1
|
Wang R, Deng L, Wang Y, Liu N, Yang M, Qiu J, Chen C. Synergistic effects of combined lead and iprodione exposure on P53 signaling-mediated hepatotoxicity, enterotoxicity and transgenerational toxicity in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178127. [PMID: 39708747 DOI: 10.1016/j.scitotenv.2024.178127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/04/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Environmental heavy metal contamination, combined with inappropriate use of fungicides, has led to the co-existence of lead (Pb) and iprodione (IPR), presenting signification risks to ecosystems and human health. The toxic effects resulting from concurrent exposure to Pb and IPR, however, remain poorly understood. In the study, we conducted a comprehensive 60-day subchronic study to investigate the toxic effects on the liver and gut in parental male zebrafish through employing multi-omics analyses. We also explored the potential transgenerational toxicity to unexposed offspring embryos. The results demonstrated that exposure to both Pb and IPR exacerbated intestinal pathological damage, decreased the expression of intestinal tight junction molecules, and activated the expression of intestinal inflammatory molecules in the gut. Metabolic and microbial analyses, utilizing 16S rRNA sequencing and non-targeted metabolic profiling, revealed alterations in the intestinal flora structure and disruptions in metabolite synthesis. Notably, we observed a significant negative correlation between the abundance of the Lactobacillus genus and uracil synthesis. Furthermore, liver RNA-seq analysis identified a marked enrichment of the P53 signaling pathway, confirmed by the activation of P53-mediated apoptotic markers, which was consistent with the observed increase in inflammatory infiltration and pathological damage within the liver. Importantly, P53-mediated apoptosis and inflammatory responses were activated in offspring embryos, suggesting that long-term parental exposure to Pb and IPR may induce transgenerational toxicity, potentially impacting offspring health. Despite the identification of these molecular changes, the phenotypic effects remain to be elucidated. Future studies are necessary to evaluate the potential phenotypic changes in offspring to fully understand the long-term effects of Pb and IPR exposure. Overall, these findings enhance the understanding of the molecular mechanisms underlying the toxic effects of Pb and IPR and emphasize the importance of a comprehensive risk assessment of environmental pollutants.
Collapse
Affiliation(s)
- Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Ligang Deng
- Institute of Agricultural Quality Standards and Testing Technology Research, Shandong Academy of Agricultural Sciences, Jinan, China; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Na Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Menglian Yang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
2
|
Goyal K, Afzal M, Altamimi ASA, Babu MA, Ballal S, Kaur I, Kumar S, Kumar MR, Chauhan AS, Ali H, Shahwan M, Gupta G. Chronic kidney disease and aging: dissecting the p53/p21 pathway as a therapeutic target. Biogerontology 2024; 26:32. [PMID: 39725742 DOI: 10.1007/s10522-024-10173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Chronic kidney diseases (CKD) are a group of multi-factorial disorders that markedly impair kidney functions with progressive renal deterioration. Aging contributes to age-specific phenotypes in kidneys, which undergo several structural and functional alterations, such as a decline in regenerative capacity and increased fibrosis, inflammation, and tubular atrophy, all predisposing them to disease and increasing their susceptibility to injury while impeding their recovery. A central feature of these age-related processes is the activation of the p53/p21 pathway signaling. The pathway is a key player in cellular senescence, apoptosis, and cell cycle regulation, which are all key to maintaining the health of the kidney. P53 is a transcription factor and a tumor suppressor protein that responds to cell stress and damage. Persistent activation of cell p53 can lead to the expression of p21, an inhibitor of the cell cycle known as a cyclin-dependent kinase. This causes cells to cease dividing and leads to senescence, where cells can no longer increase. The accumulation of senescent cells in the aging kidney impairs kidney function by altering the microenvironment. As the number of senescent cells increases, the capacity of the kidney to recover from injury decreases, accelerating the progression of end-stage renal disease. This article review extensively explores the relationship between the p53/p21 pathway and cellular senescence within an aging kidney and the emerging therapeutic strategies that target it to overcome the impacts of cellular senescence on CKD.
