1
|
Raouf AA, El-Kadem AH, Sokar SS, Oraby MA, El-Shitany NA. Cilostazol attenuates cisplatin-induced acute liver injury by targeting the SIRT1/AMPK/PGC-1α signaling pathway, with an impact on miRNA-34a. Eur J Pharmacol 2025; 997:177609. [PMID: 40216180 DOI: 10.1016/j.ejphar.2025.177609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
The dominant chemotherapeutic agent, cisplatin (CP), is widely used to manage various cancer types. Despite its effectiveness, CP use is associated with severe hepatotoxicity. Cilostazol (CSZ), a selective phosphodiesterase III inhibitor, has recently demonstrated remarkable anti-inflammatory and anti-apoptotic properties in different diseases. Additionally, it exhibits hepatoprotective effects against various forms of liver injury. Hence, this study aimed to assess the potential hepatoprotective and ameliorative effects of CSZ on CP-induced acute liver injury (ALI) and to elucidate the underlying molecular mechanisms. To achieve this, ALI was induced by a single injection of CP (20 mg/kg; i.p.) in male Wistar rats pretreated with CSZ (5 or 10 mg/kg) administered orally for one week. The findings revealed that CSZ effectively reversed CP-induced hepatic dysfunction, as evidenced by notable liver function tests and improvements in histological examination. Additionally, CSZ protected against CP-mediated liver oxidative stress by decreasing MDA levels while increasing GSH and GPx levels and enhancing SOD activity. Furthermore, CSZ exhibited a potent anti-inflammatory effect, reducing the expression of pro-inflammatory cytokines, including NF-κB, IL-1β, and TNF-α. Regarding hepatocyte apoptosis, CSZ suppressed Bax immunoexpression and caspase-3 and caspase-9 levels while enhancing Bcl-2 expression, thereby mitigating hepatic cell death. The hepatoprotective effects of CSZ could be attributed to the regulation of the miRNA-34a/AMPK/SIRT1/PGC-1α signaling pathway, leading to the activation of the Nrf2/HO-1-mediated antioxidative defense mechanism. In conclusion, CSZ could be a promising therapeutic agent for preventing CP-induced ALI, potentially improving the quality of life for cancer patients.
Collapse
Affiliation(s)
- Ahmed Amr Raouf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Aya H El-Kadem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Samia S Sokar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Mamdouh A Oraby
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Nagla A El-Shitany
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
2
|
Hassani S, Malekinejad H, Khadem-Ansari MH, Abbasi A, Kheradmand F. Dietary silymarin supplementation enhances chemotherapy efficacy of capecitabine and irinotecan and mitigates hepatotoxicity in a mouse model of colon cancer. Res Pharm Sci 2025; 20:77-94. [PMID: 40190825 PMCID: PMC11972028 DOI: 10.4103/rps.rps_204_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 04/09/2025] Open
Abstract
Background and purpose The flavonoid silymarin (SMN) has shown promise due to its antioxidant, anti-inflammatory, and anticancer properties. SMN has been widely used in preclinical and clinical studies to treat various types of cancer, alone and with chemotherapy agents. Recent research suggests that SMN may increase conventional chemotherapy efficacy and reduce adverse effects. Herein, we investigated the therapeutic efficacy of SMN and its combination with capecitabine (CAP) and irinotecan (IRI) in a mouse model of colon cancer. Experimental approach Following 1,2 dimethylhydrazine-induced colon cancer, a modified diet supplemented with SMN (2500 ppm) and mono- and combined therapy of CAP and IRI was used. Serum samples were analyzed for lipid profile, liver function, and inflammatory cytokines. Oxidative stress and inflammation markers, including malondialdehyde (MDA), nitric oxide (NO), myeloperoxidase (MPO), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were measured in colonic, hepatic, and circulatory samples. Colonic BAX and Bcl-2 levels were examined via western blotting and histopathological analysis of colon sections was conducted. Findings/Results SMN alone and combined with chemotherapeutic agents significantly mitigated the elevated inflammatory cytokines liver function enzyme levels, and hyperlipidemia. Furthermore, SMN supplementation with chemotherapy agents enhanced antioxidant activity and reduced lipid peroxidation and inflammatory markers. Significant upregulation of BAX and downregulation of Bcl-2 were observed. In addition, treatment regimens ameliorated carcinogen-induced polyp multiplicity, adenoma formation, dysplastic changes, and lymphocytic aggregation. Conclusion and implications Our results demonstrated that the potential anticancer properties of SMN could enhance chemotherapy efficacy and reduce carcinogen- and chemotherapy-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sepideh Hassani
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Ata Abbasi
- Department of Pathology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Kheradmand
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Yalinbas-Kaya B, Tureyen A, Cesur S, Zemheri-Navruz F, Demirel HH, Ince S. Iristectorin A Ameliorates Cisplatin-Induced Hepatorenal Injury in Mice Through Modulation of the Nrf2/HO-1 Signaling Pathway. J Biochem Mol Toxicol 2025; 39:e70136. [PMID: 39776262 DOI: 10.1002/jbt.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/21/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
Cisplatin (CIS) is a chemotherapeutic agent frequently used in cancer treatment. However, depending on the dosage and duration of use, CIS can lead to hepatotoxicity and nephrotoxicity. Iristectorin A (IRIS), a natural flavonoid, has been found to exhibit antioxidant and protective effects. In this paper, we scrutinized the effects and molecular mechanisms of the IRIS on CIS-induced liver and kidney damage in mice. IRIS administration alleviated CIS-induced elevations in AST, ALT, ALP, BUN, and creatinine levels by approximately 12%, 15%, 11%, 21%, and 15%, respectively. It also inhibited liver and kidney MDA levels by approximately 29% and 28%, while enhancing liver and kidney GSH, SOD, and CAT levels by 47%-60%, 85%-70%, and 90%-55%, respectively. IRIS enhanced liver and kidney mRNA expression levels of Nrf2 (by approximately 1.6- and 1.5-fold, respectively), HO-1 (by 1.5- and 1.5-fold, respectively), and Bcl-2 (by 1.5- and 1.4-fold, respectively). In addition, IRIS suppressed the mRNA expression levels of NF-κB (by 0.7- and 0.7-fold), TNF-α (by 0.7- and 0.7-fold), Bax (by 0.8- and 0.7-fold), and Cas-3 (by 0.9- and 0.7-fold). Protein expression analysis revealed that IRIS increased Nrf2 (by 1.5- to 1.2-fold) and Bcl-2 levels (by 1.3- to 1.7-fold), and reduced Bax (by 0.7- to 0.8-fold) and Cas-3 (by 0.8- and 0.8-fold) levels altered by CIS treatment. Moreover, IRIS administration prevented histopathological changes in the liver and kidney caused by CIS. Ultimately, IRIS was found to substantially mitigate CIS-induced hepatorenal injury by targeting oxidative stress, inflammation, and apoptosis through regulation of the Nrf2/HO-1 signaling pathway. Therefore, IRIS holds potential as a therapeutic adjuvant in the use of CIS.
