1
|
Ghali R, Limam I, Kassrani I, Araoud M, Nouiri E, Fennira FBA, Abdelkarim M, Hedilli A. LC-MS profiling and antioxidant, antifungal, and anticancer potentials of Tunisian Allium sativum L. extracts. PLoS One 2025; 20:e0325227. [PMID: 40489471 DOI: 10.1371/journal.pone.0325227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 05/11/2025] [Indexed: 06/11/2025] Open
Abstract
Despite Garlic's (Allium. sativum) long-standing reputation for therapeutic properties, comprehensive studies on Tunisian garlic are lacking. This study aims to evaluate different Tunisian A. sativum extracts rich in bioactive compounds (phenolic acids, flavonoids, and vitamins), exploring their potential bioactivities (antifungal, antioxidant, and cytotoxic). A. sativum samples underwent hexane, ethyl acetate, methanol, and water-based extractions. LC-MS quantification assessed bioactive compounds. Antioxidant activity was determined via the DPPH assay, antifungal effects were evaluated against Aspergillus spp., and cytotoxic effects were assessed using the MTT assay on U266 human multiple myeloma and MDA-MB-231 metastatic breast cancer cell lines. The aqueous extract exhibited the highest phenolic acid content (96.25 mg/kg fw) and the most water-soluble vitamins (14.69 mg/kg fw). In contrast, the methanol extract was richest in flavonoids, while the ethyl acetate extract had the highest concentration of fat-soluble vitamins (20.21 mg/kg fw). Both aqueous and methanolic extracts demonstrated potent antioxidant activity. The aqueous extract exhibited the strongest antifungal activity (MIC: 1.5 mg/mL for A. flavus and 3 mg/mL for A. niger). Furthermore, the ethyl acetate extract showed remarkable cytotoxic effects against cancer cell lines, indicating its potential as an effective agent against metastatic breast cancer and refractory multiple myeloma. A. sativum emerges as a functional food source with antioxidant, antifungal, and cytotoxic activities, particularly against multiple myeloma. While this study provides a strong foundation for further exploration, additional research is needed to identify active compounds, elucidate mechanisms, and assess therapeutic potential.
Collapse
Affiliation(s)
- Ridha Ghali
- Toxicology and Environmental Research Laboratory, Centre Mahmoud Yaakoub of Urgent Medical Assistance, Tunis, Tunisia
- Department of Fundamental Sciences, Higher Institute of Biotechnology of Sidi Thabet, Manouba University, Manouba, Tunisia
| | - Inès Limam
- Human Genetics Laboratory, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
- Onco-Haematology Laboratory, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Ines Kassrani
- Toxicology and Environmental Research Laboratory, Centre Mahmoud Yaakoub of Urgent Medical Assistance, Tunis, Tunisia
| | - Manel Araoud
- Toxicology and Environmental Research Laboratory, Centre Mahmoud Yaakoub of Urgent Medical Assistance, Tunis, Tunisia
| | - Ezzedine Nouiri
- Toxicology and Environmental Research Laboratory, Centre Mahmoud Yaakoub of Urgent Medical Assistance, Tunis, Tunisia
| | - Fatma Ben-Aissa Fennira
- Onco-Haematology Laboratory, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Mohamed Abdelkarim
- Human Genetics Laboratory, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
- Onco-Haematology Laboratory, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Abderrazak Hedilli
- Toxicology and Environmental Research Laboratory, Centre Mahmoud Yaakoub of Urgent Medical Assistance, Tunis, Tunisia
| |
Collapse
|
2
|
Kharrat R, Lakhal FB, Souia H, Limam I, Naji HB, Abdelkarim M. Anticancer effects of Artemisia campestris extract on acute myeloid leukemia cells: an ex vivo study. Med Oncol 2024; 41:206. [PMID: 39037595 DOI: 10.1007/s12032-024-02453-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Cure rates for acute myeloid leukemia (AML) remain suboptimal; thus, new treatment strategies are needed for this deadly disease. Artemisia campestris leaves hold significant value in traditional medicine. Despite extensive research conducted on this plant globally, the specific anti-AML properties of the leaves have received limited investigation. This study aims to explore the potential anti-leukemic activities of the ethyl acetate extract derived from Artemisia campestris (EAEAC), using mononuclear cells from bone marrow of thirteen AML patients. To this end, cytotoxic effects were evaluated using the MTT assay, and the mechanisms of cell death were investigated through various methods, including propidium iodide staining, annexin V/propidium iodide double staining, mitochondrial depolarization, and caspase-3/7 activation assays. Results demonstrated that EAEAC induced cell apoptosis by increasing DNA fragmentation, causing mitochondrial depolarization, and activating caspases 3/7. On the other hand, we assessed EAEAC's effect on two leukemia stem cell subpopulations, with results suggesting a potential decrease in their frequencies (three/five patients).
