of non-coding RNAs (miRNA, circRNA and lncRNA, etc.) and gut microbiota plays an essential regulatory role in the toxic effects of MCs, especially in hepatotoxicity and reproductive toxicity. In addition, we summarized current research gaps and pointed out the future directions for research. The detailed information in this paper shows that the application and development of Omics techniques have significantly promoted the research on MCs toxicity, and it is also a valuable resource for exploring the toxic mechanism of MCs.
Collapse
Affiliation(s)
- Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Ziang Shi
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, PR China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, PR China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
3
|
|
4
|
Liu Y, Liu X, Wang Y, Yi C, Tian J, Liu K, Chu J. Protective effect of lactobacillus plantarum on alcoholic liver injury and regulating of keap-Nrf2-ARE signaling pathway in zebrafish larvae. PLoS One 2019; 14:e0222339. [PMID: 31509586 PMCID: PMC6738915 DOI: 10.1371/journal.pone.0222339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/27/2019] [Indexed: 12/31/2022] Open
Abstract
This research investigated the protective effect of lactobacillus plantarum against alcohol-induced liver injury and the regulatory mechanism of Keap-Nrf2-ARE signal pathway in zebrafish. Firstly, a zebrafish alcoholic liver injury model was established using1.0mM of ethanol concentration, then two forms of lactobacillus plantarum treatment were designed to perform repair, including a lactobacillus plantarum thallus suspension (LPS) and a lactobacillus plantarum thallus breaking solution (LPBS). After 24h of alcohol injury, lactobacillus plantarum concentrations of 0, 1.0×105, 1.0×106, 1.0×107 and 1.5×107 cfu/mL were added to protect zebrafish larvae. Then with the treatment of lactobacillus plantarum after 48h, activities of alanine transaminase (ALT), aspartate transaminase (AST), superoxide dismutase (SOD) and malondialdehyde (MDA) in zebrafish tissue homogenate were respectively determined. Keap-Nrf2-ARE signal pathway related gene expression conditions were also analyzed, including nuclear factor (erythroid-derived 2)-like 2(Nrf2), Kelch like ECH associated protein 1(Keap1), catalase(CAT), hemooxygenase1(HO1) and Glutathione S-Transferase Kappa 1(gstk1). Results showed that: in comparison with the control group, the LPBS with dosage of 1.0×107 cfu/mL remarkably improved the activities of SOD, CAT, HO1and gstk1 in zebrafish larvae liver (P<0.05), resulting in significant increase of the protein expression level of Nrf2 (225.78%) and suppression of Keap1 gene expression (73.67%)(P<0.01). As confirmed by the results, lactobacillus plantarum activated the Keap-Nrf2-ARE signal pathway from the level of transcription, the up-regulation of the expression quantity of Nrf2 protected the organism from oxidative stress and maximally reduced liver injury.
Collapse
Affiliation(s)
- Yaping Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, Shandong, China
- School of Medical Instrument and Food Engineering, University of Shanhai for Science and Technology, Shanghai, China
| | - Xiaoqian Liu
- Department of General Practice of Shandong Provincial Qianfoshan Hospital, Ji’nan, Shandong, China
| | - Ying Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, Shandong, China
| | - Cao Yi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, Shandong, China
| | - Jiahui Tian
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, Shandong, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, Shandong, China
| | - Jie Chu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, Shandong, China
| |
Collapse
|
5
|
Díez-Quijada L, Puerto M, Gutiérrez-Praena D, Llana-Ruiz-Cabello M, Jos A, Cameán AM. Microcystin-RR: Occurrence, content in water and food and toxicological studies. A review. ENVIRONMENTAL RESEARCH 2019; 168:467-489. [PMID: 30399604 DOI: 10.1016/j.envres.2018.07.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Microcystins (MCs) are hepatotoxins, produced by various species of cyanobacteria, whose occurrence is increasing worldwide owing to climate change and anthropogenic activities. More than 100 variants have been reported, and among them MC-LR is the most extensively studied, but there are other MC congeners that deserve to be investigated. The need for data to characterize the toxicological profile of MC variants other than MC-LR has been identified in order to improve risk assessment in humans and wildlife. Accordingly, the aim of this study was to evaluate the information available in the scientific literature dealing with MC-RR, as this congener is the second most common cyanotoxin in the environment. The review focuses on aspects such as occurrence in water and food, and toxicity studies both in vitro and in vivo. It reveals that, although MC-RR is a real hazard with a high exposure potential in some countries, little is known yet about its specific toxicological properties that differ from those of MC-LR, and important aspects such as genotoxicity and chronic effects have not yet been sufficiently addressed.
