1
|
Boamah B, Siciliano S, Hogan N, Hecker M, Hanson M, Campbell P, Peters R, Al-Dissi AN, Weber LP. Target organ toxicity in Sprague Dawley rats following oral exposure to complex groundwater mixture: Assessment of dose-response relationships using histopathological and biochemical alterations. Regul Toxicol Pharmacol 2024; 154:105744. [PMID: 39571674 DOI: 10.1016/j.yrtph.2024.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
Exposure to contaminant mixtures from industrial legacy sites presents unique challenges that require novel approaches such as effects-directed toxicity assessment. This study characterized the target organ toxicity of groundwater from a legacy contaminated pesticide plant in male and female Sprague Dawley rats exposed to low impact (10% v/v) groundwater, high impact (0.01% v/v, 0.1% v/v, 1% v/v, and 10% v/v) groundwater or tap water (control) for 60 days. Rats exposed to high impact (1% and 10%) and 10% low impact groundwater mixture showed statistically significant increases in liver necro-inflammation relative to control. A statistically significant reduction was observed in plasma albumin of exposed rats (except 0.01% high impact) and alpha 2 macroglobulin (all exposed) when compared to the control. All groundwater-exposed rats showed glomerulopathy, but there were sex-specific differences in acute tubular necrosis. Testes showed germinal cell vacuolation, necrosis, reduced seminiferous epithelial height, and Sertoli syndrome in exposed rats, accompanied by reduced plasma testosterone and increased testicular malondialdehyde. Taken together, this sub-chronic oral exposure to groundwater from a contaminated industrial site caused dose-dependent hepatic and testicular toxicity, while nephrotoxicity was both sex-dependent and dose-dependent. This study provides support for the essentiality of using effects-driven approaches in the risk assessment of complex mixtures.
Collapse
Affiliation(s)
- B Boamah
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - S Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - N Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - M Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - M Hanson
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - P Campbell
- WSP E&I Canada Limited, Winnipeg, MB, Canada
| | - R Peters
- Federated Co-operatives Limited, Saskatoon, SK, Canada
| | - A N Al-Dissi
- Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - L P Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
2
|
Jefferis J, Hudson R, Lacaze P, Bakshi A, Hawley C, Patel C, Mallett A. Monogenic and polygenic concepts in chronic kidney disease (CKD). J Nephrol 2024; 37:7-21. [PMID: 37989975 PMCID: PMC10920206 DOI: 10.1007/s40620-023-01804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
Kidney function is strongly influenced by genetic factors with both monogenic and polygenic factors contributing to kidney function. Monogenic disorders with primarily autosomal dominant inheritance patterns account for 10% of adult and 50% of paediatric kidney diseases. However, kidney function is also a complex trait with polygenic architecture, where genetic factors interact with environment and lifestyle factors. Family studies suggest that kidney function has significant heritability at 35-69%, capturing complexities of the genome with shared environmental factors. Genome-wide association studies estimate the single nucleotide polymorphism-based heritability of kidney function between 7.1 and 20.3%. These heritability estimates, measuring the extent to which genetic variation contributes to CKD risk, indicate a strong genetic contribution. Polygenic Risk Scores have recently been developed for chronic kidney disease and kidney function, and validated in large populations. Polygenic Risk Scores show correlation with kidney function but lack the specificity to predict individual-level changes in kidney function. Certain kidney diseases, such as membranous nephropathy and IgA nephropathy that have significant genetic components, may benefit most from polygenic risk scores for improved risk stratification. Genetic studies of kidney function also provide a potential avenue for the development of more targeted therapies and interventions. Understanding the development and validation of genomic scores is required to guide their implementation and identify the most appropriate potential implications in clinical practice. In this review, we provide an overview of the heritability of kidney function traits in population studies, explore both monogenic and polygenic concepts in kidney disease, with a focus on recently developed polygenic risk scores in kidney function and chronic kidney disease, and review specific diseases which are most amenable to incorporation of genomic scores.
Collapse
Affiliation(s)
- Julia Jefferis
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, Australia.