Collapse
Affiliation(s)
- Rachid Kharrat
- Human Genetics Laboratory, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Aziza Othmena Hospital, Tunis El Manar University, Tunis, Tunisia
| | - Fatma Ben Lakhal
- Faculty of Medicine of Tunis, Aziza Othmena Hospital, Tunis El Manar University, Tunis, Tunisia
| | - Hiba Souia
- Human Genetics Laboratory, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Ines Limam
- Human Genetics Laboratory, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Hend Ben Naji
- Faculty of Medicine of Tunis, Aziza Othmena Hospital, Tunis El Manar University, Tunis, Tunisia
| | - Mohamed Abdelkarim
- Human Genetics Laboratory, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia.
| |
Collapse
|
3
|
Limam I, Ghali R, Abdelkarim M, Ouni A, Araoud M, Abdelkarim M, Hedhili A, Ben-Aissa Fennira F. Tunisian Artemisia campestris L.: a potential therapeutic agent against myeloma - phytochemical and pharmacological insights. PLANT METHODS 2024; 20:59. [PMID: 38698384 PMCID: PMC11067135 DOI: 10.1186/s13007-024-01185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Artemisia campestris L. (AC) leaves are widely recognized for their importance in traditional medicine. Despite the considerable amount of research conducted on this plant overworld, the chemical composition and the biological activity of the leaves grown in Tunisia remains poorly investigated. In this study of AC, a successive extraction method was employed (hexane, ethyl acetate and methanol) to investigate its bioactive constituents by LC-MS analysis, and their antioxidant, antibacterial, antifungal, and anticancer activities. RESULTS Data analysis revealed diverse compound profiles in AC extracts. Methanolic and ethyl acetate extracts exhibited higher polyphenolic content and antioxidant activities, while Hexane showed superior phytosterol extraction. Ethyl acetate extract displayed potent antibacterial activity against multi-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Additionally, all extracts demonstrated, for the first time, robust antifungal efficacy against Aspergillus flavus and Aspergillus niger. Cytotoxicity assays revealed the significant impact of methanolic and ethyl acetate extracts on metastatic breast cancer and multiple myeloma, examined for the first time in our study. Moreover, further analysis on multiple myeloma cells highlighted that the ethyl acetate extract induced apoptotic and necrotic cell death and resulted in an S phase cell cycle blockage, underscoring its therapeutic potential. CONCLUSIONS This investigation uncovers novel findings in Tunisian AC, notably the identification of lupeol, oleanolic acid, ursolic acid, stigmasterol and β-sitosterol. The study sheds light on the promising role of AC extracts in therapeutic interventions and underscores the need for continued research to harness its full potential in medicine and pharmaceutical development.
Collapse
Affiliation(s)
- Inès Limam
- PRF of Onco-Hematology, Faculty of medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
- Human genetics laboratory, Faculty of medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Ridha Ghali
- Research Laboratory of Toxicology and Environment, CAMU of Tunis, Tunis, LR12SP07, Tunisia
- Higher institute of Biotechnology of Sidi Thabet, Manouba University, Manouba, Tunisia
| | - Mohamed Abdelkarim
- PRF of Onco-Hematology, Faculty of medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
- Human genetics laboratory, Faculty of medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Anis Ouni
- Research Laboratory of Toxicology and Environment, CAMU of Tunis, Tunis, LR12SP07, Tunisia
| | - Manel Araoud
- Research Laboratory of Toxicology and Environment, CAMU of Tunis, Tunis, LR12SP07, Tunisia
| | - Mouaadh Abdelkarim
- College of General Education, University of Doha for Science & Technology, PO Box 24449, Doha, Qatar.
