1
|
Du CM, Leu WJ, Jiang YH, Chan SH, Chen IS, Chang HS, Hsu LC, Hsu JL, Guh JH. Cardenolide glycosides sensitize gefitinib-induced apoptosis in non-small cell lung cancer: inhibition of Na +/K +-ATPase serving as a switch-on mechanism. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6533-6550. [PMID: 38451282 DOI: 10.1007/s00210-024-03031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
The treatment of non-small cell lung cancer (NSCLC) is known as a significant level of unmet medical need in spite of the progress in targeted therapy and personalized therapy. Overexpression of the Na+/K+-ATPase contributes to NSCLC progression, suggesting its potentiality in antineoplastic approaches. Epi-reevesioside F, purified from Reevesia formosana, showed potent anti-NSCLC activity through inhibiting the Na+/K+-ATPase, leading to internalization of α1- and α3-subunits in Na+/K+-ATPase and suppression of Akt-independent mTOR-p70S6K-4EBP1 axis. Epi-reevesioside F caused a synergistic amplification of apoptosis induced by gefitinib but not cisplatin, docetaxel, etoposide, paclitaxel, or vinorelbine in both NCI-H460 and A549 cells. The synergism was validated by enhanced activation of the caspase cascade. Bax cleavage, tBid formation, and downregulation of Bcl-xL and Bcl-2 contributed to the synergistic apoptosis induced by the combination treatment of epi-reevesioside F and gefitinib. The increase of membrane DR4 and DR5 levels, intracellular Ca2+ concentrations, and active m-calpain expression were responsible for the caspase-8 activation and Bax cleavage. The increased α-tubulin acetylation and activation of MAPK (i.e., p38 MAPK, Erk, and JNK) depending on cell types contributed to the synergistic mechanism under combination treatment. These signaling pathways that converged on profound c-Myc downregulation led to synergistic apoptosis in NSCLC. In conclusion, the data suggest that epi-reevesioside F inhibits the Na+/K+-ATPase and displays potent anti-NSCLC activity. Epi-reevesioside F sensitizes gefitinib-induced apoptosis through multiple pathways that converge on c-Myc downregulation. The data support the inhibition of Na+/K+-ATPase as a switch-on mechanism to sensitize gefitinib-induced anti-NSCLC activity.
Collapse
Affiliation(s)
- Chi-Min Du
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist, Taipei, 100, Taiwan
| | - Wohn-Jenn Leu
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist, Taipei, 100, Taiwan
| | - Yi-Huei Jiang
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist, Taipei, 100, Taiwan
| | - She-Hung Chan
- Department of Cosmetic Science, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu Dist, Taichung, 43301, Taiwan
| | - Ih-Sheng Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan, Kaohsiung, Taiwan
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan, Kaohsiung, Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist, Taipei, 100, Taiwan
| | - Jui-Ling Hsu
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist, Taipei, 100, Taiwan.
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan, 333, Taiwan.
- Department of Medical Oncology, New Taipei Municipal TuCheng Hospital, New Taipei City, 236, Taiwan.
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist, Taipei, 100, Taiwan.
| |
Collapse
|
2
|
Sellars E, Savguira M, Wu J, Cancelliere S, Jen M, Krishnan R, Hakem A, Barsyte-Lovejoy D, Hakem R, Narod SA, Kotsopoulos J, Salmena L. A high-throughput approach to identify BRCA1-downregulating compounds to enhance PARP inhibitor sensitivity. iScience 2024; 27:110180. [PMID: 38993666 PMCID: PMC11238136 DOI: 10.1016/j.isci.2024.110180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/29/2024] [Accepted: 06/01/2024] [Indexed: 07/13/2024] Open
Abstract
PARP inhibitors (PARPi) are efficacious in BRCA1-null tumors; however, their utility is limited in tumors with functional BRCA1. We hypothesized that pharmacologically reducing BRCA1 protein levels could enhance PARPi effectiveness in BRCA1 wild-type tumors. To identify BRCA1 downregulating agents, we generated reporter cell lines using CRISPR-mediated editing to tag endogenous BRCA1 protein with HiBiT. These reporter lines enable the sensitive measurement of BRCA1 protein levels by luminescence. Validated reporter cells were used in a pilot screen of epigenetic-modifying probes and a larger screen of more than 6,000 compounds. We identified 7 compounds that could downregulate BRCA1-HiBiT expression and synergize with olaparib. Three compounds, N-acetyl-N-acetoxy chlorobenzenesulfonamide (NANAC), A-443654, and CHIR-124, were validated to reduce BRCA1 protein levels and sensitize breast cancer cells to the toxic effects of olaparib. These results suggest that BRCA1-HiBiT reporter cells hold promise in developing agents to improve the clinical utility of PARPi.
