1
|
Cheng Y, Yang Y, Chen C, Zhang F, Peng S, Xiao X, Peng Z. The influence and mechanisms of exogenous aryl hydrocarbon receptor ligands on the viability of mouse germ cells. Chem Biol Interact 2025; 412:111478. [PMID: 40086713 DOI: 10.1016/j.cbi.2025.111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025]
Abstract
Environmental pollution is a significant contributor to male infertility. Numerous environmental pollutants, such as PCB118, act as exogenous ligands for the aryl hydrocarbon receptor (AhR). However, the role of AhR in mediating the effects of environmental pollutants on male reproductive functions remains inadequately understood. In the present study, we assessed the viability of GC-1 and GC-2 cells using the CCK-8 assay. Immunofluorescence and Western blotting techniques were employed to investigate the distribution and protein expression levels of AhR within these cell lines. Alterations in reactive oxygen species (ROS) levels and mitochondrial membrane potential (MMP) were evaluated using DCFH-DA dye and the JC-1 assay, respectively. Furthermore, we investigated changes in the expression levels of Nrf2, Cleaved-Caspase 3, Cleaved-Caspase 8, Bcl-2, and Bax through Western blot analysis. Our findings indicate that PCB118 and the AhR-specific agonist CAY10465 diminish the viability of GC-1 and GC-2 cells, facilitate the nuclear translocation and expression of AhR protein, elevate ROS levels, and reduce MMP. Moreover, these agents markedly increase the levels of Cleaved-Caspase 3 and Cleaved-Caspase 8 while decreasing the Bax/Bcl-2 ratio. Notably, the AhR antagonist CH223191 and resveratrol have the capacity to restore the functionality of GC-1 and GC-2 cells by mitigating the effects of PCB118 and CAY10465. Based on these observations, we propose that exogenous AhR ligands PCB118 and CAY10465 promote the nuclear translocation and upregulation of AhR expression in GC-1 and GC-2 cells. This process subsequently induces mitochondrial oxidative stress, wich activates the apoptotic signaling pathway and ultimately compromises cellular viability.
Collapse
Affiliation(s)
- Yimin Cheng
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
| | - Yebin Yang
- Department of Chemistry and Bioengineering, Yichun University, Yichun, China
| | - Chen Chen
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
| | - Feifeng Zhang
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
| | - Shenglin Peng
- Yichun People's Hospital, Yichun, Jiangxi Province, China
| | - Xinsheng Xiao
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
| | - Zhen Peng
- Yichun People's Hospital, Yichun, Jiangxi Province, China.
| |
Collapse
|
2
|
Gao H, Zhang X, Liu Z, Yang X, Li Y, Cui M, Wang H, Chen X, Zhang W, Liu Z, Yu Y, Chen L, Li D, Xiao Y, Chen W, Wang Q. Discovery of phloridzin as a new antagonist for Di(2-ethylhexyl) phthalate-induced male reproductive toxicity based on the adverse outcome pathway network and drug-target gene set enrichment analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117740. [PMID: 39818139 DOI: 10.1016/j.ecoenv.2025.117740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widespread ubiquitous phthalate environmental contaminant. The male reproductive toxicity (MRT) from exposure to DEHP and its main metabolite, mono(2-ethylhexyl) phthalate (MEHP), has been well documented. Fully elucidating its toxic mechanism and discovering effective antagonists are desirable means to reduce the health risks of DEHP. In this study, 552 genes related to MRT induced by DEHP/MEHP were screened out from the Comparative Toxicogenomics Database (CTD) and DisGeNET database. Next, we developed a global adverse outcome pathway (AOP) network based on the existed AOP-wiki. After functional enrichment analyses and mapping to the global AOP network, we found that the increased ROS level, cell cycle arrest, and increased apoptosis are key events (KEs) involved in DEHP-mediated MRT, which was validated in TM3 Leydig cell model. Among them, cellular apoptosis is the core KE in DEHP-induced MRT via network topological analysis. Eventually, we developed a novel in silico antagonist screening platform (http://43.136.69.224:3838/wlab/) based on drug-target gene set enrichment analysis (dtGSEA version 2.0). Several potential candidates that mitigate DEHP-mediated cellular apoptosis have been screened out, including quercetin, taurine, methionine, and phloridzin. Further experimental results demonstrated that phloridzin provided the most effective protection against MEHP-induced apoptosis in TM3 cells probably through the p53 and MAPK signaling pathways. Molecular docking and molecular dynamics simulations suggest that STAT3 and RUNX1 may be important targets for phloridzin to antagonize MEHP-induced MRT. Our study provides a new approach to discover the antagonists for the toxicity of environmental contaminants based on AOP network and dtGSEA methods.
Collapse
Affiliation(s)
- Huan Gao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xue Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ziqi Liu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoge Yang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yajie Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengxing Cui
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Han Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoyu Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiying Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihan Liu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongjiang Yu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongmei Xiao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
3
|
Alam MS, Maowa Z, Hasan MN. Phthalates toxicity in vivo to rats, mice, birds, and fish: A thematic scoping review. Heliyon 2025; 11:e41277. [PMID: 39811286 PMCID: PMC11731458 DOI: 10.1016/j.heliyon.2024.e41277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Background Phthalates, a large group of endocrine disruptors, are ubiquitous in the environment and detrimental to human health. This scoping review aimed to summarize the effects of phthalates on laboratory animals relevant to humans, assess toxicity, and analyze mechanisms of toxicity for public health concerns. Methods Articles were retrieved from Google Scholar, PubMed, ScienceDirect, and Web of Science search engines. The search used the term "toxicity of phthalates in vivo, animals or birds or fish." Original research articles published between 2010 and 2024 describing in vivo toxicity in rat, mouse, bird, and fish models, were included. Conversely, articles that did not meet the above criteria were excluded from this scoping review. Two authors independently extracted data using data extraction tools based on themes, while a third arbitrated if consensus was not met. A senior researcher developed the themes, which were further refined through discussions. Data analysis involved quantitative (percentage of studies) and qualitative (content analysis) methods. Results Of the 8180 articles screened, 153 met the inclusion criteria. Most of them were published after 2015 (74.50 %). The scoping review showed that DEHP (56.20 %) and DBP (21.57 %) were the most studied phthalates followed by BBP, DiBP, DMP, DEP, BBOP, and DiNP. Scarce data were available on DnOP, DPHP, DPeP, DUDP, DTDP, DMiP, and DiOP. Interestingly, studies of combinations of two or more phthalates were also present. The main laboratory animals employed were rats (48.37 %) and mice (39.87 %), while the least studied were birds (5.22 %) and fish (6.53 %). Most studies related to testicular toxicity (37.60 %), hepatotoxicity (23.53 %), and ovarian toxicity (18.30 %) investigations, while the rest consisted of neurotoxicity (6.88 %), renal toxicity (6.53 %), and thyroid toxicity studies (4.57 %). Studies focused on oxidative stress (34.64 %), apoptosis (22.22 %), steroid hormone deprivation (20.26 %), lipid metabolism disorder (11.76 %), and immunotoxicity (5.88 %) as mechanisms of toxicity. The most commonly used techniques were H&E, RT-qPCR, ROS assay, WB, IHC, ELISA, RIA, TUNEL, TEM, IFM, FCM, and RNA-seq. Conclusions DEHP and DBP are the most toxic and studied phthalates, while BBP, DiNP, DiBP, DiDP, BBOP, DMP, and DiOP and their combinations require more accurate studies to confirm their toxic effects on human health and mechanisms of action. These will assist policymakers in adopting strategies to minimize public exposure and adverse effects.