Collapse
Affiliation(s)
- Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Daniel Gutiérrez-Praena
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - María Llana-Ruiz-Cabello
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| |
Collapse
|
6
|
Schuurmans JM, Brinkmann BW, Makower AK, Dittmann E, Huisman J, Matthijs HCP. Microcystin interferes with defense against high oxidative stress in harmful cyanobacteria. HARMFUL ALGAE 2018; 78:47-55. [PMID: 30196924 DOI: 10.1016/j.hal.2018.07.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Harmful cyanobacteria producing toxic microcystins are a major concern in water quality management. In recent years, hydrogen peroxide (H2O2) has been successfully applied to suppress cyanobacterial blooms in lakes. Physiological studies, however, indicate that microcystin protects cyanobacteria against oxidative stress, suggesting that H2O2 addition might provide a selective advantage for microcystin-producing (toxic) strains. This study compares the response of a toxic Microcystis strain, its non-toxic mutant, and a naturally non-toxic Microcystis strain to H2O2 addition representative of lake treatments. All three strains initially ceased growth upon H2O2 addition. Contrary to expectation, the non-toxic strain and non-toxic mutant rapidly degraded the added H2O2 and subsequently recovered, whereas the toxic strain did not degrade H2O2 and did not recover. Experimental catalase addition enabled recovery of the toxic strain, demonstrating that rapid H2O2 degradation is indeed essential for cyanobacterial survival. Interestingly, prior to H2O2 addition, gene expression of a thioredoxin and peroxiredoxin was much lower in the toxic strain than in its non-toxic mutant. Thioredoxin and peroxiredoxin are both involved in H2O2 degradation, and microcystin may potentially suppress their activity. These results show that microcystin-producing strains are less prepared for high levels of oxidative stress, and are therefore hit harder by H2O2 addition than non-toxic strains.
Collapse
Affiliation(s)
- J Merijn Schuurmans
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, P.O. Box 94248, 1090 GE, The Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 6, Wageningen, The Netherlands
| | - Bregje W Brinkmann
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, P.O. Box 94248, 1090 GE, The Netherlands
| | - A Katharina Makower
- Department of Microbiology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, Potsdam, Germany
| | - Elke Dittmann
- Department of Microbiology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, Potsdam, Germany
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, P.O. Box 94248, 1090 GE, The Netherlands.
| | - Hans C P Matthijs
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, P.O. Box 94248, 1090 GE, The Netherlands
| |
Collapse
|
7
|
Exposure routes and health effects of microcystins on animals and humans: A mini-review. Toxicon 2018; 151:156-162. [PMID: 30003917 DOI: 10.1016/j.toxicon.2018.07.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 07/04/2018] [Accepted: 07/08/2018] [Indexed: 02/03/2023]
Abstract
Microcystins (MCs) pollution has quickly risen in infamy and has become a major problem to public health worldwide. MCs are a group of monocyclic hepatotoxic peptides, which are produced by some bloom-forming cyanobacteria in water. More than 100 different MCs variants posing a great threat to animals and humans due to their potential carcinogenicity have been reported. To reduce MCs risks, the World Health Organization has set a provisional guideline of 1 μg/L MCs in human's drinking water. This paper provides an overview of exposure routes of MCs into the human system and health effects on different organs after MCs exposure including the liver, intestine, brain, kidney, lung, heart and reproductive system. In addition, some evidences on human poisoning and deaths associated with MCs exposure are presented. Finally, in order to protect human life against the health threats posed by MCs, this paper also suggests some directions for future research that can advance MCs control and minimize human exposure to MCs.
Collapse
|
8
|
Smidak R, Aradska J, Kirchberger S, Distel M, Sialana FJ, Wackerlig J, Mechtcheriakova D, Lubec G. A detailed proteomic profiling of plasma membrane from zebrafish brain. Proteomics Clin Appl 2016; 10:1264-1268. [PMID: 27459904 DOI: 10.1002/prca.201600081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/29/2016] [Accepted: 07/21/2016] [Indexed: 12/11/2022]
Abstract
Zebrafish (Danio rerio) is a well-established model organism in developmental biology and disease modeling. In recent years, an increasing amount of studies used zebrafish to analyze the genetic changes underlying various neurological disorders. The brain plasma membrane proteome represents the major subsets of signaling proteins and promising drug targets, but is often understudied due to traditional experimental difficulties including problems with solubility, detergent removal, or low abundance. Here, we report a comprehensive dataset of the proteins identified in the enriched plasma membrane of the zebrafish brain by applying sequential trypsin/chymotrypsin digestion with multidimensional LC-MS/MS. A total number of 97 017 peptide groups corresponding to 9201 proteins were identified. These were annotated in various molecular functions or neurological disorders. The dataset of the current study provides a useful data source for further utilizing zebrafish in basic and clinical neuroscience.
Collapse
Affiliation(s)
- Roman Smidak
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Jana Aradska
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Stefanie Kirchberger
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Innovative Cancer Models, Vienna, Austria
| | - Martin Distel
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Innovative Cancer Models, Vienna, Austria
| | | | - Judith Wackerlig
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Diana Mechtcheriakova
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|