Collapse
Affiliation(s)
- Erin Sellars
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, ON M5S 1B2, Canada
| | - Margarita Savguira
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jie Wu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sabrina Cancelliere
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mark Jen
- Lunenfeld-Tanenbaum Research Institute, Network Biology Collaborative Centre, High-Throughput Screening, Mt. Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Rehna Krishnan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Anne Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Dalia Barsyte-Lovejoy
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Razqallah Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, Toronto, ON M5S 1B2, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Joanne Kotsopoulos
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, ON M5S 1B2, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Leonardo Salmena
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, ON M5S 1B2, Canada
| |
Collapse
|
3
|
Bakam BY, Pambe JCN, Grey T, Maxeiner S, Rutz J, Njamen D, Blaheta RA, Zingue S. Cucumis sativus (Cucurbitaceae) seed oil prevents benzo(a)pyrene-induced prostate cancer in vitro and in vivo. ENVIRONMENTAL TOXICOLOGY 2023; 38:2069-2083. [PMID: 37310102 DOI: 10.1002/tox.23830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 06/14/2023]
Abstract
Despite enormous progress in modern medicine, prostate cancer (PCa) remains a major public health problem due to its high incidence and mortality. Although studies have shown in vitro antitumor effects of cucurbitacins from Cucumis sativus, the in vivo anticancer effect of the seed oil as a whole, has yet to be demonstrated. The present study evaluated the in vitro anticancer mechanisms of C. sativus (CS) seed oil and its possible chemopreventive potential on benzo(a)pyrene (BaP)-induced PCa in Wistar rat. In vitro cell growth, clone formation, cell death mechanism, cell adhesion and migration as well as expression of integrins β-1 and β-4 were assessed. In vivo PCa was induced in 56 male rats versus 8 normal control rats, randomized in normal (NOR) and negative (BaP) control groups which, received distilled water; the positive control group (Caso) was treated with casodex (13.5 mg/kg BW). One group received the total seed extract at the dose of 500 mg/kg BW; while the remaining three groups were treated with CS seed oil at 42.5, 85, and 170 mg/kg BW. The endpoints were: morphologically (prostate tumor weight and volume), biochemically (total protein, prostate specific antigen (PSA), oxidative stress markers such as MDA, GSH, catalase, and SOD) and histologically. As results, CS seed oil significantly and concentration-dependently reduced the DU145 prostate cancer cell growth and clone formation (optimum = 100 μg/mL). It slightly increased the number of apoptotic cells and inhibited the migration and invasion of DU145 cells, while it decreased their adhesion to immobilized collagen and fibrinogen. The expression of integrin β-1 and β-4 was increased in presence of 100 μg/mL CS oil. In vivo, the BaP significantly elevated the incidence of PC tumors (75%), the total protein and PSA levels, pro-inflammatory cytokines (TNF-α, IL-1, and IL-6) and MDA levels compared to NOR. CS seeds oil significantly counteracted the effect of BaP by decreasing significantly the PC incidence (12.5%), and increasing the level of antioxidant (SOD, GSH, and catalase) and anti-inflammatory cytokine IL-10 in serum. While in BaP group PCa adenocarninoma was the most representative neoplasm, rats treated with 85 and 170 mg/kg prevented it in the light of the casodex. It is conclude that CS may provide tumor suppressive effects in vitro and in vivo which makes it an interesting candidate to support the current treatment protocol.
Collapse
Affiliation(s)
- Berlise Yengwa Bakam
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon
| | - Judith Christiane Ngo Pambe
- Department of Morphological Sciences and Pathological Anatomy, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Timothy Grey
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Sebastian Maxeiner
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Jochen Rutz
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Dieudonne Njamen
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon
| | - Roman A Blaheta
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Stéphane Zingue
- Department of Urology, University Hospital Frankfurt, Johann Wolfgang Goethe Universität, Frankfurt am Main, Germany
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, University of Yaounde 1, Yaounde, Cameroon
| |
Collapse
|
4
|
Harich OO, Gavriliuc OI, Ordodi VL, Tirziu A, Paunescu V, Panaitescu C, Bojin MF. In Vitro Study of the Multimodal Effect of Na +/K + ATPase Blocker Ouabain on the Tumor Microenvironment and Malignant Cells. Biomedicines 2023; 11:2205. [PMID: 37626702 PMCID: PMC10452365 DOI: 10.3390/biomedicines11082205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Na+/K+ ATPase is a protein involved in the active transport of ions across the cellular membrane. Ouabain is a cardiotonic glycoside that, by inhibiting the Na+/K+ pump, interferes with cell processes mediated directly by the pump, but also indirectly influences other cellular processes such as cell cycle and proliferation, growth, cell differentiation, angiogenesis, migration, adhesion, and invasion. We used the SK-BR-3 breast cancer cell line, mesenchymal stem cells (MSCs), and tumor-associated fibroblasts (TAFs) in vitro to determine the effects of ouabain exposure on these cellular types. The results showed a multi-level effect of ouabain mainly on tumor cells, in a dose-dependent manner, while the TAFs and their normal counterparts were not significantly influenced. Following exposure to ouabain, the SK-BR-3 cells changed their morphologic appearance, decreased the expression of immunophenotypic markers (CD29, Her2, VEGF), the proliferation rate was significantly decreased (Ki67 index), the cells were blocked in the G0 phase of the cell cycle and suffered necrosis. These data were correlated with the variable expression of α and β Na+/K+ pump subunits in tumor cells, resulting in decreased ability to adhere to the VCAM-1 substrate in functional flow chamber studies. Being indicative of the pro-apoptotic and inhibitory effect of ouabain on tumor invasion and metastasis, the results support the addition of ouabain to the oncological therapeutic arsenal, trailing the "repurposing drugs" approach.
Collapse
Affiliation(s)
- Octavia-Oana Harich
- Department of Functional Sciences, Immuno-Physiology and Biotechnologies Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (O.-O.H.); (V.-L.O.); (A.T.); (V.P.); (C.P.); (M.-F.B.)
| | - Oana-Isabella Gavriliuc
- Department of Functional Sciences, Immuno-Physiology and Biotechnologies Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (O.-O.H.); (V.-L.O.); (A.T.); (V.P.); (C.P.); (M.-F.B.)
| | - Valentin-Laurentiu Ordodi
- Department of Functional Sciences, Immuno-Physiology and Biotechnologies Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (O.-O.H.); (V.-L.O.); (A.T.); (V.P.); (C.P.); (M.-F.B.)
- Faculty of Industrial Chemistry and Environmental Engineering, “Politehnica” University Timisoara, No 2 Victoriei Square, 300006 Timisoara, Romania
| | - Alexandru Tirziu
- Department of Functional Sciences, Immuno-Physiology and Biotechnologies Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (O.-O.H.); (V.-L.O.); (A.T.); (V.P.); (C.P.); (M.-F.B.)
| | - Virgil Paunescu
- Department of Functional Sciences, Immuno-Physiology and Biotechnologies Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (O.-O.H.); (V.-L.O.); (A.T.); (V.P.); (C.P.); (M.-F.B.)
- Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Carmen Panaitescu
- Department of Functional Sciences, Immuno-Physiology and Biotechnologies Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (O.-O.H.); (V.-L.O.); (A.T.); (V.P.); (C.P.); (M.-F.B.)
- Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Maria-Florina Bojin
- Department of Functional Sciences, Immuno-Physiology and Biotechnologies Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (O.-O.H.); (V.-L.O.); (A.T.); (V.P.); (C.P.); (M.-F.B.)
- Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| |
Collapse
|
5
|
Mayr C, Kiesslich T, Bekric D, Beyreis M, Kittl M, Ablinger C, Neureiter E, Pichler M, Prinz F, Ritter M, Neureiter D, Jakab M, Dobias H. Ouabain at nanomolar concentrations is cytotoxic for biliary tract cancer cells. PLoS One 2023; 18:e0287769. [PMID: 37390071 PMCID: PMC10312999 DOI: 10.1371/journal.pone.0287769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/31/2023] [Indexed: 07/02/2023] Open
Abstract
Biliary tract cancer is a deadly disease with limited therapeutic options. Ouabain is a well-known inhibitor of the pumping function of Na+/K+-ATPase, though there is evidence that low concentrations of ouabain lead to a reduction of cell viability of cancer cells independent of its inhibition of the pumping function of the Na+/K+-ATPase. Regarding the impact of ouabain on biliary tract cancer, no data is currently available. Therefore, we aimed for a first-time investigation of ouabain as a potential anti-neoplastic biliary tract cancer agent using comprehensive human biliary tract cancer in vitro models. We found that ouabain has a strong cell line-dependent cytotoxic effect with IC50 levels in the (low) nanomolar-range and that this effect was not associated with the mRNA expression levels of the Na+/K+-ATPase α, β and fxyd-subunits. Regarding the mode of cytotoxicity, we observed induction of apoptosis in biliary tract cancer cells upon treatment with ouabain. Interestingly, cytotoxic effects of ouabain at sub-saturating (< μM) levels were independent of cellular membrane depolarization and changes in intracellular sodium levels. Furthermore, using a 3D cell culture model, we found that ouabain disturbs spheroid growth and reduces the viability of biliary tract cancer cells within the tumor spheroids. In summary, our data suggest that ouabain possesses anti-biliary tract cancer potential at low μM-concentration in 2D and 3D in vitro biliary tract cancer models and encourage further detailed investigation.
Collapse
Affiliation(s)
- Christian Mayr
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology Salzburg, Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine I, University Clinics Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Tobias Kiesslich
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology Salzburg, Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine I, University Clinics Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Dino Bekric
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Marlena Beyreis
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Michael Kittl
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology Salzburg, Paracelsus Medical University, Salzburg, Austria
- Translational Oncology, University Hospital of Augsburg, Augsburg, Germany
| | - Celina Ablinger
- Institute of Pharmacy, Paracelsus Medical University, Salzburg, Austria
| | - Elen Neureiter
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Research Unit for Non-Coding RNA and Genome Editing, Medical University of Graz, Graz, Austria
- Translational Oncology, University Hospital of Augsburg, Augsburg, Germany
| | - Felix Prinz
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Research Unit for Non-Coding RNA and Genome Editing, Medical University of Graz, Graz, Austria
| | - Markus Ritter
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis und Rehabilitation, Paracelsus Medical University, Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Daniel Neureiter
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Martin Jakab
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis und Rehabilitation, Paracelsus Medical University, Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Heidemarie Dobias
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
6
|
Zhao W, Li G, Zhang Q, Chen M, He L, Wu Z, Zhang Y, Fan M, Liang Y, Zhang W, Zeng F, Deng F. Cardiac glycoside neriifolin exerts anti-cancer activity in prostate cancer cells by attenuating DNA damage repair through endoplasmic reticulum stress. Biochem Pharmacol 2023; 209:115453. [PMID: 36792037 DOI: 10.1016/j.bcp.2023.115453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Prostate cancer (PCa) is one of the most common cancers in men. Patients with recurrent disease initially respond to androgen-deprivation therapy, but the tumor eventually progresses into castration-resistant PCa. Thus, new therapeutic approaches for PCa resistance to current treatments are urgently needed. Here, we report that cardiac glycoside neriifolin suppresses the malignancy of cancer cells via increasing DNA damage and apoptosis through activation of endoplasmic reticulum stress (ERS) in prostate cancers. We found that cardiac glycoside neriifolin markedly inhibited the cell growth and induced apoptosis in prostate cancer cells. Transcriptome sequence analysis revealed that neriifolin significantly induced DNA damage and double strand breaks (DSBs), validated with attenuation expression of genes in DSBs repair and increasing phosphorylated histone H2AX (γ-H2AX) foci formation, a quantitative marker of DSBs. Moreover, we found that neriifolin also activated ERS, evidenced by upregulation and activation of ERS related proteins, including eukaryotic initiation factor 2α (eIF2α), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) and C/EBP homologous protein (CHOP) as well as downregulation of CCAATenhancerbinding protein alpha (C/EBP-α), a transcriptional factor that forms heterodimers with CHOP. In addition, neriifolin treatment dramatically inhibited the by tumor growth, which were reversed by CHOP loss or overexpression of C/EBP-α in nude mice. Mechanistically, neriifolin suppressed the tumor growth by increasing DNA damage and apoptosis through CHOP-C/EBP-α signaling axis of ERS in prostate cancers. Taken together, these results suggest that cardiac glycoside neriifolin may be a potential tumor-specific chemotherapeutic agent in prostate cancer treatment.
Collapse
Affiliation(s)
- Wanlu Zhao
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guihuan Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qianbing Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meixuan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lijun He
- Department of Nursing, Nanfang Hospital, Southern Medical University, Guangzhou 501515, China
| | - Zhicong Wu
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Yihe Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingming Fan
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanling Liang
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Wenlong Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fangyin Zeng
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China.
