1
|
Wang H, Chen Y, Zhang J, Wang N, Tian T. Deletion of BRCC3 ameliorates airway inflammation in asthma by inhibiting the activation of NLRP3 inflammasome. Int Immunopharmacol 2025; 145:113720. [PMID: 39642564 DOI: 10.1016/j.intimp.2024.113720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
BRCA1/BRCA2-containing complex subunit 3 (BRCC3) serves as a deubiquitinating enzyme contributing to multiple inflammation-related disorders. However, the role of BRCC3 in modulating airway inflammation in asthma has not been investigated. This study aimed to examine the role of BRCC3 in airway inflammation using a mouse model of asthma induced by ovalbumin (OVA). BRCC3 levels were found to be elevated in mice with asthma. BRCC3 knockout (KO) mice demonstrated a notable improvement in pathological changes, accompanied by reduced levels of inflammatory cell infiltration and inflammatory cytokines, compared to wild-type (WT) mice following OVA challenge. The NLRP3 inflammasome was high activated in asthmatic mice, which was restrained by BRCC3 KO, as companied by a decrease in NLRP3, ASC, cleaved Caspase-1, cleaved Gasdermin D (GSDMD), IL-1β, and IL-18. In vitro studies demonstrated BRCC3 levels increased in airway epithelial cells in response to house dust mite (HDM) stimulation, depending on the dose and duration of exposure. Silencing BRCC3 in airway epithelial cells protected against HDM-induced cell injury and inflammation, along with inhibiting the NLRP3 inflammasome and pyroptosis. Conversely, the overexpression of BRCC3 in airway epithelial cells worsened DM-induced cell injury and inflammation while also enhancing the NLRP3 inflammasome and pyroptosis. Further investigations revealed that silencing BRCC3 increased the ubiquitination of NLRP3, whereas overexpressing BRCC3 decreased it. Pharmacological inhibition of the NLRP3 inflammasome diminished the effects of BRCC3 overexpression on the inflammation and pyroptosis induced by HDM in airway epithelial cells. Overall, these findings underscore the importance of BRCC3 in the pathogenesis of asthma. Deletion of BRCC3 alleviates airway inflammation in asthma by impeding the activation of the NLRP3 inflammasome, thus indicating that BRCC3 could serve as a potential target for asthma therapy.
Collapse
Affiliation(s)
- Hao Wang
- The First Department of Pediatrics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province 710100, China
| | - Yao Chen
- Department of Pediatrics, Xi'an Zhongda International Hospital, Xi'an, Shaanxi Province 710000, China
| | - Jin Zhang
- The First Department of Pediatrics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province 710100, China
| | - Ning Wang
- The First Department of Pediatrics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province 710100, China
| | - Tian Tian
- The First Department of Pediatrics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province 710100, China.
| |
Collapse
|
2
|
Mohammad Taheri M, Javan F, Poudineh M, Athari SS. Beyond CAR-T: The rise of CAR-NK cell therapy in asthma immunotherapy. J Transl Med 2024; 22:736. [PMID: 39103889 PMCID: PMC11302387 DOI: 10.1186/s12967-024-05534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Asthma poses a major public health burden. While existing asthma drugs manage symptoms for many, some patients remain resistant. The lack of a cure, especially for severe asthma, compels exploration of novel therapies. Cancer immunotherapy successes with CAR-T cells suggest its potential for asthma treatment. Researchers are exploring various approaches for allergic diseases including membrane-bound IgE, IL-5, PD-L2, and CTLA-4 for asthma, and Dectin-1 for fungal asthma. NK cells offer several advantages over T cells for CAR-based immunotherapy. They offer key benefits: (1) HLA compatibility, meaning they can be used in a wider range of patients without the need for matching tissue types. (2) Minimal side effects (CRS and GVHD) due to their limited persistence and cytokine profile. (3) Scalability for "off-the-shelf" production from various sources. Several strategies have been introduced that highlight the superiority and challenges of CAR-NK cell therapy for asthma treatment including IL-10, IFN-γ, ADCC, perforin-granzyme, FASL, KIR, NCRs (NKP46), DAP, DNAM-1, TGF-β, TNF-α, CCL, NKG2A, TF, and EGFR. Furthermore, we advocate for incorporating AI for CAR design optimization and CRISPR-Cas9 gene editing technology for precise gene manipulation to generate highly effective CAR constructs. This review will delve into the evolution and production of CAR designs, explore pre-clinical and clinical studies of CAR-based therapies in asthma, analyze strategies to optimize CAR-NK cell function, conduct a comparative analysis of CAR-T and CAR-NK cell therapy with their respective challenges, and finally present established novel CAR designs with promising potential for asthma treatment.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Shamseddin Athari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, Zanjan School of Medicine, Zanjan University of Medical Sciences, 12th Street, Shahrake Karmandan, Zanjan, 45139-561111, Iran.