Collapse
Affiliation(s)
- Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | | | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - M Ravi Kumar
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab, 140307, India
| | - Ashish Singh Chauhan
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Haider Ali
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Moyad Shahwan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
3
|
Zhu K, Wan Y, Zhu B, Zhu Y, Wang H, Jiang Q, Feng Y, Xiang Z, Song R. Exposure to organophosphate, pyrethroid, and neonicotinoid insecticides and dyslexia: Association with oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123362. [PMID: 38237851 DOI: 10.1016/j.envpol.2024.123362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/28/2023] [Accepted: 01/13/2024] [Indexed: 01/30/2024]
Abstract
Organophosphates (OPPs), pyrethroids (PYRs), and neonicotinoids (NNIs) are three major classes of insecticides used worldwide. They might compromise child neurodevelopment. However, few studies have explored the association between exposure to them and dyslexia. The present study aimed to investigate the association between dyslexia and exposure to the three classes of insecticides, as well as explore the potential role of oxidative stress in the association. A total of 355 dyslexic children and 390 controls were included in this study. The exposure biomarkers were determined by liquid chromatography-tandem mass spectrometry. Specifically, the exposure biomarkers included three typical metabolites of OPPs, three of PYRs, and nine of NNIs. Additionally, three typical oxidative stress biomarkers, namely, 8-hydroxy-2'-deoxyguanosine (8-OHdG) for DNA damage, 8-hydroxyguanosine (8-OHG) for RNA damage, and 4-hydroxy-2-nonenal-mercapturic acid (HNEMA) for lipid peroxidation were measured. The detection frequencies of the urinary biomarkers ranged from 83.9% to 100%. Among the target metabolites of the insecticides, a significant association was observed between urinary 3,5,6-trichloro-2-pyridinol (TCPy, the metabolite of chlorpyrifos, an OPP insecticide) and dyslexia. After adjusting for potential confounding variables, children in the highest quartile of TCPy levels had an increased odds of dyslexia (odds ratio [OR], 1.68; 95% confidence interval [CI]: 1.03, 2.75] in comparison to those in the lowest quartile. Among the three oxidative stress biomarkers, urinary HNEMA concentration showed a significant relationship with dyslexia. Children in the highest quartile of HNEMA levels demonstrated an increased dyslexic odds in comparison to those in the lowest quartile after multiple adjustments (OR, 1.64; 95% CI: 1.01, 2.65). Mediation analysis indicated a significant effect of HNEMA in the association between urinary TCPy and dyslexia, with an estimate of 17.2% (P < 0.01). In conclusion, this study suggested the association between urinary TCPy and dyslexia. The association could be attributed to lipid peroxidation partially.
Collapse
Affiliation(s)
- Kaiheng Zhu
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, China
| | - Bing Zhu
- Zhejiang Province Disease Control, Hangzhou, 310051, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430072, China
| | - Haoxue Wang
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Jiang
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanan Feng
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhen Xiang
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ranran Song
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Xu L, Zhao J, Xu D, Xu G, Peng Y, Zhang Y. New insights into chlorantraniliprole metabolic resistance mechanisms mediated by the striped rice borer cytochrome P450 monooxygenases: A case study of metabolic differences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169229. [PMID: 38072259 DOI: 10.1016/j.scitotenv.2023.169229] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024]
Abstract
The anthranilic diamide insecticide chlorantraniliprole has been extensively applied to control Lepidoptera pests. However, its overuse leads to the development of resistance and accumulation of residue in the environment. Four P450s (CYP6CV5, CYP9A68, CYP321F3, and CYP324A12) were first found to be constitutively overexpressed in an SSB CAP-resistant strain. It is imperative to further elucidate the molecular mechanisms underlying P450s-mediated CAP resistance for mitigating its environmental contamination. Here, we heterologously expressed these four P450s in insect cells and evaluated their abilities to metabolize CAP. Western blotting and reduced CO difference spectrum tests showed that these four P450 proteins had been successfully expressed in Sf9 cells, which are indicative of active functional enzymes. The recombinant proteins CYP6CV5, CYP9A68, CYP321F3, and CYP324A12 exhibited a preference for metabolizing the fluorescent P450 model probe substrates EC, BFC, EFC, and EC with enzyme activities of 0.54, 0.67, 0.57, and 0.46 pmol/min/pmol P450, respectively. In vitro metabolism revealed distinct CAP metabolic rates (0.97, 0.86, 0.75, and 0.55 pmol/min/pmol P450) and efficiencies (0.45, 0.37, 0.30, and 0.17) of the four recombinant P450 enzymes, thereby elucidating different protein catalytic activities. Furthermore, molecular model docking confirmed metabolic differences and efficiencies of these P450s and unveiled the hydroxylation reaction in generating N-demethylation and methylphenyl hydroxylation during CAP metabolism. Our findings not only first provide new insights into the mechanisms of P450s-mediated metabolic resistance to CAP at the protein level in SSB but also demonstrate significant differences in the capacities of multiple P450s for insecticide degradation and facilitate the evaluation and mitigation of toxic risks associated with CAP application in the environment.