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia.
| | - Rebecca Hudson
- Faculty of Medicine, University of Queensland, Brisbane, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Paul Lacaze
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Andrew Bakshi
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Carmel Hawley
- Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Andrew Mallett
- Institutional for Molecular Bioscience and Faculty of Medicine, The University of Queensland, Saint Lucia, Australia.
- Department of Renal Medicine, Townsville University Hospital, Douglas, QLD, Australia.
- College of Medicine and Dentistry, James Cook University, Douglas, QLD, Australia.
| |
Collapse
|
3
|
Zeng YF, Li JY, Wei XY, Ma SQ, Wang QG, Qi Z, Duan ZC, Tan L, Tang H. Preclinical evidence of reno-protective effect of quercetin on acute kidney injury: a meta-analysis of animal studies. Front Pharmacol 2023; 14:1310023. [PMID: 38186644 PMCID: PMC10770850 DOI: 10.3389/fphar.2023.1310023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Objective: This study evaluated the reno-protective effects of quercetin in animal models of acute kidney injury (AKI). Methods: We conducted a systematic search of literature published before April 2023 in PubMed, Web of Science, and EMBASE databases. Methodological quality was assessed by SYRCLE's RoB tool. Funnel plot, Egger's test, and Begg's test were used to determine publication bias. Results: A total of 19 studies with 288 animals were included in this meta-analysis. The methodology quality scores of the included studies ranged from 4 to 7. The results indicated that quercetin reduced blood urea nitrogen (SMD = -4.78; 95% CI: 6.45, -3.12; p < 0.01; I2 = 84%) and serum creatinine (SMD: 2.73, 95% CI: 3.66, -1.80; p < 0.01; I2 = 80%) in AKI models. The result of sensitivity analysis was stable, while the results of funnel plot indicated asymmetric. In addition, we further analyzed inflammatory cytokines, oxidative stress levels, and kidney injury scores, and found that quercetin treatment had antioxidant and anti-inflammatory effects and improved kidney injury scores in animal models of AKI. Conclusion: Quercetin exhibited a promising reno-protective effect in AKI animal models. Systematic Review Registration: PROSPERO (CRD42023433333).
Collapse
Affiliation(s)
- Yi-Fan Zeng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing-Yu Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin-Yu Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Si-Qing Ma
- Department of Pharmacy, Hunan Chest Hospital, Changsha Medical University, Changsha, China
| | - Qiu-Guo Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhen Qi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhi-Cheng Duan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Jeong S, Shin EC, Lee JH, Ha JH. Particulate Matter Elevates Ocular Inflammation and Endoplasmic Reticulum Stress in Human Retinal Pigmented Epithelium Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4766. [PMID: 36981676 PMCID: PMC10049273 DOI: 10.3390/ijerph20064766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Because of their exposure to air, eyes can come into contact with air pollutants such as particulate matter (PM), which may cause severe ocular pathologies. Prolonged ocular PM exposure may increase inflammation and endoplasmic reticulum stress in the retina. Herein, we investigated whether PM exposure induces ocular inflammation and endoplasmic reticulum (ER) stress-related cellular responses in human retinal epithelium-19 (ARPE-19) cells. To understand how PM promotes ocular inflammation, we monitored the activation of the mitogen-activated protein kinase (MAPK)/nuclear factor kappa beta (NFκB) axis and the expression of key inflammatory mRNAs. We also measured the upregulation of signature components for the ER-related unfolded protein response (UPR) pathways, as well as intracellular calcium ([Ca2+]i) levels, as readouts for ER stress induction following PM exposure. Ocular PM exposure significantly elevated the expression of multiple cytokine mRNAs and increased phosphorylation levels of NFκB-MAPK axis in a PM dose-dependent manner. Moreover, incubation with PM significantly increased [Ca2+]i levels and the expression of UPR-related proteins, which indicated ER stress resulting from cell hypoxia, and upregulation of hypoxic adaptation mechanisms such as the ER-associated UPR pathways. Our study demonstrated that ocular PM exposure increased inflammation in ARPE-19 cells, by activating the MAPK/NFκB axis and cytokine mRNA expression, while also inducing ER stress and stress adaptation responses. These findings may provide helpful insight into clinical and non-clinical research examining the role of PM exposure in ocular pathophysiology and delineating its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sunyoung Jeong