Collapse
Affiliation(s)
- Berrin Yalinbas-Kaya
- Department of Gastroenterology, Ministry of Health Eskisehir City Hospital, Eskisehir, Turkey
| | - Ali Tureyen
- Department of Gastroenterology, Ministry of Health Eskisehir City Hospital, Eskisehir, Turkey
| | - Selcan Cesur
- Department of Gastroenterology, Ministry of Health Eskisehir City Hospital, Eskisehir, Turkey
| | - Fahriye Zemheri-Navruz
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın, Turkey
| | - Hasan H Demirel
- Bayat Vocational School, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Sinan Ince
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
4
|
Elmorsy EA, Saber S, Hamad RS, Abdel-Reheim MA, El-Kott AF, AlShehri MA, Morsy K, Salama SA, Youssef ME. Advances in understanding cisplatin-induced toxicity: Molecular mechanisms and protective strategies. Eur J Pharm Sci 2024; 203:106939. [PMID: 39423903 DOI: 10.1016/j.ejps.2024.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Cisplatin, a widely used chemotherapeutic agent, has proven efficacy against various malignancies. However, its clinical utility is hampered by its dose-limiting toxicities, including nephrotoxicity, ototoxicity, neurotoxicity, and myelosuppression. This review aims to provide a comprehensive overview of cisplatin toxicity, encompassing its underlying mechanisms, risk factors, and emerging therapeutic strategies. The mechanisms of cisplatin toxicity are multifactorial and involve oxidative stress, inflammation, DNA damage, and cellular apoptosis. Various risk factors contribute to the interindividual variability in susceptibility to cisplatin toxicity. The risk of developing cisplatin-induced toxicity could be related to pre-existing conditions, including kidney disease, hearing impairment, neuropathy, impaired liver function, and other comorbidities. Additionally, this review highlights the emerging therapeutic strategies that could be applied to minimize cisplatin-induced toxicities and aid in optimizing cisplatin treatment regimens, improving patient outcomes, and enhancing the overall quality of cancer care.
Collapse
Affiliation(s)
- Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, 51452, Saudi Arabia.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia; Central Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Damanhour University, Egypt
| | - Mohammed A AlShehri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Salama A Salama
- Department of Zoology, Faculty of Science, Damanhour University, Egypt; Department of Biology, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
5
|
Cengiz M, Gür B, Gür F, Şahintürk V, Bayrakdar A, Şahin IK, Başkoy SA, Bilici N, Onur S, Kaya Y, Kıran İ, Yıldırım Ö, Akkaya NB, Sezer CV, Ayhanci A. The protective effects of selenium and boron on cyclophosphamide-induced hepatic oxidative stress, inflammation, and apoptosis in rats. Heliyon 2024; 10:e38713. [PMID: 39416834 PMCID: PMC11481652 DOI: 10.1016/j.heliyon.2024.e38713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Cyclophosphamide (CP) is an alkylating anticancer drug with broad clinical application that is highly effective in the treatment of cancer and non-malignant diseases. However, the main limiting effect of CP is multi-organ toxicity due to damage to normal tissues. The aim of this study is to compare the hepatoprotective potential of selenium (Se) and boron (B) in CP-induced liver injury in experimental rats. The rats were randomly divided into six equal groups: Control (saline), 200 mg/kg CP (administered once on the fourth day of the experiment), 1.5 mg/kg Se (administered once/time daily for 6 days), 20 mg/kg B (administered once/time daily for 6 days), Se + CP and B + CP administered intraperitoneally (i.p.). Administration of CP leads to an increase in the levels of apoptotic markers (Bax, caspase-3), the apoptotic signaling pathway (Nrf2), oxidative stress indicators (TOS, OSI), lipid peroxidation markers (MPO, MDA), inflammation levels (NF-kB, TNF-α, IL-1β, IL -6), liver function markers (ALT, AST, ALP), while apoptosis markers (Bcl-2), apoptosis pathway (Keap-1), oxidative stress indicator (TAS), inflammation (IL -10) and intracellular antioxidant defense system (SOD, CAT, GPx and GSH) decreased. In addition, degeneration of hepatocytes and congestion in the central veins were observed. In contrast, in the groups administered Se and B with CP, the changes that occurred were reversed. However, it was found that Se protects the liver slightly better against CP damage than B. The protective effect of Se and B against the toxic effects of CP on the antioxidant markers SOD, CAT and GPx1 was also investigated in silico. The in silico results were consistent with the in vivo results for SOD and CAT, but not for GPx1.
Collapse
Affiliation(s)
- Mustafa Cengiz
- Department of Elementary Education, Faculty of Education, Siirt University, Siirt, Turkiye
| | - Bahri Gür
- Department of Biochemistry, Faculty of Sciences and Arts, Iğdır University, Iğdır, Turkiye
| | - Fatma Gür
- Department of Dentistry Services, Atatürk University, Erzurum, Turkiye
| | - Varol Şahintürk
- Department of Histology and Embryology, Medical Faculty, Eskisehir Osmangazi University, Eskişehir, Turkiye
| | - Alpaslan Bayrakdar
- Vocational School of Healthcare Services, Iğdır University, Iğdır, Turkiye
| | | | | | - Namık Bilici
- Department of Medical Pharmacology, Faculty of Medicine, Karabük University, Karabük, Turkiye
| | - Suzan Onur
- Faculty of Health Sciences, Karabük University, Karabük, Turkiye
| | - Yağmur Kaya
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Turkiye
| | - İsa Kıran
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Turkiye
| | - Özge Yıldırım
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Turkiye
| | - Nur Banu Akkaya
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Turkiye
| | - Canan Vejselova Sezer
- Department of Biology, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkiye
| | - Adnan Ayhanci
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Turkiye
| |
Collapse
|
6
|
Kaya K, Ciftci O, Basak Turkmen N, Taşlıdere A, Gül CC. β-Glucan ameliorates cisplatin-induced oxidative and histological damage in kidney and liver of rats. Biotech Histochem 2024; 99:92-100. [PMID: 38444353 DOI: 10.1080/10520295.2024.2320626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
We investigated the effects of β-glucan (βg) on kidney and liver damage caused by cisplatin (CP), an antineoplastic agent widely used to treat many types of cancer, in a rat model. The side effects of CP in many tissues and organs limit its usage. βg is a natural polysaccharide that is an effective free radical scavenger. A total of 28 rats were randomly divided into four groups. Group 1 was a non-intervention control, only feed and water were given. Group 2 was administered 7 mg/kg CP in a single dose. Group 3 was administered 50 mg/kg βg orally for 14 days. Group 4 was administered βg for 14 days, following a single dose of CP. At the end of the experiment, kidney and liver tissues were evaluated biochemically and histopathologically. Increased thiobarbituric acid-reactive substances (TBARS) levels, as well as decreased catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) activities, and reduced glutathione (GSH) levels, as well as histological damage, were noted in both the kidney and liver tissues of the CP group. However, βg treatment prevented the oxidative and histopathological effects of CP. The study demonstrates the protective efficacy of βg against CP-induced kidney and liver damage through the effect of its antioxidant properties.
