1
|
Marmelo I, Lourenço-Marques C, Silva IA, Soares F, Pousão-Ferreira P, Mata L, Marques A, Diniz MS, Maulvault AL. Eco-innovative aquafeeds biofortified with Asparagopsis taxiformis to improve the resilience of farmed white seabream ( Diplodus sargus) to marine heatwave events. Heliyon 2024; 10:e35135. [PMID: 39157319 PMCID: PMC11328060 DOI: 10.1016/j.heliyon.2024.e35135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Extreme weather events, like marine heatwaves (MHWs), are becoming more frequent and severe due to climate change, posing several challenges to marine ecosystems and their services. As disease outbreaks are often prompted by these acute phenomena, it is essential to develop eco-innovative strategies that can efficiently improve farmed fish resilience, especially under sub-optimal rearing conditions, thereby ensuring a sustainable aquaculture production. This study aimed to unveil farmed juvenile white seabream (Diplodus sargus, 28.50 ± 1.10 g weight, n = 150) immune and antioxidant responses under a category II MHW in the Mediterranean Sea (+4 °C, 8 days of temperature increase plus 15 days of plateau at the peak temperature) and to investigate whether a 30 days period of prophylactic biofortification with Asparagopsis taxiformis (1.5 %, 3 % and 6 %) enhanced fish resilience to these extreme events. Several biomarkers from different organization levels (individual, cellular, biochemical and molecular) were assessed upon 30 days of biofortification (T30), exposure (after 8 days of temperature increase + 15 days at peak temperature, T53) and recovery (8 days of temperature decrease, T61) from the MHW. Results showed that MHW negatively affected the fish physiological status and overall well-being, decreasing specific growth rate (SGR) and haematocrit (Ht) and increasing erythrocyte nuclear abnormalities (ENAs) and lipid peroxidation (LPO). These adverse effects were alleviated through biofortification with A. taxiformis. Seaweed inclusion at 1.5 % was the most effective dose to minimize the severity of MHW effects, significantly improving immune responses of D. sargus (i.e. increased levels of immunoglobulin M, peroxidase activity and lysozyme expression) and modulating antioxidant responses (i.e. decreased LPO, catalase and glutathione S-transferase activity). These findings confirm that A. taxiformis is a functional ingredient of added value to the aquaculture industry, as its inclusion in marine fish diets can beneficially modulate fish immunity and resilience under optimal and adverse rearing conditions.
Collapse
Affiliation(s)
- Isa Marmelo
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal
- IPMA DivAV - Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere, Avenida Doutor Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Cátia Lourenço-Marques
- S2AQUA - Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa S/N, 8700-194, Olhão, Portugal
- IPMA-EPPO - Portuguese Institute for the Sea and Atmosphere, Aquaculture Research Station, Av. Parque Natural da Ria Formosa S/N, 8700-194, Olhão, Portugal
| | - Iris A.L. Silva
- S2AQUA - Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa S/N, 8700-194, Olhão, Portugal
| | - Florbela Soares
- S2AQUA - Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa S/N, 8700-194, Olhão, Portugal
- IPMA-EPPO - Portuguese Institute for the Sea and Atmosphere, Aquaculture Research Station, Av. Parque Natural da Ria Formosa S/N, 8700-194, Olhão, Portugal
| | - Pedro Pousão-Ferreira
- S2AQUA - Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa S/N, 8700-194, Olhão, Portugal
- IPMA-EPPO - Portuguese Institute for the Sea and Atmosphere, Aquaculture Research Station, Av. Parque Natural da Ria Formosa S/N, 8700-194, Olhão, Portugal
| | - Leonardo Mata
- CCMAR - Marine Plant Ecology Research Group, Centre of Marine Sciences, University of Algarve, 8005-139, Gambelas, Faro, Portugal
- Greener Grazing, LLC, Greenfield, MA, 01301, USA
| | - António Marques
- IPMA DivAV - Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere, Avenida Doutor Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Mário Sousa Diniz
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - Ana Luísa Maulvault
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal
- IPMA DivAV - Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere, Avenida Doutor Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| |
Collapse
|
2
|