| |
Collapse
|
3
|
Lin CY, Cheng CW, Ko JL, Lue KH, Liu YF. Multiplexed transcriptional profiling of Dermatophagoides house dust mites allergens in human epithelium cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:2229-2239. [PMID: 38124673 DOI: 10.1002/tox.24109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Allergic asthma, a chronic disease characterized by airway inflammation, poses a significant public health concern. It is well-established that house dust mites (HDMs) are common inducers of allergic responses in individuals, particularly children. In central Taiwan, our research team observed that over 80% of allergic children exhibited sensitization to various HDMs species. This investigation aims to bridge the gap between these observations and a better understanding of the early fundamental mechanisms for preventing allergic diseases. Specifically, our study delves into the impact of crude extracts of HDMs on human epithelial BEAS-2B cells. Our findings, based on RNA sequencing (RNA-seq) analysis, shed light on how three major Dermatophagoides HDMs allergens activate a common Toll-like receptor signaling pathway in human epithelial cells within a 4-h treatment. During this process, the nuclear transcription factor NF-κB translocated into the cell nucleus within 30 min of allergen stimulation, triggering the expression of pro-inflammatory genes such as IL-6 and IL-8 over 4 h. Additionally, when the cells were treated with specific Dermatophagoides microceras (Der m) allergens, it resulted in the upregulation of genes that regulate type 1 diabetes mellitus (T1DM) signaling pathways. This led to the mediation of IL-12A inflammation. Furthermore, there was an increase in gene sets associated with cilia function and the microtubule cytoskeleton in human epithelial cells after treatment with a combination of Der m allergens and Dexamethasone. Additionally, OMICs analysis was conducted to examine the effects of HDMs allergenic stimulation on human epidermal cells. We aimed to improve our understanding of the molecular mechanisms within cells and identify potential targets and natural products in the treatment of asthma caused by HDMs allergens.
Collapse
Affiliation(s)
- Chia-Yang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Wen Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ko-Huang Lue
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Fan Liu
- Division of Allergy, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Bai Q, Liu R, Quan C, Han X, Wang D, Wang C, Wang Z, Li L, Li L, Piao H, Song Y, Yan G. DEK deficiency suppresses mitophagy to protect against house dust mite-induced asthma. Front Immunol 2024; 14:1289774. [PMID: 38274803 PMCID: PMC10808738 DOI: 10.3389/fimmu.2023.1289774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
DEK protein is highly expressed in asthma. However, the mechanism of DEK on mitophagy in asthma has not been fully understood. This study aims to investigate the role and mechanism of DEK in asthmatic airway inflammation and in regulating PINK1-Parkin-mediated mitophagy, NLRP3 inflammasome activation, and apoptosis. PINK1-Parkin mitophagy, NLRP3 inflammasome, and apoptosis were examined after gene silencing or treatment with specific inhibitors (MitoTEMPO, MCC950, and Ac-DEVD-CHO) in house dust mite (HDM) or recombinant DEK (rmDEK)-induced WT and DEK-/- asthmatic mice and BEAS-2B cells. The regulatory role of DEK on ATAD3A was detected using ChIP-sequence and co-immunoprecipitation. rmDEK promoted eosinophil recruitment, and co-localization of TOM20 and LC3B, MFN1 and mitochondria, LC3B and VDAC, and ROS generation, reduced protein level of MnSOD in HDM induced-asthmatic mice. Moreover, rmDEK also increased DRP1 expression, PINK1-Parkin-mediated mitophagy, NLRP3 inflammasome activation, and apoptosis. These effects were partially reversed in DEK-/- mice. In BEAS-2B cells, siDEK diminished the Parkin, LC3B, and DRP1 translocation to mitochondria, mtROS, TOM20, and mtDNA. ChIP-sequence analysis showed that DEK was enriched on the ATAD3A promoter and could positively regulate ATAD3A expression. Additionally, ATAD3A was highly expressed in HDM-induced asthma models and interacted with DRP1, and siATAD3A could down-regulate DRP1 and mtDNA-mediated mitochondrial oxidative damage. Conclusively, DEK deficiency alleviates airway inflammation in asthma by down-regulating PINK1-Parkin mitophagy, NLRP3 inflammasome activation, and apoptosis. The mechanism may be through the DEK/ATAD3A/DRP1 signaling axis. Our findings may provide new potential therapeutic targets for asthma treatment.