Collapse
Affiliation(s)
- Kürşat Kaya
- Department of Medicinal Biochemistry, Faculty of Medicine, Pamukkale University, Denizli, Türkiye
| | - O Ciftci
- Department of Pharmacology, Faculty of Medicine, Pamukkale University, Denizli, Türkiye
| | - N Basak Turkmen
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, İnönü University, Malatya, Türkiye
| | - A Taşlıdere
- Department of Histology and Embryology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - C C Gül
- Department of Histology and Embryology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| |
Collapse
|
7
|
Jamshidi Z, Roohbakhsh A, Karimi G. An overview on the protective effects of ellagic acid against heavy metals, drugs, and chemicals. Food Sci Nutr 2023; 11:7469-7484. [PMID: 38107104 PMCID: PMC10724599 DOI: 10.1002/fsn3.3704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 12/19/2023] Open
Abstract
Ellagic acid (EA) is a polyphenol extracted from many plants. EA modulates inflammatory mediators via antioxidant mechanisms, such as catalase (CAT) activities, superoxide dismutase (SOD), enhancement, increase in glutathione (GSH), and lipid peroxidation (LPO) suppression. EA has anti-apoptotic properties that are thought to be mediated by regulating the expression of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and caspase-3. In this article, we surveyed the literature dealing with the protective effects of EA against different heavy metals, drugs, and natural toxins. The findings indicated that EA has remarkable protective properties against various toxicants. Its protective effects were mostly mediated via normalizing lipid metabolism, oxidative stress, and inflammatory mediators, for example, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β. The results of this study showed that EA has significant protective effects against a varied range of compounds, either chemical or natural. These effects are mainly mediated via intensifying the antioxidant defense system. However, other mechanisms such as inhibition of inflammatory responses and suppression of apoptosis are important.
Collapse
Affiliation(s)
- Zahra Jamshidi
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
- Department of Medicinal Chemistry, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
8
|
Lu G, Wang X, Cheng M, Wang S, Ma K. The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art. Biomed Pharmacother 2023; 165:115132. [PMID: 37423169 DOI: 10.1016/j.biopha.2023.115132] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023] Open
Abstract
Ellagic acid (EA) is a kind of polyphenol compound extracted from a variety of herbs, such as paeoniae paeoniae, raspberry, Chebule, walnut kernel, myrrh, loquat leaf, pomegranate bark, quisquite, and fairy herb. It has anti-tumor, anti-oxidation, anti-inflammatory, anti-mutation, anti-bacterial, anti-allergic and multiple pharmacological properties. Studies have shown its anti-tumor effect in gastric cancer, liver cancer, pancreatic cancer, breast cancer, colorectal cancer, lung cancer and other malignant tumors, mainly through inducing tumor cell apoptosis, inhibiting tumor cell proliferation, inhibiting tumor cell metastasis and invasion, inducing autophagy, affecting tumor metabolic reprogramming and other forms of anti-tumor efficacy. Its molecular mechanism is mainly reflected in inhibiting the proliferation of tumor cells through VEGFR-2 signaling pathway, Notch signaling pathway, PKC signaling pathway and COX-2 signaling pathway. PI3K/Akt signaling pathway, JNK (cJun) signaling pathway, mitochondrial pathway, Bcl-2 / Bax signaling pathway, TGF-β/Smad3 signaling pathway induced apoptosis of tumor cells and blocked EMT process and MMP SDF1α/CXCR4 signaling pathway inhibits the metastasis and invasion of tumor cells, induces autophagy and affects tumor metabolic reprogramming to produce anti-tumor effects. At present, the analysis of the anti-tumor mechanism of ellagic acid is slightly lacking, so this study comprehensively searched the literature on the anti-tumor mechanism of ellagic acid in various databases, reviewed the research progress of the anti-tumor effect and mechanism of ellagic acid, in order to provide reference and theoretical basis for the further development and application of ellagic acid.
Collapse
Affiliation(s)
- Guangying Lu
- Shandong Co-Innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, China
| | - Xuezhen Wang
- Tianjin University of Traditional Chinese Medicine, China
| | - Ming Cheng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, China
| | - Shijun Wang
- Shandong Co-Innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, China.
| | - Ke Ma
- Shandong Co-Innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, China.
| |
Collapse
|
9
|
Alkhalaf M, Mohamed NA, El-Toukhy SE. Prophylactic consequences of sodium salicylate nanoparticles in cisplatin-mediated hepatotoxicity. Sci Rep 2023; 13:10045. [PMID: 37344526 DOI: 10.1038/s41598-023-35916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
Unintended side effects linked to the antineoplastic drug cisplatin are a major drawback in its clinical application. The underlying source of these side effects include the generation of reactive oxygen species which are toxic and damaging to tissues and organs. In the present study the anti-inflammatory and antioxidant potential of sodium salicylate was assessed against cisplatin-induced hepatotoxicity in albino rats. Sodium salicylate was used as a model drug and loading into hollow structured porous silica using ultrasound-assisted sol-gel method to produce a nanoemulsion. Transmission Electron Microscopy and Dynamic Light scattering analysis were employed to assess the structural properties and stability of this model. Liver function was assessed by measuring biomarkers including ALT, AST & GGT and oxidant/antioxidant markers including MDA, NO, PON, GSH, MCP1 & AVP in serum or liver tissue. Additionally, blood leukocyte DNA damage was evaluated. Cisplatin significantly altered the normal levels of all biomarkers confirming its hepatotoxic effects. In contrast, treatment with sodium salicylate-loaded silica nanoemulsion significantly restored the levels of these markers. The finding suggests the protective effects of this model drug in preventing cisplatin-induced hepatotoxicity, and therefore may have implications in attenuating cisplatin-induced hepatotoxicity.