Collapse
Affiliation(s)
- Mohammad Shah Alam
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Zannatul Maowa
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohammad Nazmol Hasan
- Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
4
|
Kabekkodu SP, Gladwell LR, Choudhury M. The mitochondrial link: Phthalate exposure and cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119708. [PMID: 38508420 DOI: 10.1016/j.bbamcr.2024.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/17/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Phthalates' pervasive presence in everyday life poses concern as they have been revealed to induce perturbing health defects. Utilized as a plasticizer, phthalates are riddled throughout many common consumer products including personal care products, food packaging, home furnishings, and medical supplies. Phthalates permeate into the environment by leaching out of these products which can subsequently be taken up by the human body. It is previously established that a connection exists between phthalate exposure and cardiovascular disease (CVD) development; however, the specific mitochondrial link in this scenario has not yet been described. Prior studies have indicated that one possible mechanism for how phthalates exert their effects is through mitochondrial dysfunction. By disturbing mitochondrial structure, function, and signaling, phthalates can contribute to the development of the foremost cause of death worldwide, CVD. This review will examine the potential link among phthalates and their effects on the mitochondria, permissive of CVD development.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lauren Rae Gladwell
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
5
|
Khan S, Arshad S, Masood I, Arif A, Abbas S, Qureshi AW, Parveen A, Seemab Ameen Z. GC-MS Analysis of Persicaria bistorta: Uncovering the Molecular Basis of Its Traditional Medicinal Use. Appl Biochem Biotechnol 2024; 196:2270-2288. [PMID: 37515679 DOI: 10.1007/s12010-023-04580-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/31/2023]
Abstract
Persicaria bistorta is a perennial herb used traditionally in treating various ailments, including diarrhea, abdominal pain, and bleeding. In this study, we used gas chromatography-mass spectrometry (GC-MS) analysis to identify the chemical composition of Persicaria bistorta. The GC-MS analysis revealed the presence of several compounds, including flavonoids, tannins, saponins, and alkaloids. Among those, the most important from medicinal points of view are ethyl oleate (3%), cyclotetradecane (4.74%), dodecanoic acid (4.69%), hexadecanoic acid (5.61%), tetradecane (5.25%), cis-13-octadecenoic acid (10.91%), and bis(2-ethylhexyl) phthalate (32%). The GC-MS analysis of ethanolic fraction of Persicaria bistorta involved in antibacterial activity showed about 18 compounds. Among those, the most important from a medicinal and nutritional point of view are bis(2-ethylhexyl) phthalate (42.20%), 6-octadecenoic acid methyl ester, (Z)- (10.37%), ethyl oleate (6.84%), hexadecanoic acid methyl ester (6.67%), and methyl ester and oleic acid (5.27%). Reported biological antibacterial activity has shown that the main compound determined in both extracts was bis(2-ethylhexyl) phthalate, which has higher peak area percentage in ethanolic extract than in ethyl acetate fraction. Some oily compounds important for health because of their cis-conformation were also revealed in the given study like ethyl oleate and oleic acid. Overall, results suggest that Persicaria bistorta may have therapeutic potential and warrant further investigation. Further research is needed to confirm the efficacy and safety of Persicaria bistorta as a natural medicine and determine its active compounds' mechanisms of action.
Collapse
Affiliation(s)
- Sabir Khan
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Shafia Arshad
- Faculty of Medicine and Allied Health Sciences, University College of Conventional Medicine, the Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan.
| | - Imran Masood
- Department of Pharmacy Practice, Faculty of Pharmacy, the Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Amina Arif
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Saba Abbas
- School of Medical Lab Technology, Minhaj University Lahore, Lahore, Pakistan
| | | | - Asia Parveen
- Department of Biochemistry, Faculty of Life Sciences, Gulab Devi Educational Complex, Ferozpur Road, Lahore, Pakistan
| | | |
Collapse
|
6
|
Li X, Zhu Y, Zhao T, Zhang X, Qian H, Wang J, Miao X, Zhou L, Li N, Ye L. Role of COX-2/PGE2 signaling pathway in the apoptosis of rat ovarian granulosa cells induced by MEHP. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114717. [PMID: 36889213 DOI: 10.1016/j.ecoenv.2023.114717] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE MEHP, as the metabolite of DEHP, is a widely used environmental endocrine disruptor. Ovarian granulosa cells participate in maintaining the function of ovary and COX2/PGE2 pathway may regulate the function of granulosa cells. We aimed to explore how COX-2/PGE2 pathway affects cell apoptosis in ovarian granulosa cells caused by MEHP. METHODS Primary rat ovarian granulosa cells were treated with MEHP (0, 200, 250, 300 and 350 μM) for 48 h. Adenovirus was used for over-expression of COX-2 gene. The cell viability was tested with CCK8 kits. The apoptosis level was tested by flow cytometry. The levels of PGE2 were tested with ELISA kits. The expression levels of COX-2/PGE2 pathway related genes, ovulation-related genes and apoptosis-related genes, were measured with RT-qPCR and Western blot. RESULTS MEHP decreased the cell viability. After MEHP exposure, the cell apoptosis level increased. The level of PGE2 markedly decreased. The expression levels of COX-2/PGE2 pathway related genes, ovulation-related genes and anti-apoptotic genes decreased; the expression levels of pro-apoptotic genes increased. The apoptosis level was alleviated after over-expression of COX-2, and the level of PGE2 slightly increased. The expression levels of PTGER2 and PTGER4, and the levels of ovulation-related genes increased; the levels of pro-apoptotic genes decreased. CONCLUSION MEHP can cause cell apoptosis by down-regulating the levels of ovulation-related genes via COX-2/PGE2 pathway in rat ovarian granulosa cells.
Collapse
Affiliation(s)
- Xu Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Ying Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xueting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Honghao Qian
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jia Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xiaohan Miao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Na Li
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China; Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
7
|
Yang R, Zheng J, Qin J, Liu S, Liu X, Gu Y, Yang S, Du J, Li S, Chen B, Dong R. Dibutyl phthalate affects insulin synthesis and secretion by regulating the mitochondrial apoptotic pathway and oxidative stress in rat insulinoma cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114396. [PMID: 36508788 DOI: 10.1016/j.ecoenv.2022.114396] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Dibutyl phthalate (DBP) is a typical phthalate (PAEs). The environmental health risks of DBP have gradually attracted attention due to the common use in the production of plastics, cosmetics and skin care products. DBP was associated with diabetes, but its mechanism is not clear. In this study, an in vitro culture system of rat insulinoma (INS-1) cells was established to explore the effect of DBP on insulin synthesis and secretion and the potential mechanisms. INS-1 cells were cultured in RPMI-1640 medium containing 10% fetal bovine serum and treated with 15, 30, 60 and 120 μmol/L of DBP and dimethyl sulfoxide (vehicle, < 0.1%) for 24 h. The contents of insulin in the intracellular fluid and the extracellular fluid of the cells were measured. The results showed that insulin synthesis and secretion in INS-1 cells were significantly decreased in 120 μmol/L DBP group. The apoptosis rate and mitochondrial membrane potential of INS-1 cells were measured by flow cytometry with annexin V-FITC conjugate and PI, and JC-1, respectively. The results showed that DBP caused an increase in the apoptosis rate and a significant decrease in the mitochondrial membrane potential in INS-1 cells in 60 μmol/L and 120 μmol/L DBP group. The results of western blot showed that the expression of Bax/Bcl-2, caspase-3, caspase-9 and Cyt-C were significantly increased. Meanwhile, the level of oxidative stress in INS-1 cells was detected by fluorescent probes DCFH-DA and western blot. With the increase of DBP exposure, the oxidative stress levels (MDA, GSH/GSSG) were increased; and the antioxidant index (SOD) levels were decreased. Our experimental results provide reliable evidence that DBP induced apoptosis and functional impairment in INS-1 cells through the mitochondrial apoptotic pathway and oxidative stress. Therefore, we hypothesized that interference with these two pathways could be considered in the development of preventive protection measures.