Collapse
Affiliation(s)
- Qiaoyun Bai
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Ruobai Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Changlin Quan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Xue Han
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Dandan Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Chongyang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Zhiguang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Hongmei Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| |
Collapse
|
5
|
Peng W, Xia Q, Zhang Y, Cao D, Zheng X. VEGF and EGFR signaling pathways are involved in the baicalein attenuation of OVA-induced airway inflammation and airway remodeling in mice. Respir Res 2024; 25:10. [PMID: 38178132 PMCID: PMC10765748 DOI: 10.1186/s12931-023-02637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Although Traditional Chinese Medicine (TCM) has been used for treating asthma for centuries, the understanding of its mechanism of action is still limited. Thus, the purpose of this study was to explore the possible therapeutic effects, and underlying mechanism of baicalein in the treatment of asthma. METHODS Freely availabled atabases (e.g. OMIM, TTD, Genecards, BATMAN-TCM, STITCH 5.0, SEA, SwissTargetPrediction) and software (e.g. Ligplot 2.2.5 and PyMoL) were used for disease drug target prediction and molecular docking by network pharmacology. The efficacy and mechanism of action of baicalein in the treatment of asthma were validated using an ovalbumin (OVA)-induced asthma mouse model and molecular biology techniques. RESULTS A total of 1655 asthma-related genes and 161 baicalein-related targets were identified from public databases. Utilizing common databases and software for network pharmacology and molecular docking analysis, seven potential target proteins for the therapeutic effects of baicalein on asthma were selected, including v-akt murine thymoma viral oncogene homolog 1 (AKT1), vascular endothelial growth factor A (VEGFA), epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein kinase Src (SRC), mitogen-activated protein kinase 3 (MAPK3), matrix metallopeptidase 9 (MMP9), and MAPK1. In vivo, baicalein treatment via intraperitoneal injection at a dose of 50 mg/kg significantly reduced airway inflammation, collagen deposition, smooth muscle thickness, lung interleukin (IL)-4 and IL-13 levels, peripheral blood immunoglobulin (Ig)E levels, as well as the count and ratio of eosinophils in bronchoalveolar lavage fluid (BALF) in an OVA-induced asthma mouse model. Further validation by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting analysis revealed that the VEGF and EGFR signaling pathways involving VEGFA, MAPK1, MAPK3, and EGFR were inhibited by baicalein in the asthma mouse model. CONCLUSION Baicalein attenuates airway inflammation and airway remodeling through inhibition of VEGF and EGFR signaling pathways in an OVA-induced asthma mouse model. This will provide a new basis for the development of baicalein as a treatment for asthma and highlights the potential of network pharmacology and molecular docking in drug discovery and development.
Collapse
Affiliation(s)
- Wang Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Respiratory and critical care medicine, Xiangya Hospital, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Qinxuan Xia
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1227, Jiefang Road, Wuhan, Hubei, 430022, China
| | - Yue Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Respiratory and critical care medicine, Xiangya Hospital, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Danfeng Cao
- Academician Workstation and The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, Hunan, 410219, China.
| | - Xiangrong Zheng
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- Respiratory and critical care medicine, Xiangya Hospital, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| |
Collapse
|
6
|
Liu Y, Li P, Jiang T, Li Y, Wang Y, Cheng Z. Epidermal growth factor receptor in asthma: A promising therapeutic target? Respir Med 2023; 207:107117. [PMID: 36626942 DOI: 10.1016/j.rmed.2023.107117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Activation of the epidermal growth factor receptor (EGFR) pathway is involved in the pathogenesis of asthma. Although decades of intensive research have focused on the role of EGFR in asthma, the specific mechanisms and pathways of EGFR signaling remain unclear. Various reports have indicated that inhibition of EGFR improves the pathological features in asthma models. However, extending these experimental findings to clinical applications is difficult. Several measures can be adopted to promote clinical application of EGFR inhibitors. This review focuses on the role of EGFR in the pathogenesis of asthma and the development of a potentially novel therapeutic target for asthma.
Collapse
Affiliation(s)
- Ye Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pengfei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tianci Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yue Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhe Cheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
7
|
Voo PY, Wu CT, Sun HL, Ko JL, Lue KH. Effect of combination treatment with Lactobacillus rhamnosus and corticosteroid in reducing airway inflammation in a mouse asthma model. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:766-776. [PMID: 35487817 DOI: 10.1016/j.jmii.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/13/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Asthma is a complex multifactorial chronic airway inflammatory disease with diverse phenotypes and levels of severity and is associated with significant health and economic burden. In a certain population of asthma patients, the symptoms cannot be well controlled with steroid. There has been long standing interest in the use of probiotics for treating allergic diseases. The purpose of this study is to investigate whether the combination of Lactobacillus rhamnosus GG (LGG) with prednisolone could reduce the dosage of glucocorticoid in controlling airway inflammation in a murine model for allergic asthma. MATERIAL AND METHODS We used Der p 2-sensitized asthma model in female BALB/c mice. The animals were treated with 75 μl or 50 μl oral prednisolone or combination treatment of these two doses of oral prednisolone with LGG. Airway hyperresponsiveness, serum specific IgE/IgG1/IgG2a, infiltrating inflammatory cells in lung and cytokines were assessed. RESULTS Compared to 75 μl prednisolone, a lower dose of prednisolone with 50 μl was less satisfactory in suppressing airway hyperresponsives, serum IgE and IgG1, Th2 cytokines and inflammatory cytokines such as IL-6, IL-8 and IL-17 as well as infiltrating inflammatory cells. However, combination of 50 μl prednisolone and LGG decreased airway resistance and serum IgE and IgG1, inhibited the production of IL-4, IL-5, IL-6, IL-8, IL-13 and IL-17, upregulated serum IgG2a and enhanced Th1 immune response. CONCLUSIONS LGG may reduce the dosage of prednisolone and thus may be beneficial in the treatment of asthma.