- Bioanalytical and Pharmacokinetic Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Eui-Cheol Shin
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Jong-Hwa Lee
- Bioanalytical and Pharmacokinetic Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin 16890, Republic of Korea
| |
Collapse
|
5
|
Jeong S, Bae S, Shin EC, Lee JH, Ha JH. Ellagic Acid Prevents Particulate Matter-Induced Pulmonary Inflammation and Hyperactivity in Mice: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4523. [PMID: 36901532 PMCID: PMC10001477 DOI: 10.3390/ijerph20054523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The inhalation of fine particulate matter (PM) is a significant health-related environmental issue. Previously, we demonstrated that repeated PM exposure causes hyperlocomotive activity in mice, as well as inflammatory and hypoxic responses in their lungs. In this study, we evaluated the potential efficacy of ellagic acid (EA), a natural polyphenolic compound, against PM-induced pulmonary and behavioral abnormalities in mice. Four treatment groups were assigned in this study (n = 8): control (CON), particulate-matter-instilled (PMI), low-dose EA with PMI (EL + PMI), and high-dose EA with PMI (EH + PMI). EA (20 and 100 mg/kg body weight for low dose and high dose, respectively) was orally administered for 14 days in C57BL/6 mice, and after the eighth day, PM (5 mg/kg) was intratracheally instilled for 7 consecutive days. PM exposure induced inflammatory cell infiltration in the lungs following EA pretreatment. Moreover, PM exposure induced inflammatory protein expression in the bronchoalveolar lavage fluid and the expression of inflammatory (tumor necrosis factor alpha (Tnfα), interleukin (Il)-1b, and Il-6) and hypoxic (vascular endothelial growth factor alpha (Vegfα), ankyrin repeat domain 37 (Ankrd37)) response genes. However, EA pretreatment markedly prevented the induction of expression of inflammatory and hypoxic response genes in the lungs. Furthermore, PM exposure significantly triggered hyperactivity by increasing the total moving distance with an increase in moving speed in the open field test. On the contrary, EA pretreatment significantly prevented PM-induced hyperactivity. In conclusion, dietary intervention with EA may be a potential strategy to prevent PM-induced pathology and activity.
Collapse
Affiliation(s)
- Sunyoung Jeong
- Bioanalytical and Pharmacokinetic Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sungryong Bae
- Department of Fire Protection and Disaster Management, Chosun University, Gwangju 61452, Republic of Korea
| | - Eui-Cheol Shin
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Jong-Hwa Lee
- Bioanalytical and Pharmacokinetic Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin 16890, Republic of Korea
| |
Collapse
|
6
|
Hou Y, Ding T, Guan Z, Wang J, Yao R, Yu Z, Zhao X. Untargeted metabolomics reveals the preventive effect of quercetin on nephrotoxicity induced by four organophosphorus pesticide mixtures. Food Chem Toxicol 2023; 175:113747. [PMID: 36997054 DOI: 10.1016/j.fct.2023.113747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
This research aimed to explore the protective effect of quercetin against nephrotoxicity induced by four organophosphate pesticide mixtures (PM) using untargeted metabolomics technology in rat kidneys. Sixty male Wistar rats were randomly divided into six groups: control, low-dose quercetin treated (10 mg/kg. bw), high-dose quercetin treated (50 mg/kg. bw), PM-treated, and two dosages of quercetin + PM-treated. Metabolomics results showed that 17 differential metabolites were identified in the PM-treated group, and pathway analysis revealed that renal metabolic disorders include purine metabolism, glycerophospholipid metabolism, and vitamin B6 metabolism. When high-dose quercetin and PM-treated were administered to rats concurrently, the intensities of differential metabolites were substantially restored (p < 0.01), suggesting that quercetin can improve renal metabolic disorders caused by organophosphate pesticides (OPs). Mechanistically, quercetin could regulate the purine metabolism disorder and endoplasmic reticulum stress (ERS)-mediated autophagy induced by OPs by inhibiting XOD activity. Moreover, quercetin inhibits PLA2 activity to regulate glycerophospholipid metabolism and it could also exert antioxidant and anti-inflammatory effects to correct vitamin B6 metabolism in rat kidneys. Taken together, the high dose of quercetin (50 mg/kg.bw) has a certain protective effect on OPs-induced nephrotoxicity in rats, which provides a theoretical basis for quercetin against nephrotoxicity caused by OPs.