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
7
|
Ma X, Ren H, Zhang Y, Wang B, Ma H. LncRNA RHPN1-AS1 inhibition induces autophagy and apoptosis in prostate cancer cells via the miR-7-5p/EGFR/PI3K/AKT/mTOR signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:3013-3027. [PMID: 36125241 DOI: 10.1002/tox.23656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
LncRNA RHPN1-AS1 (RHPN1-AS1) has been confirmed to promote tumor progression in multiple cancers and is upregulated in prostate cancer (PCa), but whether it has an effect on PCa progression remains unclear. In this study, we found that PCa patients with high RHPN1-AS1 expression had a shorter survival time, and RHPN1-AS1 was significantly upregulated in PCa tissues and cells. Based on informatics analysis we predicted that miR-7-5p binds to 3'UTR of RHPN1-AS1 and epidermal growth factor receptor (EGFR) and verified it by luciferase reporter gene assay. Subsequently, we transfected PCa cells with RHPN1-AS1 overexpression vector (RHPN1-AS1), knockdown plasmids (sh-RHPN1-AS1) and/or miR-7-5p mimics or inhibitor and/or overexpression vector (EGFR) or small interfering RNA of EGFR (si-EGFR) or its control, and found that overexpression of RHPN1-AS1 inhibited miR-7-5p expression and promoted EGFR expression, silencing RHPN1-AS1 inhibited proliferation and invasion, and induced G2/M arrest, apoptosis and autophagy in PCa cells. 3MA (an inhibitor of autophagy)-mediated autophagy inhibition attenuated RHPN1-AS1 inhibition-induced apoptosis. Overexpression miR-7-5p or silencing EGFR promoted LC3-I to LC3-II conversion, enhanced autophagy activity, induced cleaved-caspase-3 expression and apoptosis in PCa cells. Furthermore, overexpression of RHPN1-AS1 promoted phosphorylation of phosphatidylinositol 3-kinase (PI3K), AKT and mTOR, inhibited LC3-I to LC3-II conversion and reduced apoptosis in PCa cells, while GSK2126458 (an inhibitor of PI3K) reversed the effect of RHPN1-AS1 on PCa cells. In summary, RHPN1-AS1 acted as a ceRNA of miR-7-5p to upregulate EGFR expression, silencing RHPN1-AS1 suppressed PCa tumor progression by inducing autophagy and apoptosis in PCa cells through the miR-7-5p/EGFR/PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xiulong Ma
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Hongtao Ren
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Yang Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Baofeng Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Hongbing Ma
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi, China
| |
Collapse
|
8
|
de la Calle CM, Shee K, Yang H, Lonergan PE, Nguyen HG. The endoplasmic reticulum stress response in prostate cancer. Nat Rev Urol 2022; 19:708-726. [PMID: 36168057 DOI: 10.1038/s41585-022-00649-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
In order to proliferate in unfavourable conditions, cancer cells can take advantage of the naturally occurring endoplasmic reticulum-associated unfolded protein response (UPR) via three highly conserved signalling arms: IRE1α, PERK and ATF6. All three arms of the UPR have key roles in every step of tumour progression: from cancer initiation to tumour growth, invasion, metastasis and resistance to therapy. At present, no cure for metastatic prostate cancer exists, as targeting the androgen receptor eventually results in treatment resistance. New research has uncovered an important role for the UPR in prostate cancer tumorigenesis and crosstalk between the UPR and androgen receptor signalling pathways. With an improved understanding of the mechanisms by which cancer cells exploit the endoplasmic reticulum stress response, targetable points of vulnerability can be uncovered.
Collapse
Affiliation(s)
- Claire M de la Calle
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin Shee
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Heiko Yang
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Peter E Lonergan
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, St. James's Hospital, Dublin, Ireland
- Department of Surgery, Trinity College, Dublin, Ireland
| | - Hao G Nguyen
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Pharmacological Small Molecules against Prostate Cancer by Enhancing Function of Death Receptor 5. Pharmaceuticals (Basel) 2022; 15:ph15081029. [PMID: 36015177 PMCID: PMC9413322 DOI: 10.3390/ph15081029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 02/05/2023] Open
Abstract
Death receptor 5 (DR5) is a membrane protein that mediates exogenous apoptosis. Based on its function, it is considered to be a target for the treatment of cancers including prostate cancer. It is encouraging to note that a number of drugs targeting DR5 are now progressing to different stages of clinical trial studies. We collected 38 active compounds that could produce anti-prostate-cancer effects by modulating DR5, 28 of which were natural compounds and 10 of which were synthetic compounds. In addition, 6 clinically used chemotherapeutic agents have also been shown to promote DR5 expression and thus exert apoptosis-inducing effects in prostate cancer cells. These compounds promote the expression of DR5, thereby enhancing its function in inducing apoptosis. When these compounds were used in combination with the natural ligand of DR5, the number of apoptotic cells was significantly increased. These compounds are all promising for development as anti-prostate-cancer drugs, while most of these compounds are currently being evaluated for their anti-prostate-cancer effects at the cellular level and in animal studies. A great deal of more in-depth research is needed to evaluate whether they can be developed as drugs. We collected literature reports on small molecules against prostate cancer through modulation of DR5 to understand the current dynamics in this field and to evaluate the prospects of small molecules against prostate cancer through modulation of DR5.
Collapse
|
10
|
Monovalent ions and stress-induced senescence in human mesenchymal endometrial stem/stromal cells. Sci Rep 2022; 12:11194. [PMID: 35778548 PMCID: PMC9249837 DOI: 10.1038/s41598-022-15490-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/24/2022] [Indexed: 01/10/2023] Open
Abstract
Monovalent ions are involved in growth, proliferation, differentiation of cells as well as in their death. This work concerns the ion homeostasis during senescence induction in human mesenchymal endometrium stem/stromal cells (hMESCs): hMESCs subjected to oxidative stress (sublethal pulse of H2O2) enter the premature senescence accompanied by persistent DNA damage, irreversible cell cycle arrest, increased expression of the cell cycle inhibitors (p53, p21) cell hypertrophy, enhanced β-galactosidase activity. Using flame photometry to estimate K+, Na+ content and Rb+ (K+) fluxes we found that during the senescence development in stress-induced hMESCs, Na+/K+pump-mediated K+ fluxes are enhanced due to the increased Na+ content in senescent cells, while ouabain-resistant K+ fluxes remain unchanged. Senescence progression is accompanied by a peculiar decrease in the K+ content in cells from 800-900 to 500-600 µmol/g. Since cardiac glycosides are offered as selective agents for eliminating senescent cells, we investigated the effect of ouabain on ion homeostasis and viability of hMESCs and found that in both proliferating and senescent hMESCs, ouabain (1 nM-1 µM) inhibited pump-mediated K+ transport (ID50 5 × 10-8 M), decreased cell K+/Na+ ratio to 0.1-0.2, however did not induce apoptosis. Comparison of the effect of ouabain on hMESCs with the literature data on the selective cytotoxic effect of cardiac glycosides on senescent or cancer cells suggests the ion pump blockade and intracellular K+ depletion should be synergized with target apoptotic signal to induce the cell death.