Collapse
Affiliation(s)
- Pit-Yee Voo
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Chia-Ta Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan.
| | - Hai-Lun Sun
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ko-Haung Lue
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan; College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
8
|
Liu Q, Hua L, Bao C, Kong L, Hu J, Liu C, Li Z, Xu S, Liu X. Inhibition of Spleen Tyrosine Kinase Restores Glucocorticoid Sensitivity to Improve Steroid-Resistant Asthma. Front Pharmacol 2022; 13:885053. [PMID: 35600871 PMCID: PMC9117698 DOI: 10.3389/fphar.2022.885053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Regulation or restoration of therapeutic sensitivity to glucocorticoids is important in patients with steroid-resistant asthma. Spleen tyrosine kinase (Syk) is activated at high levels in asthma patients and mouse models, and small-molecule Syk inhibitors such as R406 show potent anti-inflammatory effects in the treatment of immune inflammatory diseases. Several downstream signaling molecules of Syk are involved in the glucocorticoid response, so we hypothesized that R406 could restore sensitivity to dexamethasone in severe steroid-resistant asthma. Objective: To discover the role of the Syk inhibitor R406 in glucocorticoid resistance in severe asthma. Methods: Steroid-resistant asthma models were induced by exposure of C57BL/6 mice to house dust mite (HDM) and β-glucan and by TNF-α administration to the bronchial epithelial cell line BEAS-2B. We evaluated the role of the Syk inhibitor R406 in dexamethasone (Dex)-insensitive airway inflammation. Pathological alterations and cytokines in the lung tissues and inflammatory cells in BALF were assessed. We examined the effects of Dex or R406 alone and in combination on the phosphorylation of MAPKs, glucocorticoid receptor (GR) and Syk, as well as the transactivation and transrepression induced by Dex in mouse lung tissues and BEAS-2B cells. Results: Exposure to HDM and β-glucan induced steroid-resistant airway inflammation. The Syk inhibitor R406 plus Dex significantly reduced airway inflammation compared with Dex alone. Additionally, TNF-α-induced IL-8 production in BEAS-2B cells was not completely inhibited by Dex, while R406 markedly promoted the anti-inflammatory effect of Dex. Compared with Dex alone, R406 enhanced Dex-mediated inhibition of the phosphorylation of MAPKs and GR-Ser226 induced by allergens or TNF-α in vivo and in vitro. Moreover, R406 also restored the impaired expression and nuclear translocation of GRα induced by TNF-α. Then, the activation of NF-κB and decreased HDAC2 activity in the asthmatic model were further regulated by R406, as well as the expression of GILZ. Conclusions: The Syk inhibitor R406 improves sensitivity to dexamethasone by modulating GR. This study provides a reference for the development of drugs to treat severe steroid-resistant asthma.
Collapse
Affiliation(s)
- Qian Liu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijuan Hua
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Bao
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luxia Kong
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Respiratory and Critical Care Medicine, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| | - Jiannan Hu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Liu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziling Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyun Xu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Integrated OMICs Approach for the Group 1 Protease Mite-Allergen of House Dust Mite Dermatophagoides microceras. Int J Mol Sci 2022; 23:ijms23073810. [PMID: 35409170 PMCID: PMC8998267 DOI: 10.3390/ijms23073810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022] Open
Abstract
House dust mites (HDMs) are one of the most important allergy-causing agents of asthma. In central Taiwan, the prevalence of sensitization to Dermatophagoides microceras (Der m), a particular mite species of HDMs, is approximately 80% and is related to the IgE crossing reactivity of Dermatophagoides pteronyssinus (Der p) and Dermatophagoides farinae (Der f). Integrated OMICs examination was used to identify and characterize the specific group 1 mite-allergic component (Der m 1). De novo draft genomic assembly and comparative genome analysis predicted that the full-length Der m 1 allergen gene is 321 amino acids in silico. Proteomics verified this result, and its recombinant protein production implicated the cysteine protease and α chain of fibrinogen proteolytic activity. In the sensitized mice, pathophysiological features and increased neutrophils accumulation were evident in the lung tissues and BALF with the combination of Der m 1 and 2 inhalation, respectively. Principal component analysis (PCA) of mice cytokines revealed that the cytokine profiles of the allergen-sensitized mice model with combined Der m 1 and 2 were similar to those with Der m 2 alone but differed from those with Der m 1 alone. Regarding the possible sensitizing roles of Der m 1 in the cells, the fibrinogen cleavage products (FCPs) derived from combined Der m 1 and Der m 2 induced the expression of pro-inflammatory cytokines IL-6 and IL-8 in human bronchial epithelium cells. Der m 1 biologically functions as a cysteine protease and contributes to the α chain of fibrinogen digestion in vitro. The combination of Der m 1 and 2 could induce similar cytokines expression patterns to Der m 2 in mice, and the FCPs derived from Der m 1 has a synergistic effect with Der m 2 to induce the expression of pro-inflammatory cytokines in human bronchial epithelium cells.