Collapse
Affiliation(s)
- Ruoru Yang
- School of Public Health, Institute of Nutrition, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | | | - Jin Qin
- Affiliated cancer hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China.
| | - Shaojie Liu
- School of Public Health, Institute of Nutrition, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Xinyuan Liu
- School of Public Health, Institute of Nutrition, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Yiying Gu
- School of Public Health, Institute of Nutrition, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Shuyu Yang
- Nutrilite Health Institute, Shanghai 200023, China.
| | - Jun Du
- Nutrilite Health Institute, Shanghai 200023, China.
| | - Shuguang Li
- School of Public Health, Institute of Nutrition, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Bo Chen
- School of Public Health, Institute of Nutrition, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Ruihua Dong
- School of Public Health, Institute of Nutrition, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Xue R, Li S, Wei Z, Zhang Z, Cao Y. Melatonin attenuates di-(2-ethylhexyl) phthalate-induced apoptosis of human granulosa cells by inhibiting mitochondrial fission. Reprod Toxicol 2022; 113:18-29. [PMID: 35952901 DOI: 10.1016/j.reprotox.2022.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/19/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is one of the most used plasticizers which have contaminated environment widely, and its extensive use causes female reproductive injury. Melatonin has a substantial protective effect against female reproductive toxicity. This study was undertaken to investigate the influence of melatonin on DEHP-induced damage of human granulosa cells (GCs) in vitro and explore the potential mechanisms. Here, we found that melatonin treatment alleviated DEHP-induced human GCs apoptosis and improved mitochondrial function via inhibiting dynamin-related protein 1 (Drp1) mediated mitochondrial fission. Melatonin inhibited the expression, activation and oligomerization of Drp1, which decreased translocation of Drp1 to mitochondria in DEHP-exposed human GCs. Inhibition of mitochondrial fission reduced intracellular reactive oxygen species (ROS) production, sustained mitochondrial membrane potential and decreased cytochrome c release. Further research showed that AMPK-PGC-1α signal pathway was involved in the inhibition of melatonin on Drp1 expression and activation. Melatonin treatment promoted AMPK activation suppressed by DEHP, and activated AMPK recovered the balance of Drp1 phosphorylation at Ser616 and Ser637 sites and enhanced PGC-1α expression. Moreover, PGC-1α could prevent mitochondrial fission by decreasing Drp1 expression directly via binding to its promoter. In contrast, blocking of AMPK or PGC-1α with specific inhibitor negated the protective effects of melatonin on mitochondrial homeostasis and GCs apoptosis. In summary, our results indicated the protective effects of melatonin on improving mitochondrial function and attenuating cells injury in DEHP-exposed human GCs. Melatonin treatment may be a promising therapeutic approach against DEHP-induced reproductive disorder.
Collapse
Affiliation(s)
- Rufeng Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
| | - Shuhang Li
- Department of Oncology of The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
| |
Collapse
|
9
|
He T, Guo H, Xia L, Shen X, Huang Y, Wu X, Jiang X, Xu Y, Tan Y, Zhang Y, Tan D. Alterations of RNA Modification in Mouse Germ Cell-2 Spermatids Under Hypoxic Stress. Front Mol Biosci 2022; 9:871737. [PMID: 35775084 PMCID: PMC9237606 DOI: 10.3389/fmolb.2022.871737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxia is a known stress factor in mammals and has been shown to potentially impair male fertility, which manifests as spermatogenic dysfunction and decreased semen quality. Studies have shown that RNA modifications, the novel post-transcriptional regulators, are involved in spermatogenesis, and hypoxia-induced alterations in RNA modification in testes and sperm cells may be associated with impaired spermatogenesis in mice. However, the molecular mechanisms via which RNA modifications influence spermatogenesis under hypoxic stress conditions are unclear. In this study, we generated a mouse Germ Cell-2 spermatid (GC-2spd) hypoxia model by culturing cells in a 1% O2 incubator for 48 h or treating them with CoCl2 for 24 h. The hypoxia treatment significantly inhibited proliferation and induced apoptosis in GC-2spd cells. The RNA modification signatures of total RNAs (2 types) and differentially sized RNA fragments (7 types of approximately 80 nt-sized tRNAs; 9 types of 17–50 nt-sized sncRNAs) were altered, and tRNA stability was partially affected. Moreover, the expression profiles of sncRNAs, such as microRNAs, tsRNAs, rsRNAs, and ysRNAs, were significantly regulated, and this might be related to the alterations in RNA modification and subsequent transcriptomic changes. We comprehensively analyzed alterations in RNA modification signatures in total RNAs, tRNAs (approximately 80 nt), and small RNAs (17–50 nt) as well as the expression profiles of sncRNAs and transcriptomes in hypoxia-treated GC-2spd cells; our data suggested that RNA modifications may be involved in cellular responses under hypoxic stress conditions and could provide a basis for a better understanding of the molecular mechanisms underlying male infertility.
Collapse
Affiliation(s)
- Tong He
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Huanping Guo
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lin Xia
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xipeng Shen
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yun Huang
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Xiao Wu
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xuelin Jiang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yinying Xu
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yi Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Yunfang Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- *Correspondence: Yunfang Zhang, ; Dongmei Tan,
| | - Dongmei Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
- *Correspondence: Yunfang Zhang, ; Dongmei Tan,
| |
Collapse
|
10
|
Safarpour S, Ghasemi-Kasman M, Safarpour S, Darban YM. Effects of Di-2-Ethylhexyl Phthalate on Central Nervous System Functions: A Narrative Review. Curr Neuropharmacol 2022; 20:766-776. [PMID: 34259148 PMCID: PMC9878957 DOI: 10.2174/1570159x19666210713122517] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/23/2021] [Accepted: 07/03/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Phthalates are widely used in the plastics industry. Di-2-Ethylhexyl Phthalate (DEHP) is one of the most important phthalate metabolites that disrupt the function of endocrine glands. Exposure to DEHP causes numerous effects on animals, humans, and the environment. Low doses of DEHP increase neurotoxicity in the nervous system that has arisen deep concerns due to the widespread nature of DEHP exposure and its high absorption during brain development. OBJECTIVE In this review article, we evaluated the impacts of DEHP exposure from birth to adulthood on neurobehavioral damages. Then, the possible mechanisms of DEHP-induced neurobehavioral impairment were discussed. METHODOLOGY Peer-reviewed articles were extracted through Embase, PubMed, and Google Scholar till the year 2021. RESULTS The results showed that exposure to DEHP during pregnancy and infancy leads to memory loss and irreversible nervous system damage. CONCLUSION Overall, it seems that increased levels of oxidative stress and inflammatory mediators possess a pivotal role in DEHP-induced neurobehavioral impairment.
Collapse
Affiliation(s)
- Soheila Safarpour
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran;,Department of Pharmacology and Toxicology, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran;,Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran;,Address correspondence to this author at the Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, P.O. Box 4136747176, Babol, Iran; Tel/Fax: +98-11-32190557; E-mail:
| | - Samaneh Safarpour
- Department of Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
11
|
Liu H, Zhu S, Han W, Cai Y, Liu C. DMEP induces mitochondrial damage regulated by inhibiting Nrf2 and SIRT1/PGC-1α signaling pathways in HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112449. [PMID: 34214916 DOI: 10.1016/j.ecoenv.2021.112449] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Dimethoxyethyl phthalate (DMEP) is an environmental endocrine disruptor. However, research into the underlying mechanisms of DMEP mitochondrial toxicity is still in its infancy. We therefore expect to understand whether DMEP induced mitochondrial damage in HepG2 cells and the associated signaling pathways. DMEP (0.125, 0.25, 0.5, 1 and 2 mM) exposure for 48 h induced a notable increment in reactive oxygen species (ROS), malondialdehyde (MDA), alanine aminotransferase (ALT), aspartate transaminase (AST) and 8-hydroxydeoxyguanosine (8-OHdG) in hepG2 cells, resulting in cellular oxidative stress. Low doses of DMEP upregulated nuclear factor E2-related factor 2 (Nrf2) and downstream protein haeme oxygenase-1 (HO-1) levels and high doses down-regulated their levels. Nrf2 levels increased after ROS scavenging by N-acetyl-L-cysteine (NAC), which indicated that the Nrf2 pathway may be affected by oxidative stress. We also found that DMEP decreased ATP content, mitochondrial copy number (mtDNA), translocase of the outer membrane subunit 20 (TOM20) expression, mitochondria-encoded genes CO1, CO2, CO3, ATP6, ATP8 expression, inhibited mitochondrial biogenesis pathway, down-regulated sirtuin 1(SIRT1), PPAR gamma co-activator 1 alpha (PGC-1α), Nuclear respiratory factor 1(Nrf1), Mitochondrial transcription factor A (TFAM) content and activated PINK1/Parkin autophagy pathway. DMEP also activated the mitochondrial apoptotic pathway, causing cytochrome c cytoplasmic translocation and caspase 3 cleavage. What's more, DMEP activated the Nuclear factor-κB (NF-κB) pathway and levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were significantly upregulated, causing an inflammatory response. In summary, DMEP can cause inflammatory response and oxidative stress in HepG2 cells, inhibited the Nrf2 pathway and mitochondrial biogenesis, and induced autophagy and apoptosis. And oxidative stress at least partially affected the Nrf2 pathway and mitochondrial biogenesis SIRT1/PGC-1α pathway.