Collapse
|
7
|
Yue D, Zhang Q, Zhang J, Liu W, Chen L, Wang M, Li R, Qin S, Song X, Ji Y. Diesel exhaust PM2.5 greatly deteriorates fibrosis process in pre-existing pulmonary fibrosis via ferroptosis. ENVIRONMENT INTERNATIONAL 2023; 171:107706. [PMID: 36565570 DOI: 10.1016/j.envint.2022.107706] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Fine particulate matter (PM2.5) has been widely reported to contribute to the pathogenesis of pulmonary diseases. The direct hazardous effect of PM2.5 on the respiratory system at high concentrations in vitro and in vivo have been well identified. However, its effect on the pre-existing respiratory diseases of patients at environment-related concentrations remains unclear. Diesel exhaust PM2.5 as a primary representative of ambient PM2.5 fine particles were used to investigated the effect of PM2.5 on the fibrosis progression of existing pulmonary fibrosis disease models. This study reported that PM2.5 could result in the enhanced sensitivity to fibrotic response, which may be ascribed to ferroptosis induced by PM2.5 in damaged lung areas. Proteomic analysis revealed that the upregulation of HO-1 as a key mechanism in the ferroptosis and exacerbation of pulmonary fibrosis induced by PM2.5. As a result, HO-1 degraded heme-containing protein and released iron in fibrotic cells, leading to generation of mitochondrial ROS and impaired mitochondrial function. Transmission electron microscopic assay verified that PM2.5 entered the mitochondria of fibrotic cells and was accompanied by significant mitochondrial morphological changes characterized by increased mitochondrial membrane density and reduced mitochondrial size. The HO-1 inhibitor zinc protoporphyrin and mitochondrion-targeted antioxidant Mito-TEMPO significantly attenuated PM2.5-induced ferroptosis and exacerbation of fibrosis. In addition, AMPK-ULK1 axis-triggered autophagy activation and NCOA4-mediated degradation of ferritin by autophagy were found to be related to the PM2.5-induced ferroptosis of fibrotic cells. As evidenced by the inhibition of autophagy with 3-methyladenine or AMPK inhibitor, NCOA4 knockdown decreased intracellular iron accumulation and lipid peroxidation, thereby relieving PM2.5-induced epithelial-mesenchymal transition and cell death in fibrotic cells. Overall, this study provided experimental support for the idea that PM2.5 greatly deteriorates fibrosis process in pre-existing pulmonary fibrosis, and HO-1-mediated mitochondrial dysfunction and NCOA4-mediated ferritinophagy are jointly required for the PM2.5-induced ferroptosis and enhanced fibrosis effects.
Collapse
Affiliation(s)
- Dayong Yue
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Qian Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Jinjin Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Weili Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Libang Chen
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Meirong Wang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Rongrong Li
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Song Qin
- Key Laboratory of Biology & Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Yunxia Ji
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China; Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China.