Collapse
|
10
|
Xie YZ, Peng CW, Su ZQ, Huang HT, Liu XH, Zhan SF, Huang XF. A Practical Strategy for Exploring the Pharmacological Mechanism of Luteolin Against COVID-19/Asthma Comorbidity: Findings of System Pharmacology and Bioinformatics Analysis. Front Immunol 2022; 12:769011. [PMID: 35069542 PMCID: PMC8777084 DOI: 10.3389/fimmu.2021.769011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Asthma patients may increase their susceptibility to SARS-CoV-2 infection and the poor prognosis of coronavirus disease 2019 (COVID-19). However, anti-COVID-19/asthma comorbidity approaches are restricted on condition. Existing evidence indicates that luteolin has antiviral, anti-inflammatory, and immune regulation capabilities. We aimed to evaluate the possibility of luteolin evolving into an ideal drug and explore the underlying molecular mechanisms of luteolin against COVID-19/asthma comorbidity. We used system pharmacology and bioinformatics analysis to assess the physicochemical properties and biological activities of luteolin and further analyze the binding activities, targets, biological functions, and mechanisms of luteolin against COVID-19/asthma comorbidity. We found that luteolin may exert ideal physicochemical properties and bioactivity, and molecular docking analysis confirmed that luteolin performed effective binding activities in COVID-19/asthma comorbidity. Furthermore, a protein–protein interaction network of 538 common targets between drug and disease was constructed and 264 hub targets were obtained. Then, the top 6 hub targets of luteolin against COVID-19/asthma comorbidity were identified, namely, TP53, AKT1, ALB, IL-6, TNF, and VEGFA. Furthermore, the enrichment analysis suggested that luteolin may exert effects on virus defense, regulation of inflammation, cell growth and cell replication, and immune responses, reducing oxidative stress and regulating blood circulation through the Toll-like receptor; MAPK, TNF, AGE/RAGE, EGFR, ErbB, HIF-1, and PI3K–AKT signaling pathways; PD-L1 expression; and PD-1 checkpoint pathway in cancer. The possible “dangerous liaison” between COVID-19 and asthma is still a potential threat to world health. This research is the first to explore whether luteolin could evolve into a drug candidate for COVID-19/asthma comorbidity. This study indicated that luteolin with superior drug likeness and bioactivity has great potential to be used for treating COVID-19/asthma comorbidity, but the predicted results still need to be rigorously verified by experiments.
Collapse
Affiliation(s)
- Yi-Zi Xie
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen-Wen Peng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zu-Qing Su
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Ting Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Hong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shao-Feng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiu-Fang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Chen FJ, Du LJ, Zeng Z, Huang XY, Xu CY, Tan WP, Xie CM, Liang YX, Guo YB. PTPRH Alleviates Airway Obstruction and Th2 Inflammation in Asthma as a Protective Factor. J Asthma Allergy 2022; 15:133-144. [PMID: 35140475 PMCID: PMC8818980 DOI: 10.2147/jaa.s340059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose PTPRH inhibits EGFR activity directly in cancer patients and activated EGFR induces goblet cell hyperplasia and mucus hypersecretion in asthma. However, the function of PTPRH in asthma remains unknown. The purpose of this study was to access the association of PTPRH with asthma and its underlying mechanism. Patients and Methods We examined the PTPRH level in asthma patients (n = 108) and healthy controls (n = 35), and analyzed the correlations between PTPRH and asthma-related indicators. Human bronchial epithelial cell (HBECs) transfected with PTPRH and asthma mouse model were set up to investigate the function of PTPRH. Results The expression of PTPRH was significantly increased and correlated with pulmonary function parameters, including airway obstruction, and T-helper2 (Th2) associated markers in asthma patients. PTPRH increased in the house dust mite (HDM)-induced asthmatic mice, while Th2 airway inflammation and Muc5ac suppressed when treated with PTPRH. Accordingly, PTPRH expression was markedly increased in IL-13-stimulated HBECs but PTPRH over-expression suppressed MUC5AC. Moreover, HBECs transfected with over-expressed PTPRH inhibited the phosphorylation of EGFR, ERK1/2 and AKT, while induced against PTPRH in HBECs dephosphorylated of EGFR, ERK1/2 and AKT. Conclusion PTPRH reduces MUC5AC secretion to alleviate airway obstruction in asthma via potential phosphorylating of EGFR/ERK1/2/AKT signaling pathway, which may provide possible therapeutic implications for asthma.