Collapse
|
11
|
Ren J, Gao X, Guo X, Wang N, Wang X. Research Progress in Pharmacological Activities and Applications of Cardiotonic Steroids. Front Pharmacol 2022; 13:902459. [PMID: 35721110 PMCID: PMC9205219 DOI: 10.3389/fphar.2022.902459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/11/2022] [Indexed: 12/21/2022] Open
Abstract
Cardiotonic steroids (CTS) are a group of compounds existing in animals and plants. CTS are commonly referred to cardiac glycosides (CGs) which are composed of sugar residues, unsaturated lactone rings and steroid cores. Their traditional mechanism of action is to inhibit sodium-potassium ATPase to strengthen the heart and regulate heart rate, so it is currently widely used in the treatment of cardiovascular diseases such as heart failure and tachyarrhythmia. It is worth noticing that recent studies have found an avalanche of inestimable values of CTS applications in many fields such as anti-tumor, anti-virus, neuroprotection, and immune regulation through multi-molecular mechanisms. Thus, the pharmacological activities and applications of CTS have extensive prospects, which would provide a direction for new drug research and development. Here, we review the potential applications of CTS in cardiovascular system and other systems. We also provide suggestions for new clinical practical strategies of CTS, for many diseases. Four main themes will be discussed, in relation to the impact of CTS, on 1) tumors, 2) viral infections, 3) nervous system diseases and 4) immune-inflammation-related diseases.
Collapse
Affiliation(s)
- Junwei Ren
- Key Laboratory of Cardiovascular Medicine Research, Department of Pharmacology, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xinyuan Gao
- Key Laboratory of Cardiovascular Medicine Research, Department of Pharmacology, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xi Guo
- Thyroid Surgery, Affiliated Cancer Hospital, Harbin Medical University, Harbin, China
| | - Ning Wang
- Key Laboratory of Cardiovascular Medicine Research, Department of Pharmacology, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Pharmacy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
The Cardiac Glycoside Deslanoside Exerts Anticancer Activity in Prostate Cancer Cells by Modulating Multiple Signaling Pathways. Cancers (Basel) 2021; 13:cancers13225809. [PMID: 34830961 PMCID: PMC8616045 DOI: 10.3390/cancers13225809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Prostate cancer is a leading cause of cancer-related deaths among men, and novel therapies for advanced PCa are urgently needed. Cardiac glycosides are a group of attractive candidates for anticancer repurposing, but deslanoside has not been tested for a potential anticancer effect so far. This study aims to test the anticancer effect of deslanoside in PCa and investigate the underlying mechanisms. Deslanoside effectively inhibited colony formation and tumor growth in multiple prostate cancer cell lines. Such an inhibitory effect involved both the cell cycle arrest at G2/M and the induction of apoptosis. Deslanoside altered the expression of many genes, which belonged to various cancer-associated cellular processes and signaling pathways. Altered expression levels for 15 deslanoside-modulated genes correlate with recurrence-free survival or overall survival in PCa patients, some of which have not been implicated in cancer before. Therefore, deslanoside exerts anticancer activity in PCa cells by modulating gene expression. Abstract Prostate cancer (PCa) is a leading cause of cancer-related deaths among men worldwide, and novel therapies for advanced PCa are urgently needed. Cardiac glycosides represent an attractive group of candidates for anticancer repurposing, but the cardiac glycoside deslanoside has not been tested for potential anticancer activity so far. We found that deslanoside effectively inhibited colony formation in vitro and tumor growth in nude mice of PCa cell lines 22Rv1, PC-3, and DU 145. Such an anticancer activity was mediated by both the cell cycle arrest at G2/M and the induction of apoptosis, as demonstrated by different functional assays and the expression status of regulatory proteins of cell cycle and apoptosis in cultured cells. Moreover, deslanoside suppressed the invasion and migration of PCa cell lines. Genome-wide expression profiling and bioinformatic analyses revealed that 130 genes were either upregulated or downregulated by deslanoside in both 22Rv1 and PC-3 cell lines. These genes enriched multiple cellular processes, such as response to steroid hormones, regulation of lipid metabolism, epithelial cell proliferation and its regulation, and negative regulation of cell migration. They also enriched multiple signaling pathways, such as necroptosis, MAPK, NOD-like receptor, and focal adhesion. Survival analyses of the 130 genes in the TCGA PCa database revealed that 10 of the deslanoside-downregulated genes (ITG2B, CNIH2, FBF1, PABPC1L, MMP11, DUSP9, TMEM121, SOX18, CMPK2, and MAMDC4) inversely correlated, while one deslanoside-upregulated gene (RASD1) positively correlated, with disease-free survival in PCa patients. In addition, one deslanoside-downregulated gene (ENG) inversely correlated, while three upregulated genes (JUN, MXD1, and AQP3) positively correlated with overall survival in PCa patients. Some of the 15 genes have not been implicated in cancer before. These findings provide another candidate for repurposing cardiac glycosides for anticancer drugs. They also suggest that a diverse range of molecular events underlie deslanoside’s anticancer activity in PCa cells.
Collapse
|
13
|
Khan II, Karshieva SS, Sokolova DV, Spirina TS, Zolottsev VA, Latysheva AS, Anisimova NY, Komarova MV, Yakunina MN, Nitetskaya TA, Misharin AY, Pokrovsky VS. Antiproliferative, proapoptotic, and tumor-suppressing effects of the novel anticancer agent alsevirone in prostate cancer cells and xenografts. Arch Pharm (Weinheim) 2021; 355:e2100316. [PMID: 34668210 DOI: 10.1002/ardp.202100316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 11/08/2022]
Abstract
The aim of this study was to explore the mechanisms of action of alsevirone in prostate cancer (PC) in vitro and in vivo: CYP17A1 inhibition, cytotoxic, apoptotic, and antitumor effects in comparison with abiraterone. The CYP17A1-inhibitory activity was investigated in rat testicular microsomes using high-performance liquid chromatography. Testosterone levels were evaluated using enzyme-linked immunoassay. IC50 values were calculated for PC3, DU-145, LNCaP, and 22Rv1 cells using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test. The antitumor effect in vivo was studied in DU-145 and 22Rv1 subcutaneous xenografts in Balb/c nude mice. Alsevirone reduced the CYP17A1-inhibitory activity by 98% ± 0.2%. A statistically significant reduction in the testosterone concentration in murine blood was recorded after the 7th administration of 300 mg/kg alsevirone at 0.31 ± 0.03 ng/ml (p < .001) versus 0.98 ± 0.22 ng/ml (p = .392) after abiraterone administration and 1.52 ± 0.49 ng/ml in control animals. Alsevirone was more cytotoxic than abiraterone in DU-145, LNCaP, and 22Rv1 cells, with IC50 values of 23.80 ± 1.18 versus 151.43 ± 23.70 μM, 22.87 ± 0.54 versus 28.80 ± 1.61 μM, and 35.86 ± 5.63 versus 109.87 ± 35.15 μM, respectively. Alsevirone and abiraterone significantly increased annexin V-positive, caspase 3/7-positive, and activated Bcl-2-positive cells. In 22Rv1 xenografts, alsevirone 300 mg/kg × 10/24 h per os inhibited tumor growth: on Day 9 of treatment, tumor growth inhibition = 59% (p = .022). Thus, alsevirone demonstrated significant antitumor activity associated with CYP17A1 inhibition, apoptosis in PC cells, and testosterone reduction.
