1
|
Sengüven Toközlü B, Sapkota D, Vallenari EM, Schreurs O, Søland TM. Cortactin expression in a Norwegian cohort of human papilloma virus negative oral squamous cell carcinomas of the mobile tongue. Eur J Oral Sci 2023; 131:e12925. [PMID: 36790139 DOI: 10.1111/eos.12925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023]
Abstract
Oral squamous cell carcinoma of the tongue (OTSCC) is the most common malignancy among oral squamous cell carcinomas and is frequently associated with an unfavorable prognosis. Local spread and distant metastasis are important causes of poor prognosis in OTSCC. Cortactin amplification and overexpression, a common molecular alteration in oral squamous cell carcinomas, have been linked to invasion and metastasis of tumor cells. However, the intra-tumor expression pattern and prognostic significance of cortactin in human papillomavirus (HPV) negative OTSCC is not fully investigated. Immunohistochemical analysis using tissue microarray consisting of formalin-fixed and paraffin-embedded HPV negative OTSCC (n = 123) specimens showed overexpression of cortactin at tissue cores from invading fronts as compared to the corresponding center cores. High overall cortactin expression was found to be associated with advanced (larger) tumor size and the occurrence of distance metastasis. Kaplan-Meier survival analysis showed that patients with high overall cortactin expression were associated with reduced 5-year survival. Multivariate Cox regression analysis identified high cortactin expression to be an independent prognostic factor in OTSCC. Additionally, siRNA-mediated silencing of cortactin was found to suppress the proliferative and invasive abilities of OTSCC cells in an organotypic co-culture model. Overexpression of cortactin is a promising prognostic marker in HPV-negative OTSCC.
Collapse
Affiliation(s)
- B Sengüven Toközlü
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Oral Pathology, Faculty of Dentistry, Gazi University, Oslo, Turkey
| | - D Sapkota
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - E M Vallenari
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - O Schreurs
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - T M Søland
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
2
|
Chiu WC, Ou DL, Tan CT. Mouse Models for Immune Checkpoint Blockade Therapeutic Research in Oral Cancer. Int J Mol Sci 2022; 23:ijms23169195. [PMID: 36012461 PMCID: PMC9409124 DOI: 10.3390/ijms23169195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
The most prevalent oral cancer globally is oral squamous cell carcinoma (OSCC). The invasion of adjacent bones and the metastasis to regional lymph nodes often lead to poor prognoses and shortened survival times in patients with OSCC. Encouraging immunotherapeutic responses have been seen with immune checkpoint inhibitors (ICIs); however, these positive responses to monotherapy have been limited to a small subset of patients. Therefore, it is urgent that further investigations into optimizing immunotherapies are conducted. Areas of research include identifying novel immune checkpoints and targets and tailoring treatment programs to meet the needs of individual patients. Furthermore, the advancement of combination therapies against OSCC is also critical. Thus, additional studies are needed to ensure clinical trials are successful. Mice models are advantageous in immunotherapy research with several advantages, such as relatively low costs and high tumor growth success rate. This review paper divided methods for establishing OSCC mouse models into four categories: syngeneic tumor models, chemical carcinogen induction, genetically engineered mouse, and humanized mouse. Each method has advantages and disadvantages that influence its application in OSCC research. This review comprehensively surveys the literature and summarizes the current mouse models used in immunotherapy, their advantages and disadvantages, and details relating to the cell lines for oral cancer growth. This review aims to present evidence and considerations for choosing a suitable model establishment method to investigate the early diagnosis, clinical treatment, and related pathogenesis of OSCC.