Collapse
Affiliation(s)
- Maha Alkhalaf
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia.
| | - Nadia A Mohamed
- Medical Biochemistry Department, National Research Centre, Cairo, Egypt
| | | |
Collapse
|
10
|
Wu Q, Zhang H, You S, Xu Z, Liu X, Chen X, Zhang W, Ye J, Li P, Zhou X. NEDD4L inhibits migration, invasion, cisplatin resistance and promotes apoptosis of bladder cancer cells by inactivating the p62/Keap1/Nrf2 pathway. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37087754 DOI: 10.1002/tox.23796] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE This study identified the function of neural precursor cell expressed developmentally down-regulated 4-like (NEDD4L) on bladder cancer (BLCA). METHODS NEDD4L expression in BLCA patients was scrutinized. The function of NEDD4L on the viability, apoptosis, migration and invasion of BLCA cells was evaluated by cell counting kit-8, flow cytometry and Transwell assays. The effect of NEDD4L on the cisplatin (DDP) resistance of the DDP-resistant BLCA cells was explored. The influence of NEDD4L on the p62/Keap1/Nrf2 pathway activity in BLCA cells was tested by Western blot. Rescue experiments were implemented to verify whether NEDD4L regulated BLCA cell malignant behavior by mediating the Keap1/Nrf2 pathway activity via p62. The effect of NEDD4L on the growth and the p62/Keap1/Nrf2 pathway activity in vivo was researched in xenograft tumor nude mice models. RESULTS The down-regulated NEDD4L in BLCA patients was associated with unfavorable survival. NEDD4L suppressed the viability (inhibition rate 57.1%/49.0%), migration (inhibition rate 49.7%/77.1%), invasion (inhibition rate 50.6%/75.7%), promoted the apoptosis of T24/5637 cells (promotion rate 243.8%/201.9%), reduced IC 50 of DDP-resistant T24/5637 cells from 132.2/101.8 to 57.81/59.71 μM, respectively, and inactivated the p62/Keap1/Nrf2 pathway in T24/5637 cells. p62 up-regulation partially abrogated the inhibition of NEDD4L on the Keap1/Nrf2 pathway activity, the malignant behavior of BLCA cells, and the DDP resistance of DDP-resistant BLCA cells. NEDD4L overexpression inhibited the tumor growth and the p62/Keap1/Nrf2 pathway activity in vivo in BLCA. CONCLUSION NEDD4L inhibits the progression of BLCA by inactivating the p62/Keap1/Nrf2 pathway. It may be an effective target for BLCA treatment.
Collapse
Affiliation(s)
- Qi Wu
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Huijiang Zhang
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Shengjie You
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Zhaoyu Xu
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Xiang Liu
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Xuedong Chen
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Weili Zhang
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Junjie Ye
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Peng Li
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| | - Xiaoqing Zhou
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, Zhejiang, China
| |
Collapse
|
11
|
Ozkul O, Ozkul B, Erdogan MA, Erbas O. Ameliorating Effect of Propofol on Cisplatin-Induced Liver and Kidney Damage in Rats. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1623.1635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Goyal Y, Koul A, Ranawat P. Ellagic acid modulates cisplatin toxicity in DMH induced colorectal cancer: Studies on membrane alterations. Biochem Biophys Rep 2022; 31:101319. [PMID: 35990576 PMCID: PMC9386026 DOI: 10.1016/j.bbrep.2022.101319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/24/2022] [Accepted: 07/23/2022] [Indexed: 11/25/2022] Open
Abstract
Systemic toxicity due to chemotherapy contributes to poor prognosis in patients receiving chemotherapy. The present study, therefore, explores the role of Ellagic acid, a phytochemical, in modulating cisplatin (CP) toxicity in dimethylhydrazine-induced colorectal cancer. Colons excised from DMH administered animals showed abnormal crypts and bulges over the mucosal surface. SEM revealed significant alterations and dysplastic lesions in DMH administered mice. Animals receiving combined treatment showed improvement in colonic epithelium with lesser irregularities. DMH and CP administration disturbed the membrane dynamics and integrity as observed with the fluorescent probes DPH and pyrene. However, EA co-supplementation with CP proved to be beneficial in normalizing the altered membrane. Ellagic acid co-supplementation along with CP; therefore, showed great promise and helped restore the membrane alterations in the colon caused due to CP-induced toxicity and DMH insult. These observations could pave way towards developing a combination therapy targeting colon carcinogenesis in future.
Collapse
Affiliation(s)
- Yasmeen Goyal
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Ashwani Koul
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Pavitra Ranawat
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
13
|
Xue P, Zhang G, Zhang J, Ren L. Synergism of ellagic acid in combination with radiotherapy and chemotherapy for cancer treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153998. [PMID: 35217437 DOI: 10.1016/j.phymed.2022.153998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ellagic acid (EA) is a polyphenol compound abundant in berries, walnuts, pecans, pomegranate, cranberries, and other plant foods and exerts a wide array of biological properties. In particular, EA has received considerable research attention in anti-cancer therapy. EA administered alone has been shown to exert effects against human cancers through multiple pathways. In addition, EA may increase tumor sensitivity to chemotherapy and radiotherapy. Namely, EA combination with a relatively low dosage of therapeutic drugs or optimized radiation dose could improve the treatment outcome. More importantly, EA could counteract chemotherapy-related adverse reactions. PURPOSE This review aims to summarize the in vitro and in vivo experimental evidence of synergism of EA in radiotherapy/chemotherapy for the treatment of cancers. In addition, the preventive effect of EA to counteract chemotherapy-induced toxicity is also discussed. METHODS The searches were performed in the PubMed, Web of Science and Google scholar and introduced the information about the role of EA in cancer treatment. RESULTS EA exhibits synergistic effects in radiotherapy/chemotherapy for the treatment of cancers and exerts a great potential in reducing the side effects of chemotherapy and radiotherapy due to its biological activities, such as antioxidant and anti-inflammatory activities. CONCLUSION EA could be a promising drug adjuvant for cancer treatment. In the near future, novel strategies for EA delivery systems that overcome the low EA solubility and bioavailability should be studied further to fully exploit the therapeutic potential of EA.