Collapse
Affiliation(s)
- Huan Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China.
| | - Siyu Zhu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China.
| | - Wenna Han
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China.
| | - Yueqi Cai
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China.
| |
Collapse
|
12
|
Mohammadi H, Ashari S. Mechanistic insight into toxicity of phthalates, the involved receptors, and the role of Nrf2, NF-κB, and PI3K/AKT signaling pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35488-35527. [PMID: 34024001 DOI: 10.1007/s11356-021-14466-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The wide use of phthalates, as phthalates are used in the manufacturing of not only plastics but also many others goods, has become a main concern in the current century because of their potency to induce deleterious effects on organism health. The toxic effects of phthalates such as reproductive toxicity, cardiotoxicity, hepatotoxicity, nephrotoxicity, teratogenicity, and tumor development have been widely indicated by previous experimental studies. Some of the important mechanisms of toxicity by phthalates are the induction and promotion of inflammation, oxidative stress, and apoptosis. Awareness of the involved molecular pathways of these mechanisms will permit the detection of exact molecular targets of phthalates to protect or treat their toxicity. Up to now, various transcription factors and signaling pathways have been associated with phthalate-induced toxicity which by influencing on nuclear surface and the expression of different genes can alter cell hemostasis. In different studies, the role of nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor-κB (NF-κB), and phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathways in processes of oxidative stress, inflammation, apoptosis, and cancer has been shown following exposure to phthalates. In the present review, we aim to survey experimental studies (in vitro and in vivo) in order to show firstly the most involved receptors and also the importance and the role of the mentioned signaling pathways in phthalate-induced toxicity, and with considering this point, the future studies can focus on these molecular targets as a strategic method to reduce environmental chemicals-induced toxicity especially phthalates toxic effects.
Collapse
Affiliation(s)
- Hamidreza Mohammadi
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology/Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sorour Ashari
- Department of Toxicology/Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
13
|
Yi L, Dai J, Chen Y, Tong Y, Li Y, Fu G, Teng Z, Huang J, Quan C, Zhang Z, Zhou T, Zhang L, Shi Y. Reproductive toxicity of cadmium in pubertal male rats induced by cell apoptosis. Toxicol Ind Health 2021; 37:469-480. [PMID: 34128436 DOI: 10.1177/07482337211022615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cadmium (Cd) is a heavy metal that is widely present in modern industrial production. It is a known, highly toxic environmental endocrine disruptor. Long-term exposure to Cd can cause varying degrees of damage to the liver, kidney, and reproductive system of organisms, especially the male reproductive system. This study aimed to explore the mechanism of Cd toxicity in the male reproductive system during puberty. Eighteen healthy 6-week-old male Sprague-Dawley rats were randomly divided into three groups (control group, low-dose group, and high-dose group) according to their body weight, with six in each group. Cd (0, 1, and 3 mg/kg/day) was given by gavage for 28 consecutive days. The results showed that Cd exposure to each dose group caused a decrease in the testicular organ coefficient and sperm count, compared with the control group. Cd exposure resulted in significant changes in testicular morphology in the 3 mg/kg/day Cd group. In the 1 and 3 mg/kg/day Cd groups, serum testosterone decreased and apoptosis of testicular cells increased significantly (p < 0.05). In addition, compared with the control group, the activity of glutathione peroxidase and superoxide dismutase in each Cd exposure dose group decreased, but the content of malondialdehyde in the high-dose, 3 mg/kg/day Cd treatment group significantly increased (p < 0.05). Although Cd exposure caused an increase in the messenger RNA (mRNA) levels of Bcl-2, Caspase-3 and Caspase-9 in the testicular tissues (p < 0.05), Bcl-2 expression was unchanged (p > 0.05). The expression level of Akt mRNA in testicular tissue of rats in the high-dose 3 mg/kg/day Cd group was increased (p < 0.05). Our data suggest that Cd affected testosterone levels, and apoptosis was observed in spermatids.
Collapse
Affiliation(s)
- Lingna Yi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| | - Juan Dai
- 369606Wuhan Centers for Disease Prevention and Control, Wuhan, China
| | - Yong Chen
- Emergency Department, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| | - Yeqing Tong
- Hubei Centers for Disease Prevention and Control, Wuhan, China
| | - You Li
- Tigermed Consulting Ltd, China
| | - Guoqing Fu
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| | - Zengguang Teng
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| | - Jufeng Huang
- Hanchuan Centers for Disease Prevention and Control, Hanchuan, China
| | - Chao Quan
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| | - Zhibing Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| | - Ting Zhou
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| | - Yuqin Shi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Zhao Y, Li MZ, Talukder M, Luo Y, Shen Y, Wang HR, Li JL. Effect of mitochondrial quality control on the lycopene antagonizing DEHP-induced mitophagy in spermatogenic cells. Food Funct 2021; 11:5815-5826. [PMID: 32602507 DOI: 10.1039/d0fo00554a] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widespread environmental contaminant, which is mainly used as a plasticizer to improve the flexibility of products; however, its extensive use causes male reproductive damage. Lycopene (LYC) has a protective effect on male reproductive toxicity. Nevertheless, the underlying role of LYC in DEHP-induced spermatogenic cell damage remains unclear. Our study aimed to investigate the role of LYC in DEHP-induced spermatogenic cell damage and its underlying mechanism. Male ICR mice were treated with LYC (5 mg kg-1) and/or DEHP (500 mg kg-1 or 1000 mg kg-1) for 28 days. The results showed that LYC alleviated the DEHP-induced decrease in mitochondria volume density and mitochondrial membrane potential (ΔΨm). Subsequently, LYC prevented the DEHP-induced PGC-1α-mediated reduction in mitochondrial biogenesis in spermatogenic cells. LYC exhibited a potential preventive effect against DEHP-induced mitophagy caused by mitochondrial dynamics disorder in the spermatogenic cells. Meanwhile, LYC relieved DEHP-induced mitochondrial stress in the spermatogenic cells by activating UPRmt. These results proved that mitochondrial quality control may be related to the beneficial role of LYC in preventing DEHP-induced mitophagy in spermatogenic cells. This study provides new evidence of mitochondrial quality control as a target for LYC treatment, which can prevent DEHP-induced toxicity.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Mu-Zi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China. and Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Bangladesh
| | - Yu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Yue Shen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Hao-Ran Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China. and Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China and Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
15
|
Lombó M, Herráez P. The effects of endocrine disruptors on the male germline: an intergenerational health risk. Biol Rev Camb Philos Soc 2021; 96:1243-1262. [PMID: 33660399 DOI: 10.1111/brv.12701] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Environmental pollution is becoming one of the major concerns of society. Among the emerging contaminants, endocrine-disrupting chemicals (EDCs), a large group of toxicants, have been the subject of many scientific studies. Besides the capacity of these compounds to interfere with the endocrine system, they have also been reported to exert both genotoxic and epigenotoxic effects. Given that spermatogenesis is a coordinated process that requires the involvement of several steroid hormones and that entails deep changes in the chromatin, such as DNA compaction and epigenetic remodelling, it could be affected by male exposure to EDCs. A great deal of evidence highlights that these compounds have detrimental effects on male reproductive health, including alterations to sperm motility, sexual function, and gonad development. This review focuses on the consequences of paternal exposure to such chemicals for future generations, which still remain poorly known. Historically, spermatozoa have long been considered as mere vectors delivering the paternal haploid genome to the oocyte. Only recently have they been understood to harbour genetic and epigenetic information that plays a remarkable role during offspring early development and long-term health. This review examines the different modes of action by which the spermatozoa represent a key target for EDCs, and analyses the consequences of environmentally induced changes in sperm genetic and epigenetic information for subsequent generations.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Animal Reproduction, INIA, Puerta de Hierro 18, Madrid, 28040, Spain
| | - Paz Herráez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| |
Collapse
|
16
|
Chiu K, Bashir ST, Nowak RA, Mei W, Flaws JA. Subacute exposure to di-isononyl phthalate alters the morphology, endocrine function, and immune system in the colon of adult female mice. Sci Rep 2020; 10:18788. [PMID: 33139756 PMCID: PMC7608689 DOI: 10.1038/s41598-020-75882-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023] Open
Abstract
Di-isononyl phthalate (DiNP), a common plasticizer used in polyvinyl chloride products, exhibits endocrine-disrupting capabilities. It is also toxic to the brain, reproductive system, liver, and kidney. However, little is known about how DiNP impacts the gastrointestinal tract (GIT). It is crucial to understand how DiNP exposure affects the GIT because humans are primarily exposed to DiNP through the GIT. Thus, this study tested the hypothesis that subacute exposure to DiNP dysregulates cellular, endocrine, and immunological aspects in the colon of adult female mice. To test this hypothesis, adult female mice were dosed with vehicle control or DiNP doses ranging from 0.02 to 200 mg/kg for 10–14 days. After the treatment period, mice were euthanized during diestrus, and colon tissue samples were subjected to morphological, biochemical, and hormone assays. DiNP exposure significantly increased histological damage in the colon compared to control. Exposure to DiNP also significantly decreased sICAM-1 levels, increased Tnf expression, decreased a cell cycle regulator (Ccnb1), and increased apoptotic factors (Aifm1 and Bcl2l10) in the colon compared to control. Colon-extracted lipids revealed that DiNP exposure significantly decreased estradiol levels compared to control. Collectively, these data indicate that subacute exposure to DiNP alters colon morphology and physiology in adult female mice.