Collapse
Affiliation(s)
- Wei-Chiao Chiu
- Department of Medical Research, Fu-Jen Catholic University Hospital, Fu-Jen Catholic University, New Taipei City 24352, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei City 100225, Taiwan
| | - Da-Liang Ou
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei City 10051, Taiwan
- YongLin Institute of Health, National Taiwan University, Taipei City 10672, Taiwan
| | - Ching-Ting Tan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei City 100225, Taiwan
- Stem Cell Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei City 10051, Taiwan
- Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei City 100233, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 302058, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 88649)
| |
Collapse
|
3
|
Sagheer SH, Whitaker-Menezes D, Han JYS, Curry JM, Martinez-Outschoorn U, Philp NJ. 4NQO induced carcinogenesis: A mouse model for oral squamous cell carcinoma. Methods Cell Biol 2021; 163:93-111. [PMID: 33785171 DOI: 10.1016/bs.mcb.2021.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common subsite of head and neck cancer, with a 5-year survival rate of only 50%. There is a pressing need for animal models that recapitulate the human disease to understand the factors driving OSCC carcinogenesis. Many laboratories have used the chemical carcinogen 4-nitroquinoline-1-oxide (4NQO) to investigate OSCC formation. The importance of the 4NQO mouse model is that it mimics the stepwise progression observed in OSCC patients. The 4NQO carcinogen model has the advantage that it can be used with transgenic mice with genetic modification in specific tissue types to investigate their role in driving cancer progression. Herein, we describe the basic approach for administering 4NQO to mice to induce OSCC and methods for assessing the tissue and disease progression.
Collapse
Affiliation(s)
- S Hamad Sagheer
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Diana Whitaker-Menezes
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - John Y S Han
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Joseph M Curry
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, United States.
| | | | - Nancy J Philp
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
4
|
Li Q, Dong H, Yang G, Song Y, Mou Y, Ni Y. Mouse Tumor-Bearing Models as Preclinical Study Platforms for Oral Squamous Cell Carcinoma. Front Oncol 2020; 10:212. [PMID: 32158692 PMCID: PMC7052016 DOI: 10.3389/fonc.2020.00212] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Preclinical animal models of oral squamous cell carcinoma (OSCC) have been extensively studied in recent years. Investigating the pathogenesis and potential therapeutic strategies of OSCC is required to further progress in this field, and a suitable research animal model that reflects the intricacies of cancer biology is crucial. Of the animal models established for the study of cancers, mouse tumor-bearing models are among the most popular and widely deployed for their high fertility, low cost, and molecular and physiological similarity to humans, as well as the ease of rearing experimental mice. Currently, the different methods of establishing OSCC mouse models can be divided into three categories: chemical carcinogen-induced, transplanted and genetically engineered mouse models. Each of these methods has unique advantages and limitations, and the appropriate application of these techniques in OSCC research deserves our attention. Therefore, this review comprehensively investigates and summarizes the tumorigenesis mechanisms, characteristics, establishment methods, and current applications of OSCC mouse models in published papers. The objective of this review is to provide foundations and considerations for choosing suitable model establishment methods to study the relevant pathogenesis, early diagnosis, and clinical treatment of OSCC.
Collapse
Affiliation(s)
- Qiang Li
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Heng Dong
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangwen Yang
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yongbin Mou
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Yongbin Mou
| | - Yanhong Ni
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Yanhong Ni
| |
Collapse
|
5
|
Ramos‐García P, González‐Moles MÁ, Ayén Á, González‐Ruiz L, Ruiz‐Ávila I, Gil‐Montoya JA. Prognostic and clinicopathological significance of
CTTN
/cortactin alterations in head and neck squamous cell carcinoma: Systematic review and meta‐analysis. Head Neck 2018; 41:1963-1978. [DOI: 10.1002/hed.25632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
| | | | - Ángela Ayén
- School of MedicineUniversity of Granada Granada Spain
| | - Lucía González‐Ruiz
- Servicio de DermatologíaHospital General Universitario de Ciudad Real Ciudad Real Spain
| | - Isabel Ruiz‐Ávila
- Instituto de Investigación Biosanitaria Granada Spain