Nataraj B, Hemalatha D, Malafaia G, Maharajan K, Ramesh M. "Fishcide" effect of the fungicide difenoconazole in freshwater fish (Labeo rohita): A multi-endpoint approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159425. [PMID: 36244480 DOI: 10.1016/j.scitotenv.2022.159425] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Difenoconazole is widely used to protect crops, fruits, and vegetables. However, this fungicide can enter aquatic environments and cause harmful effects to non-target organisms and induce little-known biological disorders. Thus, aiming to expand our knowledge about the ecotoxicity of difenoconazole on freshwater ichthyofauna, we aimed to determine the median lethal concentration (LC50) of difenoconazole and evaluate its possible impacts from different toxicity biomarkers, using freshwater fish Labeo rohita as a model system. Using the probit analysis method, the 96 h LC50 value of difenoconazole in the fish was calculated as 4.5 mg L-1. Posteriorly, fish were exposed to two sublethal concentrations (0.45 mg L-1 1/10th and 0.9 mg L-1 1/5th LC50 value) for 21 days. A significant reduction of superoxide dismutase (SOD) and catalase (CAT) activity was noted in the gill, liver, and kidneys of fish compared to the control groups. The level of glutathione-S-transferase (GST) and lipid peroxidation (LPO) activity was higher in all vital tissues of difenoconazole-treated fish. Histological alterations in the gill include epithelial lifting, lamellar fusion, hypertrophy, and epithelial necrosis. At the same time, the liver showed pyknotic nucleus, vacuolation, cellular edema and tubular necrosis, shrinkage of glomeruli, vacuolation, and pyknotic nuclei in the kidney. DNA damage was increased significantly with tail formation based on the concentration and time-dependent manner. Therefore, our study confirms that the exposure of L. rohita to difenoconazole induces negative biological consequences and sheds light on the danger of this fungicide for freshwater fish species. We believe that studies like ours can support actions and strategies for the remediation/mitigation of aquatic pollution by difenoconazole and for the conservation of freshwater ichthyofauna.
Collapse
Affiliation(s)
- Bojan Nataraj
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India
| | - Devan Hemalatha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India; Department of Zoology, PSG College of Arts & Science, Coimbatore, Tamil Nadu 641014, India
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Kannan Maharajan
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India; DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
3
|
Svirčev Z, Chen L, Sántha K, Drobac Backović D, Šušak S, Vulin A, Palanački Malešević T, Codd GA, Meriluoto J. A review and assessment of cyanobacterial toxins as cardiovascular health hazards. Arch Toxicol 2022; 96:2829-2863. [PMID: 35997789 PMCID: PMC9395816 DOI: 10.1007/s00204-022-03354-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Eutrophicated waters frequently support bloom-forming cyanobacteria, many of which produce potent cyanobacterial toxins (cyanotoxins). Cyanotoxins can cause adverse health effects in a wide range of organisms where the toxins may target the liver, other internal organs, mucous surfaces and the skin and nervous system. This review surveyed more than 100 studies concerning the cardiovascular toxicity of cyanotoxins and related topics. Over 60 studies have described various negative effects on the cardiovascular system by seven major types of cyanotoxins, i.e. the microcystin (MC), nodularin (NOD), cylindrospermopsin (CYN), anatoxin (ATX), guanitoxin (GNTX), saxitoxin (STX) and lyngbyatoxin (LTX) groups. Much of the research was done on rodents and fish using high, acutely toxin concentrations and unnatural exposure routes (such as intraperitoneal injection), and it is thus concluded that the emphasis in future studies should be on oral, chronic exposure of mammalian species at environmentally relevant concentrations. It is also suggested that future in vivo studies are conducted in parallel with studies on cells and tissues. In the light of the presented evidence, it is likely that cyanotoxins do not constitute a major risk to cardiovascular health under ordinary conditions met in everyday life. The risk of illnesses in other organs, in particular the liver, is higher under the same exposure conditions. However, adverse cardiovascular effects can be expected due to indirect effects arising from damage in other organs. In addition to risks related to extraordinary concentrations of the cyanotoxins and atypical exposure routes, chronic exposure together with co-existing diseases could make some of the cyanotoxins more dangerous to cardiovascular health.
Collapse
Affiliation(s)
- Zorica Svirčev
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia.