| |
Collapse
|
8
|
Li Z, Deng H, Guo X, Yan S, Lu C, Zhao Z, Feng X, Li Q, Wang J, Zeng J, Ma X. Effective dose/duration of natural flavonoid quercetin for treatment of diabetic nephropathy: A systematic review and meta-analysis of rodent data. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154348. [PMID: 35908521 DOI: 10.1016/j.phymed.2022.154348] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/29/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Given the challenges on diabetic nephropathy (DN) treatment, research has been carried out progressively focusing on dietary nutrition and natural products as a novel option with the objective of enhancing curative effect and avoiding adverse reactions. As a representative, Quercetin (Qu) has proved to be of great value in current data. PURPOSE We aimed to synthetize the evidence regarding the therapeutic effect and specific mechanism of quercetin on DN via systematically reviewing and performing meta-analysis. METHODS Preclinical literature published prior to August 2021, was systematical retrieval and manually filtrated across four major databases including PubMed, Web of Science, EMBASE and Cochrane library. Pooled overall effect sizes of results were generated by STATA 16.0, and underlying mechanisms were summarized. Three-dimensional dose/time-effect analyses and radar maps were conducted to examine the dosage/time-response relations between Qu and DN. RESULTS This paper pools all current available evidence in a comprehensive way, and shows the therapeutic benefits as well as potential action mechanisms of Qu in protecting the kidney against damage. A total of 304 potentially relevant citations were identified, of which 18 studies were enrolled into analysis. Methodological quality was calculated, resulting in an average score of 7.06/10. This paper provided the preliminary evidence that consumption of Qu could induce a statistical reduction in mesangial index, Scr, BUN, 24-h urinary protein, serum urea, BG, kidney index, TC, TG, LDL-C, AST, MDA, AGE, TNF-α, TGF-β1, TGF-β1 mRNA, CTGF and IL-1β, whereas HDL-C, SOD, GSH, GSH-Px, CAT and smad-7 were significantly increased. Furthermore, Qu could remarkably improve the renal pathology. In terms of the mechanisms underlying therapy of DN, Qu exerts anti-diabetic nephropathy properties possibly through PI3K/PKB, AMPK-P38 MAPK, SCAP/SREBP2/LDLr, mtROS-TRX/TXNIP/NLRP3/IL-1β, TGF-β1/Smad, Nrf2/HO-1, Hippo, mTORC1/p70S6K and SHH pathways. Dose/time-response images predicted a modest association between Qu dosage consumption/administration length and therapeutic efficacy, with the optimal dosage at 90-150 mg/kg/d and administration length ranging from 8 weeks to 12 weeks. CONCLUSIONS Quercetin exhibit highly pleiotropic actions, which simultaneously contributes to prevent fundamental progression of DN, such as hyperglycemia, dyslipidemia, inflammation, fibrotic lesions and oxidative stress. The therapeutic effect becomes stronger when Qu administration at higher dosages lasts for longer durations. Taken together, quercetin could be used in patients with DN as a promising agent, which has well-established safety profiles and nontoxicity according to existing literature.
Collapse
Affiliation(s)
- Ziyu Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Haichuan Deng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiaochuan Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Sining Yan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Chaorui Lu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Zewei Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xinyu Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Qihong Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jiayi Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
9
|
Chen YQ, Chen HY, Tang QQ, Li YF, Liu XS, Lu FH, Gu YY. Protective effect of quercetin on kidney diseases: From chemistry to herbal medicines. Front Pharmacol 2022; 13:968226. [PMID: 36120321 PMCID: PMC9478191 DOI: 10.3389/fphar.2022.968226] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney injuries may trigger renal fibrosis and lead to chronic kidney disease (CKD), but effective therapeutic strategies are still limited. Quercetin is a natural flavonoid widely distributed in herbal medicines. A large number of studies have demonstrated that quercetin may protect kidneys by alleviating renal toxicity, apoptosis, fibrosis and inflammation in a variety of kidney diseases. Therefore, quercetin could be one of the promising drugs in the treatment of renal disorders. In the present study, we review the latest progress and highlight the beneficial role of quercetin in kidney diseases and its underlying mechanisms. The pharmacokinetics and bioavailability of quercetin and its proportion in herbal medicine will also be discussed.
Collapse
Affiliation(s)
- Yi-Qin Chen
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao-Yin Chen
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qin-Qi Tang
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Fan Li
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xu-Sheng Liu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fu-Hua Lu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Fu-Hua Lu, ; Yue-Yu Gu,
| | - Yue-Yu Gu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Fu-Hua Lu, ; Yue-Yu Gu,
| |
Collapse
|