Collapse
Affiliation(s)
- Karen Chiu
- Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL, 61802, USA
| | - Shah Tauseef Bashir
- Department of Molecular and Integrative Physiology, College of Liberal Arts and Sciences, University of Illinois, Urbana, IL, USA.,Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Romana A Nowak
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wenyan Mei
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL, 61802, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jodi A Flaws
- Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL, 61802, USA. .,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
17
|
Xu J, Wang L, Zhang L, Zheng F, Wang F, Leng J, Wang K, Héroux P, Shen HM, Wu Y, Xia D. Mono-2-ethylhexyl phthalate drives progression of PINK1-parkin-mediated mitophagy via increasing mitochondrial ROS to exacerbate cytotoxicity. Redox Biol 2020; 38:101776. [PMID: 33161305 PMCID: PMC7649642 DOI: 10.1016/j.redox.2020.101776] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Abstract
Phthalate ester plasticizers are used to improve the plasticity and strength of plastics. One of the most widely used and studied, di-2-ethylhexyl phthalate (DEHP), has been labeled as an endocrine disruptor. The major and toxic metabolic derivative of DEHP, mono-2-ethylhexyl phthalate (MEHP), is capable of interfering with mitochondrial function, but its mechanism of action on mitophagy remains elusive. Here, we report that MEHP exacerbates cytotoxicity by amplifying the PINK1-Parkin-mediated mitophagy pathway. First, MEHP exacerbated mitochondrial damage induced by low-dose CCCP via increased reactive oxygen species (ROS) production, decreased mitochondrial membrane potential (MMP), and enhanced fragmentation in mitochondria. Second, co-exposure to MEHP and CCCP (“MEHP-CCCP”) induced robust mitophagy. Mechanistically, MEHP-CCCP stabilized PINK1, increased the level of phosphorylated ubiquitin (pSer 65-Ub), and led to Parkin mitochondrial translocation and activation. Third, MEHP-CCCP synergistically caused more cell death, while inhibition of mitophagy, either through chemical or gene silencing, reduced cell death. Finally and importantly, co-treatment with N-acetyl cysteine (NAC) completely counteracted the effects of MEHP-CCCP, suggesting that mitochondrial ROS played a vital role in this process. Our results link mitophagy and MEHP cytotoxicity, providing an insight into the potential roles of endocrine disrupting chemicals (EDCs) in human diseases such as Parkinson's disease. Mono-2-ethylhexyl phthalate (MEHP) exacerbates mitochondrial damage induced by low-dose CCCP. Co-exposure to MEHP and CCCP (MEHP-CCCP) induces robust mitophagy in a PINK1-Parkin-dependent pathway. Mitophagy promotes MEHP-CCCP-induced cell death. ROS mediate MEHP-CCCP-induced mitophagy and cytotoxicity.
Collapse
Affiliation(s)
- Jian Xu
- Department of Toxicology of School of Public Health, And Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, PR China
| | - Liming Wang
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lihuan Zhang
- Department of Toxicology of School of Public Health, And Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Fang Zheng
- Department of Toxicology of School of Public Health, And Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Fang Wang
- Department of Toxicology of School of Public Health, And Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Jianhang Leng
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, PR China
| | - Keyi Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, PR China
| | - Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Canada
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yihua Wu
- Department of Toxicology of School of Public Health, And Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China.
| | - Dajing Xia
- Department of Toxicology of School of Public Health, And Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China.
| |
Collapse
|
18
|
Fu G, Dai J, Li Z, Chen F, Liu L, Yi L, Teng Z, Quan C, Zhang L, Zhou T, Donkersley P, Song S, Shi Y. The role of STAT3/p53 and PI3K-Akt-mTOR signaling pathway on DEHP-induced reproductive toxicity in pubertal male rat. Toxicol Appl Pharmacol 2020; 404:115151. [DOI: 10.1016/j.taap.2020.115151] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
|
19
|
Sung CR, Kang HG, Hong JY, Kwack SJ. Citrate ester substitutes for di-2-ethylhexyl phthalate: In vivo reproductive and in vitro cytotoxicity assessments. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:589-595. [PMID: 32727286 DOI: 10.1080/15287394.2020.1798832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
UNLABELLED Di-2-ethylhexyl phthalate (DEHP) is frequently used as a plasticizer for wrapping films, in toys, and in medical devices. Previous studies demonstrated that DEHP in mouse reduced testicular and epididymis weights, suppressed levels of serum testosterone, luteinizing hormone, and follicle-stimulating hormone, and decreased synthesis of testosterone by Leydig cells. Due to these anti-androgenic effects of DEHP on the reproductive system, the aim of this study was to examine whether substitutes such as acetyl triethyl citrate (ATEC) and acetyl tributyl citrate (ATBC) also damaged the reproductive system. In particular, this study investigated the anti-androgenic effects and cytotoxicity of DEHP substitutes using castrated male Sprague--Dawley rats employing the in vivo Hershberger assay and in vitro mouse Leydig (TM3) cells and mouse fibroblast (NIH-3T3) cell lines. In the Hershberger assay, rats were administered testosterone propionate and ATEC or ATBC at 20, 100, or 500 mg/kg b.w./day or DEHP (500 mg/kg b.w./day). Controls received testosterone antagonist flutamide (positive control), testosterone only (negative control), or corn oil only (vehicle control). ATEC/ATBC treatment produced no significant differences compared with testosterone in 5-androgen-dependent tissues weights including ventral prostate, seminal vesicles, levator ani-bulbocavernosus muscle, Cowper's glands, and glans penis. In the 500 mg/kg ATBC group, there was a significant reduction in liver weight. The MTT assay revealed that cell viability of both TM3 and NIH-3T3 cells treated with ATEC was not markedly altered. However, ATBC significantly reduced TM3 and NIH-3T3 cell viability in a concentration-dependent manner. Further, ATBC reduced cell viability to greater extent in TM3 versus NIH-3T3 cells. Based upon the observed effects of citrate ester substitutes on reproductive tissue responses and cytotoxicity, ATEC compared to ATBC may be a better alternative to DEHP for potential commercial uses. ABBREVIATIONS ATEC: acetyl triethyl citrate; ATBC: acetyl tributyl citrate; CG: Cowper's glands; DEHP: di-2-ethylhexyl phthalate; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; GP: glans penis; LABC: levator ani-bulbocavernosus muscle; MTT: methyl tetrazolium; NC: negative control; NT: untreated control; PC: positive control; SV: seminal vesicle; TP: testosterone propionate; VC: vehicle control; VP: ventral prostate.