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland.
| | - Liang Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Kinga Sántha
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Damjana Drobac Backović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Stamenko Šušak
- University of Novi Sad, Faculty of Medicine, UNS, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Aleksandra Vulin
- University of Novi Sad, Faculty of Medicine, UNS, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Tamara Palanački Malešević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Geoffrey A Codd
- School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Jussi Meriluoto
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland
| |
Collapse
|
4
|
Nisar U, Peng D, Mu Y, Sun Y. A Solution for Sustainable Utilization of Aquaculture Waste: A Comprehensive Review of Biofloc Technology and Aquamimicry. Front Nutr 2022; 8:791738. [PMID: 35096936 PMCID: PMC8790604 DOI: 10.3389/fnut.2021.791738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Biofloc technology (BFT) is gaining traction as a strategic aquaculture tool for boosting feed conversions, biosecurity, and wastewater recycling. The significant aspect of BFT is aquaculture with highest stocking density and minimal water exchange. It not only improves the water quality of a system by removing inorganic nitrogen from wastewater but also serves as a suitable feed supplement and probiotic source for cultured species. This technology is commonly used for shrimp and tilapia culture and can be used for both semi-intensive and intensive culture systems. Biofloc, when combined with formulated diets, forms a balanced food chain that improves growth performance. Nutrients in this system are continuously recycled and reused and form an efficient alternative system in aquaculture. In addition to the reduction in water exchange, it is also considered as a bio-security measure, since it prevents entry of disease from outside sources. Aquamimicry is an innovative concept that simulates natural estuarine conditions by developing copepods that act as supplementary nutrition especially for shrimp culture. The review highlights the process, significance, and development of BFT, its microbial interactions, nutritional value, transition from biofloc to copefloc, and concept of aquamimicry to sustainably improve aquaculture production.
Collapse
Affiliation(s)
- Ubair Nisar
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, China
| | - Daomin Peng
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, China
| | - Yongtong Mu
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, China
| | - Yu Sun
- School of Management, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
Henriques MB, Rezende KFO, Castilho-Barros L, Barbieri E. Sublethal effects of propiconazole on the metabolism of lambari Deuterodon iguape (Eigenmann 1907), a native species from Brazil. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1165-1177. [PMID: 34142328 DOI: 10.1007/s10695-021-00968-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to analyze the sublethal effects of propiconazole on Deuterodon iguape, a native fish common in Brazil, which has potential for aquaculture and use as a bioindicator. The hypothesis was to test whether D. iguape has a metabolism similar to Danio rerio so that its use in bioassays may be validated. Lethal concentration (LC50) and metabolic rates were studied in fish exposed to propiconazole. Specific oxygen consumption and ammonia excretion for D. iguape and D. rerio increased by 0.01 µg L-1 and then decreased as the propiconazole concentration increased. The decrease in the averages of specific oxygen consumption at the concentration of 0.1 µg L-1 represented a reduction in the metabolic rate compared to the control of 71% for D. iguape and 40% D. rerio. For the ammonia excretion, at the same concentration, there was a reduction of 68.7% and 45.4% for D. iguape and D. rerio, respectively. When comparing ammonia excretion of the two species for each concentration of propiconazole, there was a significant difference (p < 0.05) in relation to the control and for the highest concentration (0.1 µg L-1). As for specific oxygen consumption, there was a statistically significant difference only for the concentration of 0.1 µg L-1. D. iguape proved to be a good and useful bioindicator for ichthyologists or ecologists in studies of moderate pesticide contamination in freshwater aquatic environments, as its metabolic response was similar to D. rerio.
Collapse
Affiliation(s)
- Marcelo Barbosa Henriques
- Instituto de Pesca-Governo do Estado de São Paulo, Av. Bartolomeu de Gusmão, 192, Ponta da Praia, Santos, SP, 11030-906, Brazil.