Collapse
Affiliation(s)
- Lu Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Jun Zhao
- Key Laboratory of Green Preservation and Control of Tobacco Diseases and Pests in the Huanghuai Growing Area, Institute of Tobacco Research, Henan Academy of Agricultural Sciences, Xuchang 461000, China
| | - Dejin Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guangchun Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yingchuan Peng
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yanan Zhang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
5
|
Elgendy SA, Soliman MM, Ghamry HI, Shukry M, Mohammed LA, Nasr HE, Alotaibi BS, Jafri I, Sayed S, Osman A, Elnoury HA. Exploration of Tilmicosin Cardiotoxicity in Rats and the Protecting Role of the Rhodiola rosea Extract: Potential Roles of Cytokines, Antioxidant, Apoptotic, and Anti-Fibrotic Pathways. TOXICS 2023; 11:857. [PMID: 37888707 PMCID: PMC10610616 DOI: 10.3390/toxics11100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Tilmicosin (TIL) is a common macrolide antibiotic in veterinary medicine. High doses of TIL can have adverse cardiovascular effects. This study examined the effects of Rhodiola rosea (RHO) that have anti-inflammatory, antioxidant, and anti-fibrotic effects on tilmicosin (TIL)-induced cardiac injury targeting anti-inflammatory, antioxidant, apoptotic, and anti-apoptotic signaling pathways with anti-fibrotic outcomes. Thirty-six male Wistar albino rats were randomly divided into groups of six rats each. Rats received saline as a negative control, CARV 1 mL orally (10 mg/kg BW), and RHO 1 mL orally at 400 mg/kg BW daily for 12 consecutive days. The TIL group once received a single subcutaneous injection (SC) dose of TIL (75 mg/kg BW) on the sixth day of the experiment to induce cardiac damage. The standard group (CARV + TIL) received CARV daily for 12 consecutive days with a single TIL SC injection 1 h after CARV administration only on the sixth day of study and continued for another six successive days on CARV. The protective group (RHO + TIL) received RHO daily for the same period as in CARV + TIL-treated rats and with the dosage mentioned before. Serum was extracted at the time of the rat's scarification at 13 days of study and examined for biochemical assessments in serum lactate dehydrogenase (LDH), cardiac troponin I (cTI), and creatine phosphokinase (CK-MB). Protein carbonyl (PC) contents, malondialdehyde (MDA), and total antioxidant capacity (TAC) in cardiac homogenate were used to measure these oxidative stress markers. Quantitative RT-PCR was used to express interferon-gamma (INF-γ), cyclooxygenase-2 (COX-2), OGG1, BAX, caspase-3, B-cell lymphoma-2 (Bcl-2), and superoxide dismutase (SOD) genes in cardiac tissues, which are correlated with inflammation, antioxidants, and apoptosis. Alpha-smooth muscle actin (α-SMA), calmodulin (CaMKII), and other genes associated with Ca2+ hemostasis and fibrosis were examined using IHC analysis in cardiac cells (myocardium). TIL administration significantly increased the examined cardiac markers, LDH, cTI, and CK-MB. TIL administration also increased ROS, PC, and MDA while decreasing antioxidant activities (TAC and SOD mRNA) in cardiac tissues. Serum inflammatory cytokines and genes of inflammatory markers, DNA damage (INF-γ, COX-2), and apoptotic genes (caspase-3 and BAX) were upregulated with downregulation of the anti-apoptotic gene Bcl-2 as well as the DNA repair OGG1 in cardiac tissues. Furthermore, CaMKII and α-SMA genes were upregulated at cellular levels using cardiac tissue IHC analysis. On the contrary, pretreatment with RHO and CARV alone significantly decreased the cardiac injury markers induced by TIL, inflammatory and anti-inflammatory cytokines, and tissue oxidative-antioxidant parameters. INF-γ, COX-2, OGG1, BAX, and caspase-3 mRNA were downregulated, as observed by real-time PCR, while SOD and Bcl-2 mRNA were upregulated. Furthermore, the CaMKII and α-SMA genes' immune reactivities were significantly decreased in the RHO-pretreated rats.