Collapse
Affiliation(s)
- Chi Rim Sung
- Department of Bio Health Science, College of Natural Science, Changwon National University , Changwon, Republic of Korea
| | - Hyeon Gyu Kang
- Department of Bio Health Science, College of Natural Science, Changwon National University , Changwon, Republic of Korea
| | - Ji Young Hong
- Department of Bio Health Science, College of Natural Science, Changwon National University , Changwon, Republic of Korea
| | - Seung Jun Kwack
- Department of Bio Health Science, College of Natural Science, Changwon National University , Changwon, Republic of Korea
| |
Collapse
|
20
|
Tu W, Li W, Zhu X, Xu L. Di-2-ethylhexyl phthalate (DEHP) induces apoptosis of mouse HT22 hippocampal neuronal cells via oxidative stress. Toxicol Ind Health 2020; 36:844-851. [PMID: 32909914 DOI: 10.1177/0748233720947205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Di-2-ethylhexyl phthalate (DEHP) has been widely used as a plasticizer in industry and can affect memory; however, the underlying mechanism remains unclear. In the present study, mouse HT22 cells, an immortalized hippocampal neuronal cell line, was utilized as an in vitro model. We showed that DEHP dramatically inhibited cell viability and increased lactate dehydrogenase (LDH) release from the cells in a dose-dependent manner, suggesting that DEHP could cause cytotoxicity of mouse HT22 cells. The protein levels of cleaved Caspase-8, cleaved Caspase-3, and Bax markedly increased in the DEHP-treated cells, whereas there was a significant decrease in the Bcl-2 protein level, implying that DEHP could induce apoptosis of mouse HT22 cells. DEHP exposure significantly increased the content of malondialdehyde, whereas it markedly decreased the level of glutathione and the activities of glutathione peroxidase and superoxide dismutase, suggesting that DEHP induced oxidative stress of the cells. Compared with the DEHP-treated group, the inhibition of cell viability and the release of LDH were rescued in the N-acetyl-l-cysteine plus DEHP group. Furthermore, inhibition of oxidative stress could rescue the induction of apoptosis by DEHP. Collectively, our results indicated that DEHP could induce apoptosis of mouse HT22 cells via oxidative stress.
Collapse
Affiliation(s)
- Wei Tu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Weifeng Li
- Department of Oncology, Feng Cheng People’s Hospital, Fengcheng, People’s Republic of China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Linlin Xu
- Medical Research Center, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
21
|
Gan Y, Yang D, Yang S, Wang J, Wei J, Chen J. Di-2-ethylhexyl phthalate (DEHP) induces apoptosis and autophagy of mouse GC-1 spg cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:292-299. [PMID: 31675140 DOI: 10.1002/tox.22866] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
As a widely used plasticizer in industry, di-2-ethylhexylphthalate (DEHP) can cause testicular toxicity, yet little is known about the potential mechanism. In this study, DEHP exposure dramatically inhibited cellviability and induced apoptosis of mouse GC-1 spg cells. Furthermore, DEHP significantly increased the levels of autophagy proteins LC3-II, Beclin1 and Atg5, as well as the ratio ofLC3-II/LC3-I. Transmission electron microscopy (TEM) further confirmed that DEHP induced autophagy of mouse GC-1 spg cells. DEHP was also shown to induceoxidative stress; while inhibition of oxidative stress with NAC could increase cell viability and inhibit DEHP-induced apoptosis and autophagy. These results suggested that DEHP induced apoptosis and autophagy of mouse GC-1 spg cells via oxidative stress. 3-MA, an inhibitor of autophagy, could rescue DEHP-induced apoptosis. In summary, DEHP induced apoptosis and autophagy of mouse GC-1 spg cells via oxidative stress, and autophagy might exert a cytotoxic effect on DEHP-induced apoptosis.
Collapse
Affiliation(s)
- Yu Gan
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Dan Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Si Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Jinglei Wang
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Jie Wei
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Jiaxiang Chen
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang, China
| |
Collapse
|
22
|
Seong JB, Bae YC, Lee HS, Huh JW, Lee SR, Lee HJ, Lee DS. Increasing ERK phosphorylation by inhibition of p38 activity protects against cadmium-induced apoptotic cell death through ERK/Drp1/p38 signaling axis in spermatocyte-derived GC-2spd cells. Toxicol Appl Pharmacol 2019; 384:114797. [PMID: 31676320 DOI: 10.1016/j.taap.2019.114797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 01/30/2023]
Abstract
Many studies report that cadmium chloride (CdCl2)-induces oxidative stress is associated with male reproductive damage in the testes. CdCl2 also induces mitochondrial fission by increasing dynamin-related protein 1 (Drp1) expression as well as the mitochondria-dependent apoptosis pathway by extracellular signal-regulated kinase (ERK) activation. However, it remains unclear whether mechanisms linked to the mitochondrial damage signal via CdCl2-induced mitogen-activated protein kinases (MAPK) cause damage to spermatocytes. In this study, increased intracellular and mitochondrial reactive oxygen species (ROS) levels, mitochondrial membrane potential (∆Ψm) depolarization, and mitochondrial fragmentation and swelling were observed at 5 μM of CdCl2 exposure, resulting in increased apoptotic cell death. Moreover, CdCl2-induced cell death is closely associated with the ERK/Drp1/p38 signaling axis. Interestingly, SB203580, a p38 inhibitor, effectively prevented CdCl2-induced apoptotic cell death by reducing ∆Ψm depolarization and intracellular and mitochondrial ROS levels. Knockdown of Drp1 expression diminished CdCl2-induced mitochondrial deformation and ROS generation and protected GC-2spd cells from apoptotic cell death. In addition, electron microscopy showed that p38 inhibition reduced CdCl2-induced mitochondrial interior damage more effectively than N-acetyl-L-cysteine (NAC), an ROS scavenger; ERK inhibition; or Drp1 knockdown. Therefore, these results demonstrate that inhibition of p38 activity prevents CdCl2-induced apoptotic GC-2spd cell death by reducing depolarization of mitochondrial membrane potential and mitochondrial ROS levels via ERK phosphorylation in a signal pathway different from the CdCl2-induced ERK/Drp1/p38 axis and suggest a therapeutic strategy for CdCl2-induced male infertility.
Collapse
Affiliation(s)
- Jung Bae Seong
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Hong Jun Lee
- College of Medicine, Chungbuk National University, Chungbuk, Republic of Korea; Department of Radiology, Chungbuk National University Hospital, Chungbuk, Republic of Korea; Research Institute, e-biogen Inc., Seoul, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
23
|
Lee DG, Kim KM, Lee HS, Bae YC, Huh JW, Lee SR, Lee DS. Peroxiredoxin 5 prevents diethylhexyl phthalate-induced neuronal cell death by inhibiting mitochondrial fission in mouse hippocampal HT-22 cells. Neurotoxicology 2019; 74:242-251. [DOI: 10.1016/j.neuro.2019.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
|
24
|
Zhang G, Yang W, Jiang F, Zou P, Zeng Y, Ling X, Zhou Z, Cao J, Ao L. PERK regulates Nrf2/ARE antioxidant pathway against dibutyl phthalate-induced mitochondrial damage and apoptosis dependent of reactive oxygen species in mouse spermatocyte-derived cells. Toxicol Lett 2019; 308:24-33. [DOI: 10.1016/j.toxlet.2019.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/17/2019] [Accepted: 03/17/2019] [Indexed: 01/30/2023]
|
25
|
Luo Y, Li XN, Zhao Y, Du ZH, Li JL. DEHP triggers cerebral mitochondrial dysfunction and oxidative stress in quail (Coturnix japonica) via modulating mitochondrial dynamics and biogenesis and activating Nrf2-mediated defense response. CHEMOSPHERE 2019; 224:626-633. [PMID: 30844593 DOI: 10.1016/j.chemosphere.2019.02.142] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) in the environment and food chain may impact cerebrum development and neurobehavioral in humans and wildlife. However, it is unclear that DEHP exposure caused cerebral toxicity. This experiment used gavage to expose female quail to 0, 250, 500, and 1000 mg/kg BW/day for 45 days to assess the potential neurotoxicity of DEHP to the cerebrum. It can be observed that there will be obvious neurological abnormalities in the experiment. Cerebrum histological lesions can be observed with HE-staining. Detecting oxidative stress indices, Nrf2 pathway, and mitochondrial dynamics factor, by analyzing the results, these results were observed that DEHP exposure can cause damage to the cerebrum by causing oxidative stress and affecting the balance of mitochondrial dynamics. Nrf2-mediated defense is not activated by exposure to 250 mg/kg DEHP. Nrf2-mediated defense is activated but is not resistant to exposure to medium and high doses of DEHP (500 mg/kg; 1000 mg/kg). DEHP triggers cerebral mitochondrial dysfunction via modulating mitochondrial dynamics.