| | - Karina Fernandes Oliveira Rezende
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil
| | - Leonardo Castilho-Barros
- Instituto de Pesca-Governo do Estado de São Paulo, Av. Bartolomeu de Gusmão, 192, Ponta da Praia, Santos, SP, 11030-906, Brazil
| | - Edison Barbieri
- Instituto de Pesca Governo Do Estado de São Paulo, Av. Professor Wladimir Besnard, s/n, Cananéia, SP, 11990-000, Brazil
| |
Collapse
|
6
|
Oxidative Stress in the Muscles of the Fish Nile Tilapia Caused by Zinc Oxide Nanoparticles and Its Modulation by Vitamins C and E. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6926712. [PMID: 29849910 PMCID: PMC5907420 DOI: 10.1155/2018/6926712] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 01/24/2023]
Abstract
The effects of zinc oxide nanoparticles (ZnONPs) on antioxidants in Nile tilapia muscles and the protective role of vitamins C and E were examined. Two hundred males of Nile tilapia were held in aquaria (10 fishes/aquarium). Fishes were divided into 5 groups: 40 fishes in each group; the first group was the control; the 2nd and 3rd groups were exposed to 1 and 2 mg/L of ZnONPs, respectively; and the 4th and 5th group were exposed to 1 and 2 mg/L of ZnONPs and treated with a (500 mg/kg diet) mixture of vitamin C and E mixture (250 mg/kg diet of each). Muscles were collected on the 7th and 15th day of treatments. Muscle malondialdehyde, reduced glutathione levels, superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GR), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) activities were measured after treatments. Relative quantification of SOD, CAT, GR, GPx, and GST mRNA transcripts was detected in the muscles. Results showed that MDA and GSH concentration; SOD, CAT, GR, GPx, and GST activities; and mRNA expression were significantly decreased in groups exposed to ZnONPs. Vitamins C and E significantly ameliorated the toxic effects of ZnONPs. In conclusion, vitamins C and E have the ability to ameliorate ZnONP oxidative stress toxicity in Nile tilapia.
Collapse
|
7
|
Potential Use of Chemoprotectants against the Toxic Effects of Cyanotoxins: A Review. Toxins (Basel) 2017; 9:toxins9060175. [PMID: 28545227 PMCID: PMC5488025 DOI: 10.3390/toxins9060175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/21/2017] [Accepted: 05/17/2017] [Indexed: 12/16/2022] Open
Abstract
Cyanobacterial toxins, particularly microcystins (MCs) and cylindrospermopsin (CYN), are responsible for toxic effects in humans and wildlife. In order to counteract or prevent their toxicity, various strategies have been followed, such as the potential application of chemoprotectants. A review of the main substances evaluated for this aim, as well as the doses and their influence on cyanotoxin-induced toxicity, has been performed. A search of the literature shows that research on MCs is much more abundant than research on CYN. Among chemoprotectants, antioxidant compounds are the most extensively studied, probably because it is well known that oxidative stress is one of the toxic mechanisms common to both toxins. In this group, vitamin E seems to have the strongest protectant effect for both cyanotoxins. Transport inhibitors have also been studied in the case of MCs, as CYN cellular uptake is not yet fully elucidated. Further research is needed because systematic studies are lacking. Moreover, more realistic exposure scenarios, including cyanotoxin mixtures and the concomitant use of chemoprotectants, should be considered.
Collapse
|
8
|
Guzmán-Guillén R, Prieto Ortega AI, Moreno IM, Ríos V, Moyano R, Blanco A, Vasconcelos V, Cameán AM. Effects of depuration on histopathological changes in tilapia (Oreochromis niloticus) after exposure to cylindrospermopsin. ENVIRONMENTAL TOXICOLOGY 2017; 32:1318-1332. [PMID: 27463828 DOI: 10.1002/tox.22326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Cylindrospermopsin (CYN) is a highly water-soluble cytotoxin produced by several species of freshwater cyanobacteria and it is considered the second most studied cyanotoxin worldwide. CYN acts as a potent protein and glutathione synthesis inhibitor, as well as inducing genotoxicity, oxidative stress and histopathological alterations. Studies concerning the depuration of cyanobacterial toxins in aquatic organisms, especially in fish, are of great interest for fish economy and public health, but are scarce in the case of CYN. This is the first study reporting the ability of depuration (3 - 7 days) in reversing or ameliorating the histopathological lesions induced in liver, kidney, heart, intestines, and gills of tilapia (Oreochromis niloticus) due to exposure by immersion to repeated doses of a CYN-containing culture of A. ovalisporum for 14 days. The main histopathological changes induced by CYN were glucogenic degeneration and loss of the normal hepatic cord-structure (liver), hyperemia, dilated Bowman's capsule and cellular tumefaction (kidney), myofibrolysis, hemorrhages and edema (heart), necrosis and partial loss of microvilli (gastrointestinal tract), and hyperemia and inflammatory cells infiltrates (gills). After 3 days of depuration, gills were totally recovered, while the liver, kidney, and gastrointestinal tract required 7 days, and longer depuration periods may be needed for a full recovery of the heart. In addition, the morphometric study indicated that depuration managed to reverse the affectation in the hepatocytes nuclear diameters and cross sections of the proximal and distal convoluted tubules induced in CYN-exposed fish. In general, these results validate depuration as an effective practice for detoxification of fish contaminated with CYN. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1318-1332, 2017.