Collapse
Affiliation(s)
- Peiyu Xue
- College of Food Science and Engineering, Jilin University, Changchun 130062, China; School of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Guangjie Zhang
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
14
|
Abd Rashid N, Abd Halim SAS, Teoh SL, Budin SB, Hussan F, Adib Ridzuan NR, Abdul Jalil NA. The role of natural antioxidants in cisplatin-induced hepatotoxicity. Biomed Pharmacother 2021; 144:112328. [PMID: 34653753 DOI: 10.1016/j.biopha.2021.112328] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is a potent platinum-based anticancer drug approved by the Food Drug Administration (FDA) in 1978. Despite its advantages against solid tumors, cisplatin confers toxicity to various tissues that limit its clinical uses. In cisplatin-induced hepatotoxicity, few mechanisms have been identified, which started as excess generation of reactive oxygen species that leads to oxidative stress, inflammation, DNA damage and apoptosis in the liver. Various natural products, plant extracts and oil rich in flavonoids, terpenoids, polyphenols, and phenolic acids were able to minimize oxidative stress by restoring the level of antioxidant enzymes and acting as an anti-inflammatory agent. Likewise, treatment with honey and royal jelly was demonstrated to decrease serum transaminases and scavenge free radicals in the liver after cisplatin administration. Medicinal properties of these natural products have a promising potential as a complementary therapy to counteract cisplatin-induced hepatotoxicity. This review concentrated on the protective role of several natural products, which has been proven in the laboratory findings to combat cisplatin-induced hepatotoxicity.
Collapse
Affiliation(s)
- Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Selangor, Malaysia.
| | | | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Farida Hussan
- Human Biology Department, School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.
| | | | | |
Collapse
|
15
|
Harscoat-Schiavo C, Khoualdia B, Savoire R, Hobloss S, Buré C, Samia BA, Subra-Paternault P. Extraction of phenolics from pomegranate residues: Selectivity induced by the methods. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Yarmohammadi F, Hayes AW, Karimi G. Protective effects of curcumin on chemical and drug-induced cardiotoxicity: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1341-1353. [PMID: 33666716 DOI: 10.1007/s00210-021-02072-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
Cardiotoxicity is a major adverse effect that can be induced by both therapeutic agents and industrial chemicals. The pathogenesis of such cardiac damage is multifactorial, often injuring the cardiac tissue by generating free radicals, oxidative stress, and/or inflammation. Curcumin (CUR) is a bright yellow chemical produced by Curcuma longa plants. It is the principal curcuminoid of turmeric (Curcuma longa), a member of the ginger family, Zingiberaceae. Administration of CUR has been reported to ameliorate the chemical and drug-induced cardiac injury in several studies. CUR has been suggested to act as an effective candidate against oxidative stress and inflammation in heart tissue via regulation of Nrf2 and suppression of p38 MAPK/NF-κB and NLRP3 inflammasomes. The anti-apoptotic properties of CUR have also been reported to modulate the AMPK, Akt, JNK, and ERK signaling pathways. This review explores the potential protective effects of CUR regarding the detrimental effects often observed in cardiac tissue following exposure to several chemicals including drugs.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, 33617, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Wu YS, Ho JY, Yu CP, Cho CJ, Wu CL, Huang CS, Gao HW, Yu DS. Ellagic Acid Resensitizes Gemcitabine-Resistant Bladder Cancer Cells by Inhibiting Epithelial-Mesenchymal Transition and Gemcitabine Transporters. Cancers (Basel) 2021; 13:cancers13092032. [PMID: 33922395 PMCID: PMC8122772 DOI: 10.3390/cancers13092032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Chemoresistance of bladder cancer has become a major obstacle to clinical treatment, especially in first-line treatments involving gemcitabine (GCB). Epithelial-mesenchymal transition (EMT) is highly correlated with GCB resistance but less correlated with GCB metabolism and less reported as a novel therapeutic strategy. Our findings indicated that EMT-related GCB resistance occurs through the TGF-β/Smad signaling pathways and involves repressed expression of the GCB transporters hCNT1 and hENT1. Ellagic acid (EA) combined with GCB intensified the chemosensitivity of GCB in resistant cells by repressing Smad2, Smad3, and Smad4 expression and rescuing hCNT1 and hENT transcription. These data suggest that EA is a good adjuvant agent for blocking TGF-β/Smad signaling-related GCB resistance in bladder cancer. Abstract Gemcitabine (GCB) resistance is a major issue in bladder cancer chemoresistance, but its underlying mechanism has not been determined. Epithelial-mesenchymal transition (EMT) has been shown to be comprehensively involved in GCB resistance in several other cancer types, but the direct connection between EMT and GCB remains unclear. This study was designed to elucidate the mechanism of EMT-related GCB resistance in bladder cancer and identify a potential phytochemical to modulate drug sensitivity. The biological effects of ellagic acid (EA) or its combined effects with GCB were compared in GCB-resistant cells and the GCB-sensitive line in terms of cell viability, apoptosis, motility, and in vivo tumorigenicity. The molecular regulation of EMT-related GCB resistance was evaluated at both the mRNA and protein expression levels. Our results indicated that TGF-β/Smad induced the overactivation of EMT in GCB-resistant cells and reduced the expression of GCB influx transporters (hCNT1 and hENT1). Moreover, ellagic acid (EA) inhibited the TGF-β signaling pathway both in vitro and in vivo by reducing Smad2, Smad3, and Smad4 expression and thereby resensitized GCB sensitivity. In conclusion, our results demonstrate that TGF-β/Smad-induced EMT contributes to GCB resistance in bladder cancer by reducing GCB influx and also elucidate the novel mechanisms of EA-mediated inhibition of TGF-β/Smad-induced EMT to overcome GCB resistance. Our study warrants further investigation of EA as an effective therapeutic adjuvant agent for overcoming GCB resistance in bladder cancer.