Collapse
Affiliation(s)
- Salwa A. Elgendy
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Mohamed Mohamed Soliman
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Heba I. Ghamry
- Nutrition and Food Science, Department of Home Economics, Faculty of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia;
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Lina Abdelhady Mohammed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha 13511, Egypt (H.E.N.)
| | - Hend Elsayed Nasr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha 13511, Egypt (H.E.N.)
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ibrahim Jafri
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Samy Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amira Osman
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan;
- Department of Histology and Cell Biology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Heba A. Elnoury
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13511, Egypt
| |
Collapse
|
6
|
Li W, Ma L, Shi Y, Wang J, Yin J, Wang D, Luo K, Liu R. Meiosis-mediated reproductive toxicity by fenitrothion in Caenorhabditis elegans from metabolomic perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114680. [PMID: 36857914 DOI: 10.1016/j.ecoenv.2023.114680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Fenitrothion (FNT), an organophosphorus insecticide, is widely detected in the living environment. The reproductive and endocrine toxicity of FNT to biological communities has been ever reported, but potential mechanism and reproductive toxicity dose effect remain unclear. In our study, we constructed Caenorhabditis elegans model to analyze the reproductive toxicity mechanism of FNT based on metabolomics and evaluated its reproductive toxicity dose effect using benchmark dose (BMD)method. Our results showed that FNT exposure significantly reduced brood size, number of germ cells, and delayed gonadal development in nematodes. Non-targeted metabolomics revealed that FNT exposure caused significant metabolic disturbances in nematodes, leading to a significant reduction in the synthesis of cortisol and melatonin, and the latter played a mediating role in the effects of FNT on number of germ cells. We further found that the levels of these two hormones were significantly negative correlated with the expression of the androgen receptor nhr-69 and affected the meiosis of germ cells by regulating the nhr-69/ fbf-1/2 /gld-3 /fog-1/3 pathway. Meanwhile, the study found the BMDL10s for N2 and him-5 mutant were 0.411 μg/L by number of germ cells and 0.396 μg/L by number of germ cells in the meiotic zone, respectively, providing a more protective reference dose for ecological risk assessment of FNT. This study suggested that FNT can affect androgen receptor expression by inhibiting cortisol and melatonin secretion, which further mediate the meiotic pathway to affect sperm formation and exert reproductive toxicity, and provides a basis for setting reproductive toxicity limits for FNT.