Collapse
Affiliation(s)
- Irina I Khan
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia.,Department of biochemistry, RUDN University, Moscow, Russia
| | - Saida S Karshieva
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia
| | - Darina V Sokolova
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia.,Department of biochemistry, RUDN University, Moscow, Russia
| | - Tatiana S Spirina
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia
| | - Vladimir A Zolottsev
- Department of biochemistry, RUDN University, Moscow, Russia.,Laboratory of synthesis of physiologically active compounds, Institute of Biomedical Chemistry, Moscow, Russia
| | - Alexandra S Latysheva
- Laboratory of synthesis of physiologically active compounds, Institute of Biomedical Chemistry, Moscow, Russia
| | - Natalia Y Anisimova
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia.,Laboratory of polymer materials, NUST "MISIS", Moscow, Russia
| | - Marina V Komarova
- Department of laser and biotechnical systems, Samara University, Samara, Russia
| | - Marina N Yakunina
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia
| | - Tatiana A Nitetskaya
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia
| | - Alexander Y Misharin
- Laboratory of synthesis of physiologically active compounds, Institute of Biomedical Chemistry, Moscow, Russia
| | - Vadim S Pokrovsky
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia.,Department of biochemistry, RUDN University, Moscow, Russia.,Center of genetics and life sciences, Sirius University of Science and Technology, Sochi, Krasnodarsky Kray, Russia
| |
Collapse
|
14
|
Xu Y, Xu W, Lu Z, Cheung MH, Lin M, Liang C, Lou J, Chen Y. Anti-Gastric Cancer Effect of Purified Omphalia lapidescens Protein via Regulating the JAK/STAT3 Signaling Pathway. Nutr Cancer 2021; 74:1780-1791. [PMID: 34601984 DOI: 10.1080/01635581.2021.1960385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Gastric cancer is the leading cause of cancer-related death worldwide. The aim of present study was to investigate the anti-tumor effect of purified Omphalia lapidescens protein (pPeOp) in gastric cancer. Microarray analysis was performed to find out differentially expressed genes in pPeOp-treated MC-4 gastric cancer cells. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) three signaling pathway was most likely to be altered based on bioinformatics analysis. Interleukin-6 (IL-6) and NSC74859 were used as the agonist and inhibitor of the JAK/STAT3 signaling pathway, respectively. Flow cytometry and MTS assay were used for cell proliferation and viability analysis in pPeOp-treated gastric cancer cell lines with IL-6 or NSC74859. The anti-tumor effect was increased when pPeOp were co-treated with IL-6, while decreased in inhibitor treatment. The expression of the crucial members in the pathway of MC-4 cells, including glycoprotein 130 (GP130), JAK1, JAK2, STAT3, p-STAT3, suppressor of cytokine signaling SOCS1 and SOCS3, was detected by western blotting. pPeOp exhibited promising anticancer effect in the xenograft nude mice model, established by STAT3 knock down gastric cancer cells.Thus, JAK/STAT3 inhibition partially contributed to the anticancer effect of pPeOp, which may serve as a novel strategy for gastric cancer.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.1960385.
Collapse
Affiliation(s)
- Yuqin Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenjun Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongxia Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,School of Medicine and Pharmacy, Ocean University of China, QingDao, China
| | - Man Hei Cheung
- Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neural Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Meiai Lin
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chun Liang
- School of Medicine and Pharmacy, Ocean University of China, QingDao, China.,EnKang Pharmaceuticals (Guangzhou), Ltd., Guangzhou, China
| | - Jianshu Lou
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Holistic Integrative Pharmacy Institutes, School of medicine, Hangzhou Normal University, Hangzhou, China
| | - Yitao Chen
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neural Science, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
15
|
Yang JL, Yang MD, Chen JC, Lu KW, Huang YP, Peng SF, Chueh FS, Liu KC, Lin TS, Chen PY, Chen WJ. Ouabain Induces DNA Damage in Human Osteosarcoma U-2 OS Cells and Alters the Expression of DNA Damage and DNA Repair-associated Proteins. In Vivo 2021; 35:2687-2696. [PMID: 34410957 DOI: 10.21873/invivo.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Ouabain, isolated from natural plants, exhibits anticancer activities; however, no report has presented its mechanism of DNA damage induction in human osteosarcoma cancer cells in vitro. The aim of this study was to investigate whether ouabain induces DNA damage and repair, accompanied with molecular pathways in human osteosarcoma cancer U-2 OS cells in vitro. MATERIALS AND METHODS The percentage of viable cell number was measured by flow cytometric assay; DNA damage was assayed by DAPI staining, comet assay, and agarose gel electrophoresis. DNA damage and repair associated protein expressions were assayed by western blotting assays. RESULTS Ouabain reduced total cell viability, induced chromatin condensation, DNA fragmentation, and DNA damage in U-2 OS cells. Ouabain increased p-ATMSer1981, p-ATRSer428, and p53 at 2.5-10 μM, increased p-p53Ser15 at 10 μM; however, it decreased p-MDM2Ser166 at 2.5-10 μM. Ouabain increased p-H2A.XSer139, MDC-1, and PARP at 2.5-10 μM and BRCA1 at 5-10 μM; however, it decreased DNA-PK and MGMT at 2.5-10 μM in U-2 OS cells at 48 h treatment. Ouabain promoted expression and nuclear translocation of p-H2A.XSer139 in U-2 OS cells and this was confirmed by confocal laser microscopy. CONCLUSION Ouabain reduced total viable cell number through triggering DNA damage and altering the protein expression of DNA damage and repair system in U-2 OS cells in vitro.