| | - Abderrazek Hedhili
- Research Laboratory of Toxicology and Environment, CAMU of Tunis, Tunis, LR12SP07, Tunisia
| | - Fatma Ben-Aissa Fennira
- PRF of Onco-Hematology, Faculty of medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
4
|
Limam I, Abdelkarim M, El Ayeb M, Crepin M, Marrakchi N, Di Benedetto M. Disintegrin-like Protein Strategy to Inhibit Aggressive Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:12219. [PMID: 37569595 PMCID: PMC10418936 DOI: 10.3390/ijms241512219] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Venoms are a rich source of bioactive compounds, and among them is leberagin-C (Leb-C), a disintegrin-like protein derived from the venom of Macrovipera lebetina transmediterrannea snakes. Leb-C has shown promising inhibitory effects on platelet aggregation. Previous studies have demonstrated that this SECD protein specifically targets α5β1, αvβ3, and αvβ6 integrins through a mimic mechanism of RGD disintegrins. In our current study, we focused on exploring the potential effects of Leb-C on metastatic breast cancer. Our findings revealed that Leb-C disrupted the adhesion, migration, and invasion capabilities of MDA-MB-231 breast cancer cells and its highly metastatic D3H2LN sub-population. Additionally, we observed significant suppression of adhesion, migration, and invasion of human umbilical vein endothelial cells (HUVECs). Furthermore, Leb-C demonstrated a strong inhibitory effect on fibroblast-growth-factor-2-induced proliferation of HUVEC. We conducted in vivo experiments using nude mice and found that treatment with 2 µM of Leb-C resulted in a remarkable 73% reduction in D3H2LN xenograft tumor size. Additionally, quantification of intratumor microvessels revealed a 50% reduction in tumor angiogenesis in xenograft after 21 days of twice-weekly treatment with 2 µM of Leb-C. Collectively, these findings suggest the potential utility of this disintegrin-like protein for inhibiting aggressive and resistant metastatic breast cancer.
Collapse
Affiliation(s)
- Inès Limam
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, Tunis El Manar University, Tunis 1068, Tunisia
| | - Mohamed Abdelkarim
- INSERM Unité 553, Laboratoire d’Hémostase, Endothélium et Angiogenèse, Hôpital Saint-Louis, 75010 Paris, France; (M.A.)
- LR99ES10, Faculty of Medicine of Tunis, Tunis El Manar University, 1 Rue Djebal Lakhdar, Tunis 1006, Tunisia
| | - Mohamed El Ayeb
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, Tunis El Manar University, Tunis 1068, Tunisia
| | - Michel Crepin
- INSERM Unité 553, Laboratoire d’Hémostase, Endothélium et Angiogenèse, Hôpital Saint-Louis, 75010 Paris, France; (M.A.)
| | - Naziha Marrakchi
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, Tunis El Manar University, Tunis 1068, Tunisia
| | - Mélanie Di Benedetto
- IUT of Saint-Denis, Department HSE, Université Paris 13, UMRS941 SMBH, 1 Rue de Chablis, 93000 Bobigny, France
| |
Collapse
|
5
|
Essghaier B, Toukabri N, Dridi R, Hannachi H, Limam I, Mottola F, Mokni M, Zid MF, Rocco L, Abdelkarim M. First Report of the Biosynthesis and Characterization of Silver Nanoparticles Using Scabiosa atropurpurea subsp. maritima Fruit Extracts and Their Antioxidant, Antimicrobial and Cytotoxic Properties. NANOMATERIALS 2022; 12:nano12091585. [PMID: 35564294 PMCID: PMC9104986 DOI: 10.3390/nano12091585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023]
Abstract
Candida and dermatophyte infections are difficult to treat due to increasing antifungal drugs resistance such as fluconazole, as well as the emergence of multi-resistance in clinical bacteria. Here, we first synthesized silver nanoparticles using aqueous fruit extracts from Scabiosa atropurpurea subsp. maritima (L.). The characterization of the AgNPs by means of UV, XRD, FTIR, and TEM showed that the AgNPs had a uniform spherical shape with average sizes of 40–50 nm. The biosynthesized AgNPs showed high antioxidant activity when investigated using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. The AgNPs displayed strong antibacterial potential expressed by the maximum zone inhibition and the lowest MIC and MBC values. The AgNPs revealed a significant antifungal effect against the growth and biofilm of Candida species. In fact, the AgNPs were efficient against Trichophyton rubrum, Trichophyton interdigitale, and Microsporum canis. The antifungal mechanisms of action of the AgNPs seem to be due to the disruption of membrane integrity and a reduction in virulence factors (biofilm and hyphae formation and a reduction in germination). Finally, the silver nanoparticles also showed important cytotoxic activity against the human multiple myeloma U266 cell line and the human breast cancer cell line MDA-MB-231. Therefore, we describe new silver nanoparticles with promising biomedical application in the development of novel antimicrobial and anticancer agents.