Collapse
Affiliation(s)
- Weixi Li
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Lingyi Ma
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yingchi Shi
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jia Wang
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiechen Yin
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- School of Medical, Southeast University, Nanjing 210009, China
| | - Kai Luo
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Ran Liu
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
7
|
Maternal Exposure to Acephate Caused Nephrotoxicity in Adult Offspring Rats Mediated by Excessive Autophagy Activation, Oxidative Stress Induction, and Altered Epithelial Sodium Channel and Na +/K +-ATPase Gene Expression. BIOLOGY 2023; 12:biology12020162. [PMID: 36829441 PMCID: PMC9952565 DOI: 10.3390/biology12020162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
This study examined how maternal exposure to acephate-an organophosphate-based insecticide-affected the renal development in rat offspring during adulthood. Virgin female Wistar rats were randomly allocated to three groups: group 1 (control) received sterile water; groups 2 and 3 were intragastrically exposed to low (14 mg/kg) and high (28 mg/kg) doses of acephate from day 6 of pregnancy until delivery, respectively. Further, the offspring of the adult female rats were euthanized in postnatal week 8. Compared with the controls, the adult rat offspring with exposure to low and high doses of acephate exhibited elevated plasma creatinine and blood urea nitrogen levels. Additionally, immunofluorescence analysis revealed the upregulation of autophagic marker genes (Beclin-1 and LC-3) in the acephate-treated rat offspring, thereby suggesting the induction of an autophagic mechanism. Notably, the increased malondialdehyde level, decreased glutathione level, and decreased superoxide dismutase and catalase activities confirmed the ability of acephate to induce oxidative stress and apoptosis in the kidneys of the rat offspring. This may explain the renal histopathological injury detected using hematoxylin and eosin staining. Furthermore, a reverse transcription polymerase chain reaction revealed that the mRNA expression levels of the Na+/K+-ATPase and the epithelial sodium channel (ENaC) genes were significantly higher in the kidney of female offspring than that of controls owing to acephate toxicity. However, there was no significant effect of acephate on the expression of NHE3 in the treatment group compared with the control group. Overall, the present findings suggest that oxidative stress caused by prenatal exposure to acephate causes nephrotoxicity and histopathological alterations in adult rat offspring, likely by actions on renal ENaC and Na+/K+-ATPase genes as well as the autophagic markers Beclin-1 and LC-3.
Collapse
|
8
|
Bakr AA, Ali M, Ibrahim K. Garlic and allopurinol alleviate the apoptotic pathway in rats' brain following exposure to fipronil insecticide. Environ Anal Health Toxicol 2022; 37:e2022037-0. [PMID: 36916050 PMCID: PMC10014746 DOI: 10.5620/eaht.2022037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
Fipronil can cause oxidative tissue damage and apoptosis. Our goal is to evaluate the antiapoptotic impact of garlic or allopurinol against fipronil neurotoxicity. Thirty-six mature male albino rats were separated into control, garlic aqueous extract (500 mg/kg), allopurinol (150 mg/L in their drinking water), fipronil (13.277 mg/kg), garlic+fipronil, and allopurinol+fipronil. Our results revealed that fipronil induced a significant increase in brain malondialdehyde, protein carbonyl levels as well as enzymatic antioxidant activities (superoxide dismutase, catalase, glutathione peroxidase, and xanthine oxidase), but glutathione-S-transferase recorded a significant decrease as compared to the control. In addition, fipronil significantly up-regulated the brain pro-apoptotic (Bax) and caspase -3 mRNA gene expression and induced DNA fragmentation but caused down-regulation in anti-apoptotic (Bcl-2) mRNA genes expression. Interestingly, co-administration with garlic or allopurinol improved the lipid peroxidation, antioxidant disturbance, and apoptosis induced by fipronil in the brain tissues. In conclusion, garlic or allopurinol reduced fipronil-induced apoptosis and reduced oxidative tissue damage, most likely through enhancing the tissue antioxidant defense system.