Collapse
Affiliation(s)
- Jiun-Long Yang
- Department of Nursing, Saint Mary's Junior College of Medicine, Nursing and Management, Yilan, Taiwan, R.O.C
| | - Mei-Due Yang
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Jaw-Chyun Chen
- Department of Medicinal Botany and Health Applications, Da-Yeh University, Changhua, Taiwan, R.O.C
| | - Kung-Wen Lu
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - Yi-Ping Huang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan, R.O.C
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan, R.O.C
| | - Tzu-Shun Lin
- Department of Nursing, Saint Mary's Junior College of Medicine, Nursing and Management, Yilan, Taiwan, R.O.C.,Department of Pharmacy, Saint Mary's Hospital Luodong, Yilan, Taiwan, R.O.C
| | - Po-Yuan Chen
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.;
| | - Wei-Jen Chen
- Department of Orthopedics, Chang Bing Show-Chwan Memorial Hospital, Changhua, Taiwan, R.O.C.; .,Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua, Taiwan, R.O.C
| |
Collapse
|
16
|
Teixeira MP, Passos EF, Haddad NF, Andrade MN, Rumjanek VM, Miranda-Alves L, de Carvalho DP, de Paiva LS. In vitro antitumoral effects of the steroid ouabain on human thyroid papillary carcinoma cell lines. ENVIRONMENTAL TOXICOLOGY 2021; 36:1338-1348. [PMID: 33760381 DOI: 10.1002/tox.23130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Ouabain is a steroid described as a compound extracted from plants that is capable of binding to Na+ , K+ -ATPase, inhibiting ion transport and triggering cell signaling pathways. Due to its positive ionotropic effect, ouabain was used for more than 200 years for the treatment of cardiac dysfunctions. Numerous antitumor effects of ouabain have been described so far; however, its role on thyroid cancer is still poorly understood. Therefore, the aim of the present work was to evaluate the effect of ouabain on the biology of human papillary thyroid cancer cells. For this, three human thyroid cell lines were used: NTHY-ori, a non-tumor lineage, BCPAP and TPC-1, both derived from papillary carcinomas. Cells were cultured in the presence or absence of ouabain. Subsequently, we evaluated its effects on the viability, cell death, cell cycle, and migratory ability of these cell lines. We also investigated the impact of ouabain in IL-6/IL-6R and epithelial to mesenchymal transition markers expression. Our results indicate that ouabain (10-7 M), decreased the number of NTHY-ori, TPC-1 and BCPAP viable cells and induced cell cycle arrest after in vitro culture, but did not appear to promote cell death. In TPC-1 cells ouabain also inhibited cell migration; increased IL-6/IL-6R expression and IL-6 secretion; and diminished vimentin and SNAIL-1 expression. Collectively, our results indicate that ouabain has an antitumoral role on human papillary thyroid carcinomas in vitro. Even though additional studies are necessary, our work contributes to the discussion of the possibility of new clinical trials of ouabain.
Collapse
Affiliation(s)
- Mariana Pires Teixeira
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Patologia, Universidade Federal Fluminense, Niterói, Brazil
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliza Freitas Passos
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia Ferreira Haddad
- Programa de Pós-Graduação em Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelle Novaes Andrade
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian Mary Rumjanek
- Laboratório de Imunologia Tumoral, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise Pires de Carvalho
- Programa de Pós-Graduação em Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Souza de Paiva
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Patologia, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
17
|
Du J, Jiang L, Chen F, Hu H, Zhou M. Cardiac Glycoside Ouabain Exerts Anticancer Activity via Downregulation of STAT3. Front Oncol 2021; 11:684316. [PMID: 34277430 PMCID: PMC8279743 DOI: 10.3389/fonc.2021.684316] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/16/2021] [Indexed: 12/30/2022] Open
Abstract
Cardiac glycosides are plant-derived steroid-like compounds which have been used for the treatment of cardiovascular diseases. Ouabain, a cardiotonic steroid and specific Na+/K+-ATPase inhibitor, has been rediscovered for its potential use in the treatment of cancer. However, the cellular targets and anticancer mechanism of ouabain in various cancers remain largely unexplored. In this study, we confirmed the cytotoxic effects of ouabain on several cancer cell lines. Further examination revealed the increase of apoptosis, intracellular ROS generation and DNA double-strand breaks induced by ouabain treatment. Besides, ouabain effectively suppressed STAT3 expression as well as phosphorylation in addition to block STAT3-mediated transcription and downstream target proteins. Interestingly, these inhibitory activities seemed to be independent of the Na+/K+-ATPase. Furthermore, we found that ouabain inhibited protein synthesis through regulation of the eukaryotic initiation factor 4E (eIF4E) and eIF4E binding protein 1 (4EBP1). Taken together, our study provided a novel molecular insight of anticancer activities of ouabain in human cancer cells, which could raise the hope of using cardiac glycosides for cancer therapeutics more rational.
Collapse
Affiliation(s)
- Jie Du
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China.,Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lijun Jiang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fuqiang Chen
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Huantao Hu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Cheng YC, Chen PY, Way TDER, Cheng CL, Huang YP, Hsia TC, Chou YC, Peng SF. Pre-Treatment of Pterostilbene Enhances H 2O 2-induced Cell Apoptosis Through Caspase-dependent Pathway in Human Keratinocyte Cells. In Vivo 2021; 35:833-843. [PMID: 33622876 DOI: 10.21873/invivo.12324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/06/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIM Hydrogen peroxide (H2O2) is one of the reactive oxygen species (ROS), which can induce apoptotic cell death in numerous cancer cells. Pterostilbene (PTE), a natural polyphenolic compound, induces cell apoptosis in many human cancer cells. MATERIALS AND METHODS We investigated whether PTE could enhance H2O2-induced cell apoptosis in human keratinocyte HaCaT cells in vitro. The morphological change of HaCaT cells was observed and photographed under a contrast-phase microscope. The percentage of cell viability was measured by propidium iodide exclusion assay. Cell apoptosis was performed by Annexin V/PI double staining and assayed by flow cytometer. DNA condensation was measured by DAPI staining. The protein expression was determined by western blotting. ROS production-associated proteins were also assayed by confocal laser scanning microscopy. RESULTS PTE pre-treatment enhanced H2O2 (600 μM)-induced cell morphological changes and reduced the total cell number (cell viability). The decreased cell viability in HaCaT cells was through induction of apoptotic cell death, which was confirmed by Annexin V/PI double staining and DAPI staining. Western blotting studies indicated that HaCaT cells which were pre-treated with PTE (100 μM) and then co-treated with H2O2 (600 μM) for 12 h showed significantly increased levels of SOD (Cu/Zn), SOD (Mn), Bax, caspase-3, caspase-8, caspase-9, PARP, p53, p-p53, and p-H2A.X but decreased levels Bcl-2 and catalase. Results also showed that HaCaT cells pre-treated with PTE and then co-treated with H2O2 had increased expression of SOD (Cu/Zn) and glutathione but decreased catalase. CONCLUSION These observations suggest that PTE pre-treatment can enhance the H2O2-induced apoptotic cell death in keratinocyte cells and may be an effective candidate for the treatment of proliferative keratinocytes.