Collapse
Affiliation(s)
- Badiaa Essghaier
- Department of Biology, Faculty of Sciences, University of Tunis El-Manar II, Tunis 2092, Tunisia
- Correspondence: (B.E.); (L.R.)
| | - Nourchéne Toukabri
- Unité de Mycologie, Laboratoire de Recherche Infections et Santé Publique LR18SP01, Service de Dermatologie et de Vénéréologie, Hôpital La Rabta Jebbari, Tunis 1007, Tunisia; (N.T.); (M.M.)
| | - Rihab Dridi
- Laboratoire de Matériaux, Cristallochimie et Thermodynamique Appliquée, Department of Chimie, Faculty of Sciences, University of Tunis El-Manar II, Tunis 2092, Tunisia; (R.D.); (M.F.Z.)
| | - Hédia Hannachi
- Laboratory of Vegetable Productivity and Environmental Constraint LR18ES04, Department of Biology, Faculty of Science, University of Tunis El Manar II, Tunis 2092, Tunisia;
| | - Inès Limam
- Laboratory of Oncohematology, PRF of Oncohematology, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis 1006, Tunisia; (I.L.); (M.A.)
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “L. Vanvitelli”, 81100 Caserta, Italy;
| | - Mourad Mokni
- Unité de Mycologie, Laboratoire de Recherche Infections et Santé Publique LR18SP01, Service de Dermatologie et de Vénéréologie, Hôpital La Rabta Jebbari, Tunis 1007, Tunisia; (N.T.); (M.M.)
| | - Mohamed Faouzi Zid
- Laboratoire de Matériaux, Cristallochimie et Thermodynamique Appliquée, Department of Chimie, Faculty of Sciences, University of Tunis El-Manar II, Tunis 2092, Tunisia; (R.D.); (M.F.Z.)
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “L. Vanvitelli”, 81100 Caserta, Italy;
- Correspondence: (B.E.); (L.R.)
| | - Mohamed Abdelkarim
- Laboratory of Oncohematology, PRF of Oncohematology, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis 1006, Tunisia; (I.L.); (M.A.)
| |
Collapse
|
6
|
5,6-Epoxycholesterol Isomers Induce Oxiapoptophagy in Myeloma Cells. Cancers (Basel) 2021; 13:cancers13153747. [PMID: 34359648 PMCID: PMC8345143 DOI: 10.3390/cancers13153747] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary As the second most frequent hematological malignancy, multiple myeloma remains incurable with recurrent patient relapse due to drug resistance. Therefore, the development of novel and potent therapies is urgently required. Herein, we demonstrated the anti-tumor activity of 5,6 α- and 5,6 β-epoxycholesterol isomers against human myeloma cells. Our results highlighted a striking anti-myeloma efficiency of these bioactive molecules and their added value in future potential treatments including combination therapy of multiple myeloma. Abstract Multiple myeloma (MM) is an incurable plasma cell malignancy with frequent patient relapse due to innate or acquired drug resistance. Cholesterol metabolism is reported to be altered in MM; therefore, we investigated the potential anti-myeloma activity of two cholesterol derivatives: the 5,6 α- and 5,6 β-epoxycholesterol (EC) isomers. To this end, viability assays were used, and isomers were shown to exhibit important anti-tumor activity in vitro in JJN3 and U266 human myeloma cell lines (HMCLs) and ex vivo in myeloma patients’ sorted CD138+ malignant cells. Moreover, we confirmed that 5,6 α-EC and 5,6 β-EC induced oxiapoptophagy through concomitant oxidative stress and caspase-3-mediated apoptosis and autophagy. Interestingly, in combination treatment a synergistic interaction was observed between 5,6 α-EC and 5,6 β-EC on myeloma cells. These data highlight a striking anti-tumor activity of 5,6 α-EC and 5,6 β-EC bioactive molecules against human myeloma cells, paving the way for their potential role in future therapeutic strategies in MM.
Collapse
|