Collapse
Affiliation(s)
- Ying-Si Wu
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan; (Y.-S.W.); (J.-Y.H.); (C.-P.Y.); (C.-J.C.); (C.-L.W.); (C.-S.H.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Jar-Yi Ho
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan; (Y.-S.W.); (J.-Y.H.); (C.-P.Y.); (C.-J.C.); (C.-L.W.); (C.-S.H.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Cheng-Ping Yu
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan; (Y.-S.W.); (J.-Y.H.); (C.-P.Y.); (C.-J.C.); (C.-L.W.); (C.-S.H.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chun-Jung Cho
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan; (Y.-S.W.); (J.-Y.H.); (C.-P.Y.); (C.-J.C.); (C.-L.W.); (C.-S.H.)
| | - Chia-Lun Wu
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan; (Y.-S.W.); (J.-Y.H.); (C.-P.Y.); (C.-J.C.); (C.-L.W.); (C.-S.H.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Cheng-Shuo Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan; (Y.-S.W.); (J.-Y.H.); (C.-P.Y.); (C.-J.C.); (C.-L.W.); (C.-S.H.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Hong-Wei Gao
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan; (Y.-S.W.); (J.-Y.H.); (C.-P.Y.); (C.-J.C.); (C.-L.W.); (C.-S.H.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (H.-W.G.); (D.-S.Y.)
| | - Dah-Shyong Yu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (H.-W.G.); (D.-S.Y.)
| |
Collapse
|
18
|
Habib SA, Suddek GM, Abdel Rahim M, Abdelrahman RS. The protective effect of protocatechuic acid on hepatotoxicity induced by cisplatin in mice. Life Sci 2021; 277:119485. [PMID: 33864821 DOI: 10.1016/j.lfs.2021.119485] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 01/08/2023]
Abstract
Cisplatin is one of the most potent anti-cancer drugs used for the treatment of various solid tumors, yet it has several side effects that may limit its clinical use. Hepatotoxicity is one of the most serious side effects as it may lead to liver failure. Several mechanisms including oxidative stress, inflammation, and apoptosis have been examined in cisplatin-induced hepatotoxicity. Protocatechuic acid (Proto) which is naturally occurring phenolic acid has shown different biological activity as antioxidant, anti-inflammatory, and anti-apoptotic. In this study, we investigate the protective effect of Proto at two doses 100 and 150 mg/kg on hepatotoxicity induced by a single injection of 10 mg/kg cisplatin in female albino mice. The present study demonstrates for the first time that Proto administration (100 and 150 mg/Kg) significantly attenuates cisplatin-induced changes in liver function [increase serum albumin and decrease liver injury markers ALT, AST, GGT, and bilirubin]. This was associated with marked hepatic antioxidant effects [decrease MDA and NO levels, increase GSH and SOD activity]. Moreover, Proto reduced cisplatin-induced apoptosis in the liver through decreasing caspase-3, annexin-V, and BAX. Both doses suppressed cisplatin-induced expression of iNOS and NF-ᴋB p65 subunit and pro-inflammatory cytokines (IL-6 and TNF-α). Also, Proto improved histopathological examination of the liver. The present findings reveal that the antioxidant, anti-inflammatory, and anti-apoptotic effects of Proto are the main mechanisms by which Proto can ameliorate cisplatin-induced liver injury.
Collapse
Affiliation(s)
- Sally A Habib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mona Abdel Rahim
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madina Al-Munawwarah 30001, Saudi Arabia.
| |
Collapse
|
19
|
Yi J, Zhu J, Zhao C, Kang Q, Zhang X, Suo K, Cao N, Hao L, Lu J. Potential of natural products as radioprotectors and radiosensitizers: opportunities and challenges. Food Funct 2021; 12:5204-5218. [PMID: 34018510 DOI: 10.1039/d1fo00525a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Natural products can be used as natural radiosensitizers and radioprotectors, showing promising effects in cancer treatments in combination with radiotherapy, while reducing ionizing radiation (IR) damage to normal cells/tissues. The different effects of natural products on irradiated normal and tumor cells/tissues have attracted more and more researchers' interest. Nonetheless, the clinical applications of natural products in radiotherapy are few, which may be related to their low bioavailability in the human body. Here, we displayed the radiation protection and radiation sensitization of major natural products, highlighted the related molecular mechanisms of these bioactive substances combined with radiotherapy to treat cancer, and critically reviewed their deficiency and improved measures. Lastly, several clinical trials were presented to verify the clinical application of natural products as radiosensitizers and radioprotectors. Further clinical evaluation is still needed. This review provides a reference for the utilization of natural products as radiosensitizers and radioprotectors.
Collapse
Affiliation(s)
- Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Changcheng Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaomiao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Keke Suo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Nana Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Limin Hao
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing, 100010, China.
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
20
|
Aishwarya V, Solaipriya S, Sivaramakrishnan V. Role of ellagic acid for the prevention and treatment of liver diseases. Phytother Res 2020; 35:2925-2944. [PMID: 33368795 DOI: 10.1002/ptr.7001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/29/2020] [Accepted: 12/13/2020] [Indexed: 12/21/2022]
Abstract
Globally, one of the alarming problems is the prevalence and burden of liver diseases, which accounts for 2 million cases per year. Chronic liver aetiologies such as hepatitis infections, alcoholic or non-alcoholic liver disease, environmental agents, and drug-induced toxicity are invariably responsible for liver fibrosis progression to finally hepatocellular carcinoma. Current treatment options are unable to overwhelm and cure liver diseases. Emerging findings suggest researchers' interest in using evidence-based complementary medicine such as ellagic acid with extensive pharmacological properties. They include antioxidant, anti-inflammatory, anti-hyperlipidaemic, anti-viral, anti-angiogenic, and anticancer activity. The molecular functions elicited by ellagic acid include scavenging of free radicals, regulation of lipid metabolism, the prohibition of fibrogenesis response-mediating proteins, inhibits hepatic stellate cells and myofibroblasts, restrains hepatic viral replication, facilitates suppression of growth factors, regulates transcription factors, proinflammatory cytokines, augments the liver immune response, fosters apoptosis and inhibits cell proliferation in tumorigenic cells. This review will most notably focus on preclinical and clinical information based on currently available evidence to warrant ellagic acid's prospective role in preventing liver diseases.