Collapse
Affiliation(s)
- Yu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zheng-Hai Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
26
|
Roncati L, Manenti A, Azzali F. Brain Toxicity: A Challenging Research Topic. Ann Thorac Surg 2019; 108:1587. [PMID: 30980819 DOI: 10.1016/j.athoracsur.2019.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Luca Roncati
- Department of Pathology, Polyclinic Hospital, Modena University, Modena, Italy
| | - Antonio Manenti
- Department of Surgery, Polyclinic Hospital, Modena University, v. Pozzo, 41124 Modena, Italy.
| | - Filippo Azzali
- Department of Pathology, Polyclinic Hospital, Modena University, Modena, Italy
| |
Collapse
|
27
|
Shi YQ, Fu GQ, Zhao J, Cheng SZ, Li Y, Yi LN, Li Z, Zhang L, Zhang ZB, Dai J, Zhang DY. Di(2-ethylhexyl)phthalate induces reproductive toxicity via JAZF1/TR4 pathway and oxidative stress in pubertal male rats. Toxicol Ind Health 2019; 35:228-238. [DOI: 10.1177/0748233718824911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Di(2-ethylhexyl)phthalate (DEHP) is a typical endocrine-disrupting chemical and reproductive toxicant. Although previous studies have attempted to describe the mechanism by which DEHP exposure results in reproductive dysfunction, few studies focused on puberty, a critical period of reproductive development, and the increased susceptibility to injury in adolescents. To elucidate the mechanism underpinning the testicular effects of DEHP in puberty, we sought to investigate the JAZF1/TR4 pathway in the testes of pubertal rats. Specifically, we focused on the role of the JAZF1/TR4 pathway in male reproduction, including the genes JAZF1, TR4, Sperm 1, and Cyclin A1. In the present study, rats were exposed to increasing concentrations of DEHP (0, 250, 500, and 1000 mg/kg/day) by oral gavages for 30 days. Then we assayed testicular zinc and oxidative stress levels. Our results indicated that DEHP exposure could lead to oxidative stress and decrease the contents of testicular zinc. Additionally, significant morphological changes and cell apoptosis were observed in testes exposed to DEHP, as identified by hematoxylin and eosin staining and the terminal deoxynucleotidyl transferase-mediated nick and labeling assay. By measuring the expression levels of the above relevant genes by qPCR, we found the DEHP-induced increased expression of JAZF1 and decreased expression of TR4, Sperm 1, and Cyclin A1. Therefore, we have demonstrated that in vivo exposure to DEHP might induce reproductive toxicity in pubertal male rats through the JAZF1/TR4 pathway and oxidative stress.
Collapse
Affiliation(s)
- Yu-Qin Shi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
- School of Environment, Tsinghua University, Beijing, People’s Republic of China
| | - Guo-Qing Fu
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Jing Zhao
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Shen-Zhou Cheng
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - You Li
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling-Na Yi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhen Li
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhi-Bing Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Juan Dai
- Wuhan Centers for Disease Prevention and Control, Wuhan, People’s Republic of China
| | - Da-Yi Zhang
- School of Environment, Tsinghua University, Beijing, People’s Republic of China
| |
Collapse
|
28
|
Tripathi A, Pandey V, Sahu AN, Singh A, Dubey PK. Di-(2-ethylhexyl) phthalate (DEHP) inhibits steroidogenesis and induces mitochondria-ROS mediated apoptosis in rat ovarian granulosa cells. Toxicol Res (Camb) 2019; 8:381-394. [PMID: 31160972 DOI: 10.1039/c8tx00263k] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/04/2019] [Indexed: 01/06/2023] Open
Abstract
Increased oxidative stress (OS) due to ubiquitous exposure to di-(2-ethylhexyl) phthalate (DEHP) can affect the quality of oocytes by inducing apoptosis and hampering granulosa cell mediated steroidogenesis. This study was carried out to investigate whether DEHP induced OS affects steroidogenesis and induces apoptosis in rat ovarian granulosa cells. OS was induced by exposing granulosa cells to various concentrations of DEHP (0.0, 100, 200, 400 and 800 μM) for 72 h in vitro. Intracellular reactive oxygen species (ROS), oxidative stress (OS), mitochondrial membrane potential, cellular senescence, apoptosis, steroid hormones (estradiol & progesterone) and gene expression were analyzed. The results showed that an effective dose of DEHP (400 μg) significantly increased OS by elevating the ROS level, mitochondrial membrane potential, and β-galactosidase activity with higher mRNA expression levels of apoptotic genes (Bax, cytochrome-c and caspase3) and a lower level of an anti-apoptotic gene (Bcl2) as compared to the control. Further, DEHP significantly (P > 0.05) decreased the level of steroid hormones (estradiol and progesterone) in a conditioned medium and this effect was reciprocated with a lower expression (P > 0.05) of steroidogenic responsive genes (Cyp11a1, Cyp19A1, Star, ERβ1) in treated granulosa cells. Furthermore, co-treatment with N-Acetyl-Cysteine (NAC) rescues the effects of DEHP on OS, ROS, β-galactosidase levels and gene expression activities. Altogether, these results suggest that DEHP induces oxidative stress via ROS generation and inhibits steroid synthesis via modulating steroidogenic responsive genes, which leads to the induction of apoptosis through the activation of Bax/Bcl-2-cytochrome-c and the caspase-3-mediated mitochondrial apoptotic pathway in rat granulosa cells.
Collapse
Affiliation(s)
- Anima Tripathi
- Department of Zoology , MMV-BHU , Varanasi-221005 , India .
| | - Vivek Pandey
- Centre for Genetic Disorders , Institute of Science , Banaras Hindu University , Varanasi-221005 , India . ; Tel: +91 9451890938
| | - Alakh N Sahu
- Department of Pharmaceutical Eng. & Tech. IIT-BHU , Varanasi-221005 , India
| | - Alok Singh
- Department of Medicine , IMS-BHU , Varanasi-221005 , India
| | - Pawan K Dubey
- Centre for Genetic Disorders , Institute of Science , Banaras Hindu University , Varanasi-221005 , India . ; Tel: +91 9451890938
| |
Collapse
|
29
|
Tri-ortho-cresyl phosphate (TOCP) induced ovarian failure in mice is related to the Hippo signaling pathway disruption. Reprod Toxicol 2019; 83:21-27. [DOI: 10.1016/j.reprotox.2018.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/27/2018] [Accepted: 10/13/2018] [Indexed: 01/25/2023]
|
30
|
Sun Y, Shen J, Zeng L, Yang D, Shao S, Wang J, Wei J, Xiong J, Chen J. Role of autophagy in di-2-ethylhexyl phthalate (DEHP)-induced apoptosis in mouse Leydig cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:563-572. [PMID: 30216888 DOI: 10.1016/j.envpol.2018.08.089] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/03/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Di-2-ethylhexyl phthalate (DEHP) has been widely used as a plasticizer in industry. DEHP can cause testicular atrophy, yet the exact mechanism remains unclear. In this study, male mice were intragastrically (i.g.) administered with 0, 100, 200 or 400 mg DEHP/kg/day for 21 days. We found that DEHP caused disintegration of the germinal epithelium and decreased sperm density in the epididymis. Furthermore, there was a significant increase in the levels of cleaved Caspase-8, cleaved Caspase-3 and Bax proteins and a decrease in Bcl2 protein. The results indicated that DEHP could induce apoptosis of the testis tissue. Meanwhile, DEHP significantly induced autophagy in the testis tissues with increases in LC3-II, Atg5 and Beclin-1 proteins. The serum testosterone concentration decreased in the DEHP-treated group, implying that DEHP might lead to Leydig cell damage. Furthermore, oxidative stress was induced by DEHP in the testis. To further investigate the potential mechanism, mouse TM3 Leydig cells were treated with 0-80 μM DEHP for 48 h. DEHP significantly inhibited cell viability and induced cell apoptosis. Oxidative stress was involved in DEHP-induced apoptosis as N-Acetyl-L-cysteine (NAC), an inhibitor of oxidative stress, could rescue the inhibition of cell viability and induction of apoptosis by DEHP. Similar to the in vivo findings, DEHP could also induce cell autophagy. However, inhibition of autophagy by 3-Methyladenine (3-MA) significantly increased cell viability and inhibited apoptosis. Taken together, oxidative stress was involved in DEHP-induced apoptosis and autophagy of mouse TM3 Leydig cells, and autophagy might play a cytotoxic role in DEHP-induced cell apoptosis.