Collapse
Affiliation(s)
- Feng-jia Chen
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Li-juan Du
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhimin Zeng
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Xin-yan Huang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Chang-yi Xu
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Wei-ping Tan
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Can-mao Xie
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Yu-xia Liang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Yu-biao Guo
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Correspondence: Yu-biao Guo; Yu-xia Liang, Tel +86 20 8775 5766, Email ;
| |
Collapse
|
12
|
Hu RH, Wu CT, Wu TS, Yu FY, Ko JL, Lue KH, Liu YF. Systematic Characterization of the Group 2 House Dust Mite Allergen in Dermatophagoides microceras. Front Cell Infect Microbiol 2022; 11:793559. [PMID: 35111694 PMCID: PMC8801679 DOI: 10.3389/fcimb.2021.793559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/17/2021] [Indexed: 02/01/2023] Open
Abstract
BackgroundAllergic asthma, a chronic airway inflammatory disease, is a critical public health problem. Indoor house dust mites (HDMs) could cause allergic asthma. The prevalence of sensitization to Dermatophagoides microceras (Der m) was approximately 80% and is related to the immunoglobulin E crossing-reactivity of mites belonging to the same genus, Dermatophagoides pteronyssinus (Der p) and Dermatophagoides farina (Der f). However, studies on Der m are scant.MethodsWe used integrated OMICs approaches to identify and characterize the group 2 mite allergen-like protein in Der m (Der m 2). We established a Der m 2-induced allergic asthma mouse model and treated the mice with a fungal immunomodulatory protein (FIP-fve) isolated from Flammulina veluptipes to evaluate the allergenicity of Der m 2 and the immunomodulatory effects of FIP-fve.ResultsBy performing de novo draft genome assembly and comparative genome analysis, we identified the putative 144-amino acid Der m 2 in silico and further confirmed its existence through liquid chromatography–tandem mass spectrometry. Der m 2 is a lipopolysaccharides (LPS)-binding protein. Thus, we examined the LPS-binding activity of recombinant Der m 2 by performing molecular docking analysis, co-immunoprecipitation (Co-IP), and a pull-down assay. Der m 2 elicited the production of pro-inflammatory cytokines, interleukin (IL)-6, and IL-8 in BEAS-2B cells, a human bronchial epithelial cell line, and induced airway hyperresponsiveness in mice. Furthermore, in mice sensitized with Der m 2, the administration of FIP-fve in either the earlier stage or the late stage, FIP-fve alleviated allergic asthma by moderating airway inflammation and remodeling.ConclusionsDer m 2 induced inflammatory responses in cell and mouse models. FIP-fve alleviated inflammation in Der m 2-induced asthma in mice by exerting an immunomodulatory effect.
Collapse
Affiliation(s)
- Rei-Hsing Hu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Ta Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Ting-Shuan Wu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ko-Huang Lue
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- *Correspondence: Yu-Fan Liu, ; Ko-Huang Lue,
| | - Yu-Fan Liu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- *Correspondence: Yu-Fan Liu, ; Ko-Huang Lue,
| |
Collapse
|
13
|
Chen SJ, Bi YH, Zhang LH. Systematic analysis of the potential off-target activities of osimertinib by computational target fishing. Anticancer Drugs 2022; 33:e434-e443. [PMID: 34459459 DOI: 10.1097/cad.0000000000001229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Osimertinib is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor used to treat non-small cell lung cancer. However, its off-targets are obscure, and systematic analysis of off-target activities remains to be performed. Here, we identified the off-targets of osimertinib using PharmMapper and DRAR-CPI and analyzed the intersected targets using the GeneMANIA and DAVID servers. A drug-target-pathway network was constructed to visualize the associations. The results showed that osimertinib is associated with 31 off-targets, 40 Kyoto Encyclopedia of Genes and Genomes pathways, and 9 diseases. Network analysis revealed that the targets were involved in cancer and other physiological processes. In addition to EGFR, molecular docking analysis showed that seven proteins, namely Janus kinase 3, peroxisome proliferator-activated receptor alpha, renin, mitogen-activated protein kinases, lymphocyte-specific protein tyrosine kinase, cell division protein kinase 2 and proto-oncogene tyrosine-protein kinase Src, could also be potential targets of osimertinib. In conclusion, osimertinib is predicted to target multiple proteins and pathways, resulting in the formation of an action network via which it exerts systematic pharmacological effects.