Collapse
Affiliation(s)
- Venkatasubramanian Aishwarya
- Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai, India
| | - Solairaja Solaipriya
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai, India
| | | |
Collapse
|
21
|
Peiffer DS. Modulation of the host microbiome by black raspberries or their components and the therapeutic implications in cancer. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.40] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Daniel S Peiffer
- Health Sciences Division Loyola University Chicago Maywood Illinois
| |
Collapse
|
22
|
Inamura K. Gut microbiota contributes towards immunomodulation against cancer: New frontiers in precision cancer therapeutics. Semin Cancer Biol 2020; 70:11-23. [PMID: 32580023 DOI: 10.1016/j.semcancer.2020.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023]
Abstract
The microbiota influences human health and the development of diverse diseases, including cancer. Microbes can influence tumor initiation and development in either a positive or negative manner. In addition, the composition of the gut microbiota affects the efficacy and toxicity of cancer therapeutics as well as therapeutic resistance. The striking impact of microbiota on oncogenesis and cancer therapy provides compelling evidence to support the notion that manipulating microbial networks represents a promising strategy for treating and preventing cancer. Specific microbes or the microbial ecosystem can be modified via a multiplicity of processes, and therapeutic methods and approaches have been evolving. Microbial manipulation can be applied as an adjunct to traditional cancer therapies such as chemotherapy and immunotherapy. Furthermore, this approach displays great promise as a stand-alone therapy following the failure of standard therapy. Moreover, such strategies may also benefit patients by avoiding the emergence of toxic side effects that result in treatment discontinuation. A better understanding of the host-microbial ecosystem in patients with cancer, together with the development of methodologies for manipulating the microbiome, will help expand the frontiers of precision cancer therapeutics, thereby improving patient care. This review discusses the roles of the microbiota in oncogenesis and cancer therapy, with a focus on efforts to harness the microbiota to fight cancer.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
23
|
Lo YL, Chang CH, Wang CS, Yang MH, Lin AMY, Hong CJ, Tseng WH. PEG-coated nanoparticles detachable in acidic microenvironments for the tumor-directed delivery of chemo- and gene therapies for head and neck cancer. Am J Cancer Res 2020; 10:6695-6714. [PMID: 32550898 PMCID: PMC7295054 DOI: 10.7150/thno.45164] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Head and neck cancer (HNC) is a major cause of morbidity and mortality and has a poor treatment outcome. Irinotecan, a topoisomerase-I inhibitor, induces cell death by decreasing the religation of double-strand DNA. However, epithelial-mesenchymal transition (EMT), therapy resistance, and systemic toxicity caused by available antineoplastic agents hinder the efficacy and safety of HNC treatment. Chemotherapy combined with gene therapy shows potential application in circumventing therapy resistance and EMT. miR-200 exerts a remarkable suppressing effect on EMT-associated genes. Herein, liposomes and solid lipid nanoparticles (SLNs) modified with a pH-sensitive, self-destructive polyethylene glycol (PEG) shell and different peptides were designed as irinotecan and miR-200 nanovectors to enhance tumor-specific accumulation. These peptides included one ligand targeting the angiogenic tumor neovasculature, one mitochondrion-directed apoptosis-inducing peptide, and one cell-penetrating peptide (CPP) with high potency and selectivity toward cancer cells. Methods: Physicochemical characterization, cytotoxicity analysis, cellular uptake, regulation mechanisms, and in vivo studies on miR-200- and irinotecan-incorporated nanoparticles were performed to identify the potential antitumor efficacy and biosafety issues involved in HNC treatment and to elucidate the underlying signaling pathways. Results: We found that the cleavable PEG layer responded to low extracellular pH, and that the CPP and targeting peptides were exposed to improve the uptake and release of miR-200 and irinotecan into HNC human tongue squamous carcinoma (SAS) cells. The apoptosis of SAS cells treated with the combinatorial therapy was significantly induced by regulating various pathways, such as the Wnt/β-catenin, MDR, and EMT pathways. The therapeutic efficacy and safety of the proposed co-treatment outperformed the commercially available Onivyde and other formulations used in a SAS tumor-bearing mouse model in this study. Conclusion: Chemotherapy and gene therapy co-treatment involving pH-sensitive and targeting peptide-modified nanoparticles may be an innovative strategy for HNC treatment.
Collapse
|
24
|
Formulation Strategies to Improve Oral Bioavailability of Ellagic Acid. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103353] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ellagic acid, a polyphenolic compound present in fruit and berries, has recently been the object of extensive research for its antioxidant activity, which might be useful for the prevention and treatment of cancer, cardiovascular pathologies, and neurodegenerative disorders. Its protective role justifies numerous attempts to include it in functional food preparations and in dietary supplements, and not only to limit the unpleasant collateral effects of chemotherapy. However, ellagic acid use as a chemopreventive agent has been debated because of its poor bioavailability associated with low solubility, limited permeability, first pass effect, and interindividual variability in gut microbial transformations. To overcome these drawbacks, various strategies for oral administration including solid dispersions, micro and nanoparticles, inclusion complexes, self-emulsifying systems, and polymorphs were proposed. Here, we listed an updated description of pursued micro and nanotechnological approaches focusing on the fabrication processes and the features of the obtained products, as well as on the positive results yielded by in vitro and in vivo studies in comparison to the raw material. The micro and nanosized formulations here described might be exploited for pharmaceutical delivery of this active, as well as for the production of nutritional supplements or for the enrichment of novel foods.
Collapse
|
25
|
Un H, Ugan RA, Kose D, Bayir Y, Cadirci E, Selli J, Halici Z. A novel effect of Aprepitant: Protection for cisplatin-induced nephrotoxicity and hepatotoxicity. Eur J Pharmacol 2020; 880:173168. [PMID: 32423870 DOI: 10.1016/j.ejphar.2020.173168] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/29/2022]
Abstract
Cisplatin is widely used chemotherapeutic drug and have some serious side effects as tissue toxicity and nausea and vomiting. Aprepitant is used in clinic as an anti-emetic drug for cisplatin treated patient to prevent nausea and vomiting. We aimed to investigate the protective effects of Aprepitant on cisplatin-induced nephrotoxicity and hepatotoxicity. In total 42 male rats were separated into six groups (n = 7). A single dose of cisplatin (10 mg/kg i.p.) was administered to induce toxicity on first day. Different doses of Aprepitant (5, 10 and 20 mg/kg, p.o.) were given to treatment groups during 3 days. After the experimental procedures serum enzymes (ALT, AST, ALP, BUN and Creatinin), kidney and liver oxidative parameters (SOD, GSH and MDA), inflammatory cytokines (TNF-α and NF-κB) and Cyp2e1 expressions analyzed. Histopathological investigations also performed for all groups. Cisplatin caused tissue toxicity in both kidney and liver. Serum enzymes, tissue cytokines and oxidative stress were increased after the Cis treatment. Aprepitant treatment normalized all parameters compared to cisplatin treated group. Cisplatin significantly increased the Cyp2e1 expression in the kidney while significantly decreased in the liver compared to Healthy group. Histopathologically, it was shown that cisplatin causes a lot of abnormal structures as inflammatory infiltration and necrosis on the liver and kidney. Similar the biochemical and molecular results, aprepitant showed positive effects on tissue pathological parameters. With its main anti-emetic effect, Aprepitant treatment may be an effective option for cancer patients if they have additional injury as nephrotoxicity and hepatotoxicity due to cisplatin.