Collapse
Affiliation(s)
- Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| | - Ana I Prieto Ortega
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| | - Isabel M Moreno
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| | - Victoria Ríos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| | - Rosario Moyano
- Department of Pharmacology, Toxicology and Legal and Forensic Medicine, University of Córdoba, Campus De Rabanales Carretera Madrid-Cádiz S/N, Córdoba, 14071, Spain
| | - Alfonso Blanco
- Department of Anatomy and Comparative Pathology and Anatomy, University of Córdoba, Campus De Rabanales Carretera Madrid- Cádiz S/N, Córdoba, 14071, Spain
| | - Vitor Vasconcelos
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos, Bragas, 289, 4050-123, Porto, Portugal
- Department of Biology, Faculty of Sciences of the University of Porto, Porto, 4169-007, Portugal
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| |
Collapse
|
9
|
Guzmán-Guillén R, Prieto Ortega AI, Moyano R, Blanco A, Vasconcelos V, Cameán AM. Dietary l-carnitine prevents histopathological changes in tilapia (Oreochromis Niloticus) exposed to cylindrospermopsin. ENVIRONMENTAL TOXICOLOGY 2017; 32:241-254. [PMID: 26714798 DOI: 10.1002/tox.22229] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/27/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
Cylindrospermopsin (CYN) is a cytotoxin highly water-soluble, which is easily taken up by several aquatic organisms. CYN acts as a potent protein and glutathione synthesis inhibitor, as well as inducing genotoxicity, oxidative stress, and histopathological alterations. This is the first study reporting the protective effect of a l-carnitine (LC) pretreatment (400 or 880 mg LC/kg bw fish/day, for 21 days) on the histopathological alterations induced by pure CYN or Aphanizomenon ovalisporum lyophilized cells (400 µg CYN/kg bw fish) in liver, kidney, heart, intestines, and gills of tilapia (Oreochromis niloticus) acutely exposed to the toxin by oral route. The main histopathological changes induced by CYN were disorganized parenchyma with presence of glycogen and lipids in the cytoplasm (liver), glomerulonephritis, glomerular atrophy, and dilatation of Bowman's capsule (kidney), myofibrolysis, loss of myofibrils, with edema and hemorrhage (heart), intestinal villi with necrotic enterocytes and partial loss of microvilli (gastrointestinal tract), and hyperemia and hemorrhage (gills). LC pretreatment was able to totally prevent those CYN-induced alterations from 400 mg LC/kg bw fish/day in almost all organs, except in the heart, where 880 mg LC/kg bw fish/day were needed. In addition, the morphometric study indicated that LC managed to recover totally the affectation in the cross sections of the proximal and distal convoluted tubules in CYN-exposed fish. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 241-254, 2017.
Collapse
Affiliation(s)
- Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| | - Ana I Prieto Ortega
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| | - Rosario Moyano
- Department of Pharmacology, Toxicology and Legal and Forensic Medicine, University of Córdoba. Campus De Rabanales Carretera Madrid-Cádiz S/N, Córdoba, 14071, Spain
| | - Alfonso Blanco
- Department of Anatomy and Comparative Pathology and Anatomy, University of Córdoba, Campus De Rabanales Carretera Madrid-Cádiz S/N, Córdoba, 14071, Spain
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Porto, 4050-123, Portugal
- Department of Biology, Faculty of Sciences of the University of Porto, 4169-007, Portugal
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| |
Collapse
|
10
|
Guzmán-Guillén R, Prieto Ortega AI, Martín-Caméan A, Cameán AM. Beneficial effects of vitamin E supplementation against the oxidative stress on Cylindrospermopsin-exposed tilapia (Oreochromis niloticus). Toxicon 2015; 104:34-42. [DOI: 10.1016/j.toxicon.2015.07.336] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 11/15/2022]
|