Collapse
Affiliation(s)
- Shao-Jun Chen
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo
| | - Yan-Hua Bi
- The Children's Hospital, Zhejiang University School of Medicine, National clinical research center for child health, Hangzhou
| | - Li-Hua Zhang
- Department of Food Science, Faculty of Food Science, Zhejiang Pharmaceutical College, Ningbo, China
| |
Collapse
|
14
|
Lee AJ, Lim JW, Kim H. Ascorbic Acid Suppresses House Dust Mite-Induced Expression of Interleukin-8 in Human Respiratory Epithelial Cells. J Cancer Prev 2021; 26:64-70. [PMID: 33842407 PMCID: PMC8020177 DOI: 10.15430/jcp.2021.26.1.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
House dust mite (HDM) is one of the significant causes for airway inflammation such as asthma. It induces oxidative stress and an inflammatory response in the lungs through the release of chemokines such as interleukin-8 (IL-8). Reactive oxygen species (ROS) activate inflammatory signaling mediators such as mitogen-activated protein kinases (MAPKs) and redox-sensitive transcription factors including NF-κB and AP-1. Ascorbic acid shows an antioxidant and anti-inflammatory activities in various cells. It ameliorated the symptoms of HDM-induced rhinitis. The present study was aimed to investigate whether HDM could induce IL-8 expression through activation of MAPKs, NF-κB, and AP-1 and whether ascorbic acid could inhibit HDM-stimulated IL-8 expression by reducing ROS and suppressing activation of MAPKs, NF-κB, and AP-1 in respiratory epithelial H292 cells. H292 cells were treated with HDM (5 μg/mL) in the absence or presence of ascorbic acid (100 or 200 μM). HDM treatment increased ROS levels, and activated MAPKs, NF-κB, and AP-1 and thus, induced IL-8 expression in H292 cells. Ascorbic acid reduced ROS levels and inhibited activation of MAPKs, NF-κB and AP-1 and L-8 expression in H292 cells. In conclusion, consumption of ascorbic acid-rich foods may be beneficial for prevention of HDM-mediated respiratory inflammation by suppressing oxidative stress-mediated MAPK signaling pathways and activation of NF-kB and AP-1.
Collapse
Affiliation(s)
- An Jun Lee
- Department of Food and Nutrition, BK 21 FOUR, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, BK 21 FOUR, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, BK 21 FOUR, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
15
|
Tang J, Wu L, Lin J, Zhang E, Luo Y. Development of quantum dot-based fluorescence lateral flow immunoassay strip for rapid and quantitative detection of serum interleukin-6. J Clin Lab Anal 2021; 35:e23752. [PMID: 33760265 PMCID: PMC8128295 DOI: 10.1002/jcla.23752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Interleukin-6 (IL-6) is an inflammatory factor that increases rapidly in response to infectious diseases including sepsis. The aim of this study is to develop a quantum dot (QD)-based fluorescence lateral flow immunoassay (LFIA) strip that can rapidly and accurately detect IL-6 levels. METHODS QD-based LFIA strips were fabricated by conjugating CdSe/ZnS QDs to the IL-6 antibody. Performance verification and clinical sample analysis were carried out to evaluate the newly developed strip. RESULTS QD-based LFIA strips were successfully fabricated. The test strip's linear range was 10-4000 pg/ml, with a linear correlation coefficient of R2 ≥ .959. The sensitivity of the test strip was 1.995 pg/ml. The recovery rate was 95.72%-102.63%, indicating satisfying accuracy. The coefficient of variation (CV) of the intra-assay was 2.148%-3.903%, while the inter-assay was 2.412%-5.293%, verifying the strip's high precision. The cross-reaction rates with various interleukins (IL-1α, IL-1β, IL-2, IL-4, and IL-8) and interferon-γ (IFN-γ) were all <0.1%. When the strip was placed in a 50°C oven for 1, 2, 3, and 4 weeks, the test results were not significantly altered compared to storage at room temperature. Furthermore, 200 clinical serum samples were analyzed to compare the strip with the Beckman chemiluminescence immunoassay (CLIA) kit, which revealed a high correlation (n = 200, R2 = .9971) for the detection of IL-6. CONCLUSIONS The QD-based test strip can rapidly and quantitatively detect IL-6 levels, thus meeting the requirement of point-of-care test (POCT) and showing excellent clinical prospects.