Collapse
Affiliation(s)
- Amira Abo Bakr
- Biochemistry Division, Faculty of Science, Cairo University,
Egypt
| | - Mohamed Ali
- Biochemistry Division, Faculty of Science, Cairo University,
Egypt
| | - Khairy Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza, 12618,
Egypt
| |
Collapse
|
9
|
Ibrahim KA, Eleyan M, Khwanes SA, Mohamed RA, Ayesh BM. Alpha-mangostin attenuates the apoptotic pathway of abamectin in the fetal rats' brain by targeting pro-oxidant stimulus, catecholaminergic neurotransmitters, and transcriptional regulation of reelin and nestin. Drug Chem Toxicol 2022; 45:2496-2508. [PMID: 34338122 DOI: 10.1080/01480545.2021.1960856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Abamectin, an avermectin member, can induce significant neurodegeneration symptoms in non-target organisms. However, its neurodevelopmental influences in mammals are unclear. Here, we focus on the antiapoptotic action of alpha-mangostin against the developmental neurotoxicity of abamectin with the possible involvement of reelin and nestin mRNA gene expression. Thirty-two pregnant rats were allocated to four groups (8 rats/group); control, alpha-mangostin (20 mg/kg/d), abamectin (0.5 mg/kg), and co-treated group (alpha-mangostin + abamectin). The animals have gavaged their doses during the gestation period. The fetotoxicity and many signs of growth retardation were observed in the abamectin-intoxicated rats. In comparison with the control group, abamectin prompted a significant elevation (p < 0.05) in the levels of malondialdehyde and nitric oxide, along with many symptoms of histopathological changes in the fetal cerebral cortex. However, the glutathione, dopamine, and serotonin concentrations together with the activities of glutathione-S-transferase, catalase, and superoxide dismutase were markedly decreased (p < 0.05) in the abamectin group. Moreover, abamectin remarkably upregulated (p < 0.05) the brain mRNA gene expression of reelin, nestin, and caspase-9 as well as the immunoreactivity of Bax and caspase-3 proteins in the cerebral cortex. It should be noted that alpha-mangostin mitigated the developmental neurotoxicity of abamectin to the normal range by recovering the levels of oxidant/antioxidant biomarkers, catecholamines; and apoptosis-related proteins with the involvement of reelin and nestin genes regulation. Those records revealed that the transcription regulation of reelin and nestin could be involved in the neuroprotective efficacy of alpha-mangostin, especially avermectin's developmental neurotoxicity.
Collapse
Affiliation(s)
- Khairy A Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Mohammed Eleyan
- Department of Laboratory Medical Sciences, Al-Aqsa University, Gaza, Palestine
| | - Soad A Khwanes
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Rania A Mohamed
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Basim M Ayesh
- Department of Laboratory Medical Sciences, Al-Aqsa University, Gaza, Palestine
| |
Collapse
|
10
|
Dosoky WM, Al-Banna AA, Zahran SM, Farag SA, Abdelsalam NR, Khafaga AF. Zinc oxide nanoparticles induce dose-dependent toxicosis in broiler chickens reared in summer season. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54088-54107. [PMID: 35292898 PMCID: PMC9356964 DOI: 10.1007/s11356-022-19156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/06/2022] [Indexed: 05/05/2023]
Abstract
This research evaluates the effect of dietary zinc oxide nanoparticles' (ZnO NPs) supplementation on growth performance, immunity, oxidative antioxidative properties, and histopathological picture of broiler chicken reared in the summer season. A total of 224 1-day-old male Cobb chicks were randomly allocated to seven groups of dietary treatments (n = 32). Seven isocaloric and isonitrogenous diets were formulated. ZnO NPs were added to the basal diet at seven different levels, 0, 5, 10, 20, 40, 60, and 80 ppm/kg diet, respectively, for 35 days. Results indicated that live body weight (g) did not differ significantly (P > 0.05) between treatment groups, whereas compared to control, the 5 ppm ZnO NPs/kg diet recorded the highest live body weight at 21 and 35 days. No significant effects for the feed consumption (g/bird/period) and feed conversion ratio (g feed/g gain) among treated and control birds were observed. Hematological and immunological variables showed significant (P ≤ 0.05) dose-dependent modulations by ZnO NP supplementation. Significant (P ≤ 0.05) differences were observed in the phagocytic activity, phagocytic index, and IgM and IgG between the treatment groups, with the 5 and 10 ppm ZnO NPs/kg diet recording the best values, followed by the 20 ppm ZnO NPs/kg diet. Different supplementations had nonsignificant effects on the digestibility of nutrients (P ≤ 0.05). Histopathological pictures of the kidney, liver, and lymphoid organs, ultrastructural examination of muscle tissues, and expression of inflammatory cytokines showed dose-dependent morphological and structural changes. In conclusion, the ZnO NP supplementation in broiler diet to eliminate the heat stress hazards in summer season is recommended in dose level of not more than 10 ppm/kg diet.