Collapse
Affiliation(s)
- Harun Un
- Agri Ibrahim Cecen University, Faculty of Pharmacy, Department of Biochemistry, Agri, Turkey.
| | - Rustem Anil Ugan
- Ataturk University, Faculty of Pharmacy, Department of Pharmacology, Erzurum, Turkey
| | - Duygu Kose
- Ataturk University, Faculty of Medicine, Department of Pharmacology, Erzurum, Turkey
| | - Yasin Bayir
- Ataturk University, Faculty of Pharmacy, Department of Biochemistry, Erzurum, Turkey
| | - Elif Cadirci
- Ataturk University, Faculty of Medicine, Department of Pharmacology, Erzurum, Turkey; Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| | - Jale Selli
- Ataturk University, Faculty of Medicine, Department of Histology and Embryology, Erzurum, Turkey
| | - Zekai Halici
- Ataturk University, Faculty of Medicine, Department of Pharmacology, Erzurum, Turkey; Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| |
Collapse
|
26
|
Systematic gene silencing identified Cryptosporidium nucleoside diphosphate kinase and other molecules as targets for suppression of parasite proliferation in human intestinal cells. Sci Rep 2019; 9:12153. [PMID: 31434931 PMCID: PMC6704102 DOI: 10.1038/s41598-019-48544-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/05/2019] [Indexed: 01/06/2023] Open
Abstract
Cryptosporidiosis is a major cause of diarrheal disease. The only drug approved for cryptosporidiosis has limited efficacy in high-risk populations. Therefore novel drugs are urgently needed. We have identified several enzymes as potential targets for drug development and we have optimized a rapid method to silence genes in Cryptosporidium. In this study, we knocked down expression of the four selected genes: Actin (Act), Apicomplexan DNA-binding protein (Ap2), Rhomboid protein 1 (Rom 1), and nucleoside diphosphate kinase (NDK). After gene silencing, we evaluated the role of each target on parasite development using in vitro models of excystation, invasion, proliferation, and egress. We showed that silencing of Act, Ap2, NDK, and Rom1 reduced invasion, proliferation, and egress of Cryptosporidium. However, silencing of NDK markedly inhibited Cryptosporidium proliferation (~70%). We used an infection model to evaluate the anticryptosporidial activity of ellagic acid (EA), an NDK inhibitor. We showed that EA (EC50 = 15–30 µM) reduced parasite burden without showing human cell toxicity. Here, we demonstrated the usefulness of a rapid silencing method to identify novel targets for drug development. Because EA is a dietary supplement already approved for human use, this compound should be studied as a potential treatment for cryptosporidiosis.
Collapse
|
27
|
Gupta P, Mohammad T, Khan P, Alajmi MF, Hussain A, Rehman MT, Hassan MI. Evaluation of ellagic acid as an inhibitor of sphingosine kinase 1: A targeted approach towards anticancer therapy. Biomed Pharmacother 2019; 118:109245. [PMID: 31352240 DOI: 10.1016/j.biopha.2019.109245] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/29/2022] Open
Abstract
Sphingosine kinase 1 (SphK1) is one of the central enzymes of sphingolipid metabolism whose high expression level is presumed to be correlated with cancer and other inflammatory diseases. Using a virtual screening approach and in vitro studies, we have identified the ellagic acid (EA), a dietary polyphenol, as a potent inhibitor of SphK1. Molecular docking study has suggested a strong binding affinity of EA to the SphK1. Fluorescence binding and isothermal titration calorimetry (ITC) measurements has also indicated an appreciable binding affinity. Kinase inhibition assay revealed an excellent inhibitory action of EA towards SphK1 (IC50 = 0.74 ± 0.06 μM). Cell viability studies point towards the antiproliferative effects of EA on lung cancer cell line (A549) without affecting human embryonic kidney cells (HEK293). Binding and inhibition mechanism of EA was unveiled by docking analysis of SphK1-EA complex. EA binds to the SphK1 and forms several interactions with catalytically important residues of ATP-binding pocket. Structural stability and dynamics analysis of SphK1-EA complex during 100 ns molecular dynamic simulation studies suggested that EA forms a stable complex with SphK1 without inducing any significant conformational shift. Taken together, our study suggests that EA can be utilized as a chemical prototype to develop potent therapeutics targeting SphK1-associated pathologies.
Collapse
Affiliation(s)
- Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
28
|
Ellagic acid dose and time-dependently abrogates d-galactose-induced animal model of aging: Investigating the role of PPAR-γ. Life Sci 2019; 232:116595. [PMID: 31238053 DOI: 10.1016/j.lfs.2019.116595] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 01/08/2023]
Abstract
AIMS The world's population is becoming aged and the proportion of older persons is growing in almost every country in the world. Ellagic acid (EA) shows abundant pharmacological properties. Therefore, we aimed to determine the mechanism of anti-aging effects of low and high doses of EA. MAIN METHODS Aging model was induced by d-galactose (DG), and the anti-aging effect of EA alone or in the presence of PPAR-γ antagonist GW9662, and in combination with metformin were evaluated. The activities of ALT, AST, and AChE, the levels of FBS, HbA1c, testosterone and DHEA-SO4, MDA, GSH, TNF-α, IL-6, advanced glycation end products (AGEs), and BDNF were measured in serum, liver or brain. KEY FINDINGS DG led to increasing in the levels of IL-6, TNF-α, MDA, AChE, AGEs, ALT, AST, FBS, and HbA1c, in which decrease in the levels of body weight, GSH, BDNF, DHEA-SO4 and testosterone. Metformin (300 mg/kg) abrogated the effects of DG-induced aging model. We also found that the low dose of EA (30 mg/kg) decreases the deteriorative effects of DG-induced aging at 10 weeks of treatment only, however, high dose of EA (100 mg/kg) was effective at both 6 and 10 weeks of treatment. The addition of GW9662 completely reversed the effects of the low dose of EA, but not for the high dose, on DG-induced aging model. SIGNIFICANCE We revealed that daily and oral administration of EA provides anti-aging effects at low dose in a PPAR-γ receptor-dependent fashion, but not at the high dose.
Collapse
|