Collapse
Affiliation(s)
- Jinsong Tang
- Department of Clinical Laboratory, Dalang Hospital, Dongguan, China
| | - Lili Wu
- Department of Clinical Laboratory, Dalang Hospital, Dongguan, China
| | - Jingtao Lin
- Department of Clinical Laboratory, Dalang Hospital, Dongguan, China
| | - Erying Zhang
- Kingfocus Biomedical Engineering Co., Ltd, Shenzhen, China
| | - Yong Luo
- Department of Intensive Medicine, The Second Affiliated hospital of University of South China, Hengyang, China
| |
Collapse
|
16
|
Airway Epithelial Dysfunction in Asthma: Relevant to Epidermal Growth Factor Receptors and Airway Epithelial Cells. J Clin Med 2020; 9:jcm9113698. [PMID: 33217964 PMCID: PMC7698733 DOI: 10.3390/jcm9113698] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Airway epithelium plays an important role as the first barrier from external pathogens, including bacteria, viruses, chemical substances, and allergic components. Airway epithelial cells also have pivotal roles as immunological coordinators of defense mechanisms to transfer signals to immunologic cells to eliminate external pathogens from airways. Impaired airway epithelium allows the pathogens to remain in the airway epithelium, which induces aberrant immunological reactions. Dysregulated functions of asthmatic airway epithelium have been reported in terms of impaired wound repair, fragile tight junctions, and excessive proliferation, leading to airway remodeling, which contributes to aberrant airway responses caused by external pathogens. To maintain airway epithelium integrity, a family of epidermal growth factor receptors (EGFR) have pivotal roles in mechanisms of cell growth, proliferation, and differentiation. There are extensive studies focusing on the relation between EGFR and asthma pathophysiology, which describe airway remodeling, airway hypermucus secretion, as well as immunological responses of airway inflammation. Furthermore, the second EGFR family member, erythroblastosis oncogene B2 (ErbB2), has been recognized to be involved with impaired wound recovery and epithelial differentiation in asthmatic airway epithelium. In this review, the roles of the EGFR family in asthmatic airway epithelium are focused on to elucidate the pathogenesis of airway epithelial dysfunction in asthma.
Collapse
|
17
|
Wu CT, Lee YT, Ku MS, Lue KH. Role of biomarkers and effect of FIP-fve in acute and chronic animal asthma models. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:996-1007. [PMID: 32778497 DOI: 10.1016/j.jmii.2020.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/08/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Asthma is a consequence of complex gene-environment interactions. Exploring the heterogeneity of asthma in different stages is contributing to our understanding of its pathogenesis and the development of new therapeutic strategies, especially in severe cases. OBJECTIVE This study aimed to further understand the relationship between manifestations of acute and chronic asthma and various endotypes, and explore the severity of lung inflammation, cell types, cytokine/chemokine differences, and the effects of FIP-fve. MATERIALS AND METHODS Acute and chronic OVA-sensitization mouse asthma models, based on our previously published method, were used and FIP-fve was used to evaluate the effect on these two models. BALF cytokines/chemokines were detected according to the manufacturer's protocol. RESULTS Seventeen cytokine/chemokine secretions were higher in the chronic stage than in the acute stage. Whether in acute stage or chronic stage, the FIP-fve treatment groups had reduced airway hyperresponsiveness, infiltration of airway inflammatory cells, secretion of cytokines, chemokines by Th2 cells, and TNF-α, IL-8, IL-17, CXCL-1, CXCL-10, CCL-17, and CCL-22, and it was also found that the Treg cell cytokine IL-10 had increased significantly. PCA (Principal Component Analysis) was also used to compare statistics and laboratory data to find the important biomarkers in different stages and after treatment with FIP-fve. CONCLUSIONS There are many different immune responses in the different stages of the asthma process. Drug treatment at the appropriate times might help reduce the worsening of asthma.
Collapse
Affiliation(s)
- Chia-Ta Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan.
| | - Yu-Tzu Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Min-Sho Ku
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Ko-Huang Lue
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan; College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
18
|
Defnet AE, Hasday JD, Shapiro P. Kinase inhibitors in the treatment of obstructive pulmonary diseases. Curr Opin Pharmacol 2020; 51:11-18. [PMID: 32361678 DOI: 10.1016/j.coph.2020.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 12/22/2022]
Abstract
Chronic pulmonary diseases, including chronic obstructive pulmonary disease (COPD) and asthma, are major causes of death and reduced quality of life. Characteristic of chronic pulmonary disease is excessive lung inflammation that occurs in response to exposure to inhaled irritants, chemicals, and allergens. Chronic inflammation leads to remodeling of the airways that includes excess mucus secretion, proliferation of smooth muscle cells, increased deposition of extracellular matrix proteins and fibrosis. Protein kinases have been implicated in mediating inflammatory signals and airway remodeling associated with reduced lung function in chronic pulmonary disease. This review will highlight the role of protein kinases in the lung during chronic inflammation and examine opportunities to use protein kinase inhibitors for the treatment of chronic pulmonary diseases.
Collapse
Affiliation(s)
- Amy E Defnet
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, United States
| | - Jeffery D Hasday
- Department of Medicine, Division of Pulmonary Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, United States.
| |
Collapse
|
19
|
Wang C, Yan B, Zhang L. The epithelium-derived inflammatory mediators of chronic rhinosinusitis with nasal polyps. Expert Rev Clin Immunol 2020; 16:293-310. [PMID: 31986923 DOI: 10.1080/1744666x.2020.1723417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Bing Yan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|