Collapse
Affiliation(s)
- Waleed M. Dosoky
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531 Egypt
| | - Aya A. Al-Banna
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531 Egypt
| | - Soliman M. Zahran
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531 Egypt
| | - Soha A. Farag
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531 Egypt
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758 Egypt
| |
Collapse
|
11
|
Ibrahim KA, Abdelgaid HA, Eleyan M, Mohamed RA, Gamil NM. Resveratrol alleviates cardiac apoptosis following exposure to fenitrothion by modulating the sirtuin1/c-Jun N-terminal kinases/p53 pathway through pro-oxidant and inflammatory response improvements: In vivo and in silico studies. Life Sci 2022; 290:120265. [PMID: 34968465 DOI: 10.1016/j.lfs.2021.120265] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023]
Abstract
Fenitrothion (FNT), a commonly used organophosphate, can cause oxidative damage and apoptosis on various organs. However, the underlying mechanisms for FNT-induced cardiotoxicity did not formally report. Here, we have evaluated the possible ameliorative roles of resveratrol (RSV) against FNT-induced cardiac apoptosis in male rats through the sirtuin1 (SIRT1)/c-Jun N-terminal kinase (c-JNK)/p53 pathway concerning pro-oxidant and inflammatory cytokines. Forty-eight male rats were equally grouped into control, RSV (20 mg/kg), 5-FNT (5 mg/kg), 10-FNT (10 mg/kg), 20-FNT (20 mg/kg), 5-FNT-RSV, 10-FNT-RSV, and 20-FNT-RSV where all doses administrated by gavage for four weeks. The present findings demonstrated that RSV markedly diminished the level of hyperlipidemia and elevation in lactate dehydrogenase (LDH), total creatine kinase (CK-T), and troponin T (TnT) levels following FNT intoxication. Furthermore, RSV significantly reduced FNT-induced cardiac oxidative injury by reducing malondialdehyde (MDA) level and improving the levels of glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), and acetylcholinesterase (AchE). Also, the levels of interleukin-1β (IL1β,), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were significantly attenuated in the co-treated groups. Moreover, RSV alleviated the histopathological changes promoted by FNT and repaired the transcript levels of SIRT1, c-JNK, and caspase-9/3 along with p53 immunoreactivity. In silico study revealed that the free binding energies of RSV complexes with protein and DNA sequences of SIRT1 were lower than docked complexes of FNT. Therefore, RSV reserved myocardial injury-induced apoptosis following exposure to FNT by modulating the SIRT1/c-JNK/p53 pathway through cellular redox status and inflammatory response improvements.
Collapse
Affiliation(s)
- Khairy A Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza 12618, Egypt.
| | - Hala A Abdelgaid
- Biochemistry Department, National Hepatology and Tropical Medicine Research Institute, Cairo 11796, Egypt
| | - Mohammed Eleyan
- Department of Laboratory Medical Sciences, Alaqsa University, Gaza, 4051, Palestine
| | - Rania A Mohamed
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Noha M Gamil
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6(th) of October City, Egypt
| |
Collapse
|
12
|
Ibrahim KA, Abdelgaid HA, Eleyan M, Khwanes SA, Abdel-Daim MM. Ethoprophos induces rats' brain injury and neurobehavioral impairment via transcriptional activation of glial fibrillary acidic protein and tubulin-associated unit even at the threshold inhibition of acetylcholinesterase: A 90-days study. SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146216. [DOI: 10.1016/j.scitotenv.2021.146216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|