- Servicio de Anatomía PatológicaComplejo Hospitalario Universitario de Granada Granada Spain
| | - José Antonio Gil‐Montoya
- School of DentistryUniversity of Granada Granada Spain
- Instituto de Investigación Biosanitaria Granada Spain
| |
Collapse
|
6
|
Horn D, Gross M, Dyckhoff G, Fuchs J, Grabe N, Weichert W, Herpel E, Herold‐Mende C, Lichter P, Hoffmann J, Hess J, Freier K. Cortactin expression: Association with disease progression and survival in oral squamous cell carcinoma. Head Neck 2018; 40:2685-2694. [DOI: 10.1002/hed.25515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/21/2018] [Accepted: 10/06/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Dominik Horn
- Department of Oral and Cranio‐Maxillofacial SurgeryUniversity Hospital Heidelberg Heidelberg Germany
| | - Madeleine Gross
- Department of Oral and Cranio‐Maxillofacial SurgeryUniversity Hospital Heidelberg Heidelberg Germany
- Division of Molecular GeneticsGerman Cancer Research Center (DKFZ) Heidelberg Germany
| | - Gerhard Dyckhoff
- Department of Otorhinolaryngology, Head and Neck SurgeryUniversity Hospital Heidelberg Heidelberg Germany
- Molecular Cell Biology Group, Department of Otorhinolaryngology, Head and Neck SurgeryUniversity Hospital Heidelberg Heidelberg Germany
| | - Jennifer Fuchs
- Department of Oral and Cranio‐Maxillofacial SurgeryUniversity Hospital Heidelberg Heidelberg Germany
| | - Niels Grabe
- Hamamatsu Tissue Imaging and Analysis Center (TIGA)BIOQUANT, University of Heidelberg Heidelberg Germany
| | - Wilko Weichert
- Institute of PathologyUniversity Hospital Heidelberg Heidelberg Germany
| | - Esther Herpel
- Institute of PathologyUniversity Hospital Heidelberg Heidelberg Germany
- Tissue Bank of the National Center for Tumor Diseases (NCT) Heidelberg Germany
| | - Christel Herold‐Mende
- Molecular Cell Biology Group, Department of Otorhinolaryngology, Head and Neck SurgeryUniversity Hospital Heidelberg Heidelberg Germany
| | - Peter Lichter
- Division of Molecular GeneticsGerman Cancer Research Center (DKFZ) Heidelberg Germany
| | - Jürgen Hoffmann
- Department of Oral and Cranio‐Maxillofacial SurgeryUniversity Hospital Heidelberg Heidelberg Germany
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck SurgeryUniversity Hospital Heidelberg Heidelberg Germany
- Research Group Molecular Mechanisms of Head and Neck TumorsGerman Cancer Research Center (DKFZ) Heidelberg Germany
| | - Kolja Freier
- Department of Oral and Cranio‐Maxillofacial SurgeryUniversity Hospital Heidelberg Heidelberg Germany
| |
Collapse
|
7
|
Ramos-García P, González-Moles MÁ, González-Ruiz L, Ayén Á, Ruiz-Ávila I, Navarro-Triviño FJ, Gil-Montoya JA. An update of knowledge on cortactin as a metastatic driver and potential therapeutic target in oral squamous cell carcinoma. Oral Dis 2018; 25:949-971. [PMID: 29878474 DOI: 10.1111/odi.12913] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/15/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022]
Abstract
Cortactin is a protein encoded by the CTTN gene, localized on chromosome band 11q13. As a result of the amplification of this band, an important event in oral carcinogenesis, CTTN is also usually amplified, promoting the frequent overexpression of cortactin. Cortactin enhances cell migration in oral cancer, playing a key role in the regulation of filamentous actin and of protrusive structures (invadopodia and lamellipodia) on the cell membrane that are necessary for the acquisition of a migratory phenotype. We also analyze a series of emerging functions that cortactin may exert in oral cancer (cell proliferation, angiogenesis, regulation of exosomes, and interactions with the tumor microenvironment). We review its molecular structure, its most important interactions (with Src, Arp2/3 complex, and SH3-binding partners), the regulation of its functions, and its specific oncogenic role in oral cancer. We explore the mechanisms of its overexpression in cancer, mainly related to genetic amplification. We analyze the prognostic implications of the oncogenic activation of cortactin in potentially malignant disorders and in head and neck cancer, where it appears to be relevant in the development of lymph node metastasis. Finally, we discuss its usefulness as a therapeutic target and suggest future research lines.
Collapse
Affiliation(s)
| | - Miguel Ángel González-Moles
- School of Dentistry, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, Granada, Spain
| | - Lucía González-Ruiz
- Servicio de Dermatología, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Ángela Ayén
- School of Medicine, University of Granada, Granada, Spain
| | - Isabel Ruiz-Ávila
- Instituto de Investigación Biosanitaria, Granada, Spain.,Servicio de Anatomía Patológica, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | | | - José Antonio Gil-Montoya
- School of Dentistry, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, Granada, Spain
| |
Collapse
|