Collapse
Affiliation(s)
- Yi-Ching Cheng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Po-Yuan Chen
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Tzong-DER Way
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Ching-Ling Cheng
- Program of Digital Health Innovation, China Medical University, Taichung, Taiwan, R.O.C
| | - Yi-Ping Huang
- Department of Physiology, College of Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan, R.O.C.,Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yu-Cheng Chou
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C.; .,Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.; .,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| |
Collapse
|
19
|
Wang L, Cai W, Han B, Zhang J, Yu B, Chen M. Ouabain Exhibited Strong Anticancer Effects in Melanoma Cells via Induction of Apoptosis, G2/M Phase Arrest, and Migration Inhibition. Onco Targets Ther 2021; 14:1261-1273. [PMID: 33658794 PMCID: PMC7920615 DOI: 10.2147/ott.s283548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/27/2021] [Indexed: 12/31/2022] Open
Abstract
Background Malignant melanoma was characterized by insensitive chemotherapy, drug resistance, and high metastatic ability, which resulted in the main reason for the mortality among skin-related cancers. The current agents were not sufficient to improve the treatment status of melanoma patients, and it was still needed to develop new chemotherapeutic drugs for melanoma. Our study aimed to study the anticancer effects and potential mechanisms of ouabain on melanoma cells. Methods The inhibitory effects of ouabain were determined by CCK8 and colony formation assays, and the morphological changes of melanoma cells were observed by inverted microscope. The apoptosis induction and cell cycle distribution were detected by annexin V/PI double staining and PI staining, respectively. The expression of the biomarker proteins in apoptosis and G2/M phase were determined by Western blotting analysis. The effects of ouabain on the migration of melanoma cells were measured by transwell migration assay and wound closure analysis. The potential mechanisms of ouabain in melanoma cells were analyzed by transcriptome sequencing. Results Our present study demonstrated that ouabain exhibited strong inhibitory effects on cell proliferation and triggered dramatical morphological changes of melanoma cells. Moreover, ouabain induced significant apoptosis in A375 rather than SK-Mel-28 cells via upregulation of bax expression and downregulation of bcl-2 expression. Consistently, ouabain treatment induced cell cycle arrest at G2/M phase in both A375 and SK-Mel-28 cells via upregulation of cyclin B1 and downregulation of cdc2 and cdc25c. Importantly, ouabain suppressed the migration of A375 and SK-Mel-28 cells. Furthermore, the transcriptome sequencing demonstrated that p53 and MAPK signaling pathway might play important roles in the inhibitory effects of ouabain. Conclusion Our study revealed that ouabain exhibited dramatical anticancer effects, which provided a novel application for cardiac glycoside drugs in the clinical treatment of melanoma.
Collapse
Affiliation(s)
- Lei Wang
- Burn and Plastic Surgery, Zhongda Hospital Affiliated Southeast University, Nanjing, 210009, People's Republic of China
| | - Wei Cai
- Burn and Plastic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, People's Republic of China
| | - Bing Han
- Burn and Plastic Surgery, Zhongda Hospital Affiliated Southeast University, Nanjing, 210009, People's Republic of China
| | - Jue Zhang
- Burn and Plastic Surgery, Zhongda Hospital Affiliated Southeast University, Nanjing, 210009, People's Republic of China
| | - Bing Yu
- Burn and Plastic Surgery, Zhongda Hospital Affiliated Southeast University, Nanjing, 210009, People's Republic of China
| | - Ming Chen
- Burn and Plastic Surgery, Zhongda Hospital Affiliated Southeast University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
20
|
Zheng M, Zhou X, Wang Q, Chen X, Cao B, Li J. Metabolomic approach to characterize the metabolic phenotypes and varied response to ouabain of diffuse large B-cell lymphoma cells. Leuk Lymphoma 2021; 62:1597-1608. [PMID: 33565347 DOI: 10.1080/10428194.2021.1881513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Germinal center B-cell-like (GCB) and activated B-cell-like (ABC) subtype diffuse large B-cell lymphoma (DLBCL) showed differential prognosis. Our results suggested that ouabain induced stronger inhibition of growth in Su-DHL4 (GCB), and it triggered obvious apoptosis in Su-DHL4 rather than in OCI-Ly3 (ABC). Two subtype cell lines also showed distinct metabolic phenotypes involving remarkable enrichment of Ribulose-5-Phosphate, hypoxanthine, and guanine in Su-DHL4 cells. Ouabain disturbed metabolic patterns of both cell lines dose-dependently manifested inhibition of free fatty acids and amino acids metabolism, among which ornithine was further identified as potential quantitative marker. Up-regulated Ribulose-5-Phosphate and NADPH/NADP+ level, SOD1, and CAT expression by ouabain enabled OCI-Ly3 cells to resist ROS, while enhanced hypoxanthine and guanine oxidation promoting ROS generation by ouabain, and lowered capacity of scavenging ROS indicated by lowered SOD1 and CAT expression and NADPH/NADP+ levels in Su-DHL4 cells made it more vulnerable to apoptosis through caspase 7 pathway.
Collapse
Affiliation(s)
- Meihong Zheng
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuan Zhou
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qien Wang
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Chen
- Department of General Surgery, Nanjing Drum Tower Hospital, The affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bei Cao
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Juan Li
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
21
|
Zhang X, Duan S, Tao S, Huang J, Liu C, Xing S, Ren Z, Lei Z, Li Y, Wei G. Polysaccharides from Dendrobium officinale inhibit proliferation of osteosarcoma cells and enhance cisplatin-induced apoptosis. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|