Collapse
Affiliation(s)
- Yingyin Sun
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Jingcao Shen
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Lin Zeng
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Dan Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Shuxin Shao
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Jinglei Wang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Jie Wei
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China
| | - Junping Xiong
- Department of Anatomy, Medical College of Nanchang University, Nanchang, 330006, China
| | - Jiaxiang Chen
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang, 330006, China.
| |
Collapse
|
31
|
Involvement of oxidative stress in di-2-ethylhexyl phthalate (DEHP)-induced apoptosis of mouse NE-4C neural stem cells. Neurotoxicology 2018; 70:41-47. [PMID: 30395871 DOI: 10.1016/j.neuro.2018.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/27/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022]
Abstract
Di-2-ethylhexyl phthalate (DEHP) has been widely used as a plasticizer in industry and can cause neurotoxicity; however, the underlying mechanism remains unclear. In the study, we found that DEHP significantly inhibited viability of mouse NE-4C neural stem cells and caused lactate dehydrogenase (LDH) release from the cells. DEHP dramatically increased the levels of apoptosis-related proteins such as cleaved Caspase-8, cleaved Caspase-3 and Bax, as well as decreased Bcl-2 protein level. DEHP could also significantly increase the total numbers of AnnexinV-positive/PI-negative and AnnexinV-positive/PI-positive staining cells. Hoechst 33342 staining showed that marked DNA condensation and apoptotic bodies could be found in the ZnO NPs-treated cells. These results indicated that DEHP could induce apoptosis of NE-4C cells. Meanwhile, DEHP could significantly increase malondialdehyde (MDA) level, and decrease the content of glutathione (GSH) and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), respectively, implying that DEHP could induce oxidative stress of NE-4C cells. Furthermore, N-Acetyl-l-cysteine (NAC), an inhibitor of oxidative stress, could rescue the inhibition of cell viability and induction of apoptosis by DEHP. Taken together, our results showed that oxidative stress was involved in DEHP-induced apoptosis of mouse NE-4C cells.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Innovations in agriculture and medicine as well as industrial and domestic technologies are essential for the growing and aging global population. These advances generally require the use of novel natural or synthetic chemical agents with the potential to affect human health. Here, we attempt to highlight environmental chemicals and select drugs with the potential to exacerbate aging by directly affecting molecular aging cascades focusing particular attention on the brain. Finally, we call attention to some potential fruitful areas of research, particularly with advanced molecular profiling that could aid in prevention or mitigation of environmental chemical toxic influences in the periphery and the brain. RECENT FINDINGS We briefly summarize new research and highlight a recent study designed to prospectively identify agrochemicals with the potential to induce neurological diseases and place these discoveries into the already rich neurodegeneration and aging literature. Collectively, the research reviewed briefly here highlight chemicals with the true potential to accelerate aging, particularly in the brain, by eliciting elevated free radical stress and mitochondrial dysfunction. We make general recommendations about improved methodological approaches toward identification and regulation of chemicals that are gerontogenic to the brain.
Collapse
Affiliation(s)
- Brandon L Pearson
- DZNE, German Center for Neurodegenerative Diseases, Sigmund-Freud Str 27, 53127, Bonn, Germany.
| | - Dan Ehninger
- DZNE, German Center for Neurodegenerative Diseases, Sigmund-Freud Str 27, 53127, Bonn, Germany
| |
Collapse
|
33
|
Pradhan A, Olsson PE, Jass J. Di(2-ethylhexyl) phthalate and diethyl phthalate disrupt lipid metabolism, reduce fecundity and shortens lifespan of Caenorhabditis elegans. CHEMOSPHERE 2018; 190:375-382. [PMID: 29020644 DOI: 10.1016/j.chemosphere.2017.09.123] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/13/2017] [Accepted: 09/26/2017] [Indexed: 05/22/2023]
Abstract
The widespread use of phthalates is of major concern as they have adverse effects on many different physiological functions, including reproduction, metabolism and cell differentiation. The aim of this study was to compare the toxicity of the widely-used di (2-ethydlhexyl) phthalate (DEHP) with its substitute, diethyl phthalate (DEP). We analyzed the toxicity of these two phthalates using Caenorhabditis elegans as a model system. Gene expression analysis following exposure during the L1 to young adult stage showed that DEHP and DEP alter the expression of genes involved in lipid metabolism and stress response. Genes associated with lipid metabolism, including fasn-1, pod-2, fat-5, acs-6 and sbp-1, and vitellogenin were upregulated. Among the stress response genes, ced-1 wah-1, daf-21 and gst-4 were upregulated, while ctl-1, cdf-2 and the heat shock proteins (hsp-16.1, hsp-16.48 and sip-1) were downregulated. Lipid staining revealed that DEHP significantly increased lipid content following 1 μM exposure, however, DEP required 10 μM exposure to elicit an effect. Both DEHP and DEP reduced the fecundity at 1 μM concentration. Lifespan analysis indicated that DEHP and DEP reduced the average lifespan from 14 days in unexposed worms to 13 and 12 days, respectively. Expression of lifespan associated genes showed a correlation to shortened lifespan in the exposed groups. As reported previously, our data also indicates that the banned DEHP is toxic to C. elegans, however its substitute DEP has not been previously tested in this model organism and our data revealed that DEP is equally potent as DEHP in regulating C. elegans physiological functions.
Collapse
Affiliation(s)
- Ajay Pradhan
- Biology, the Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| | - Per-Erik Olsson
- Biology, the Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Jana Jass
- Biology, the Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
34
|
Li L, Jiang S, Li K, Lin B, Wang Z, Zhang Z, Fang Y. Assessment of tris (1, 3-dichloro-2-propyl) phosphate toxicology in PC12 cells by using digital gene expression profiling. CHEMOSPHERE 2017; 183:353-360. [PMID: 28554019 DOI: 10.1016/j.chemosphere.2017.05.108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/12/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP), one of the most universally used organophosphate flame retardants (OPFRs), is an environmental pollutant. However, limited information is available regarding its toxicity and environmental health risk. In the present study, PC12 cells provided a useful model for the evaluation of the toxic effects of TDCIPP. Exposure to 7.5, 15, 30, or 60 μM TDCIPP for 72 h inhibited cell viability, and enhanced cellular apoptosis and oxidative stress. To further explore the underlying mechanisms, digital gene expression (DGE) technology was used to identify early transcriptional changes following TDCIPP exposure. Expression of the transcripts of 161 genes was significantly altered upon treatment with TDCIPP. Functional and pathway analysis of the transcriptional profile demonstrated that genes showing significant TDCIPP-associated changes in expression were involved in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, extracellular matrix-receptor interactions, protein digestion and absorption, and microRNAs in cancer. Using quantitative real-time PCR, we validated the differential expression of selected genes. These results showed that the expression profiles of cells exposed to 60 μM TDCIPP were consistent with the DGE data. Furthermore, western blotting showed that treatment with TDCIPP reduced the Bcl-2/Bax ratio and attenuated PI3K/Akt/Myc signaling. Taken together, these data suggest that TDCIPP exposure can reduce cell viability and induce apoptosis in PC12 cells by inhibiting activation of the PI3K/Akt/Myc signaling pathway. These observations provide valuable preliminary information regarding the mechanisms of TDCIPP-induced toxicity in PC12 cells and indicate that further study of the toxicity of other environmental OPFRs is warranted.
Collapse
Affiliation(s)
- Li Li
- Tianjin Institute of Health and Environmental Medicine, A Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China
| | - Shuai Jiang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Kang Li
- Tianjin Institute of Health and Environmental Medicine, A Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China
| | - Bencheng Lin
- Tianjin Institute of Health and Environmental Medicine, A Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China
| | - Ziyu Wang
- Tianjin Institute of Health and Environmental Medicine, A Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China
| | - Zhiqing Zhang
- Tianjin Institute of Health and Environmental Medicine, A Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China
| | - Yanjun Fang
- Tianjin Institute of Health and Environmental Medicine, A Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China.
| |
Collapse
|