1
|
Lin KA, Su CC, Lee KI, Liu SH, Fang KM, Tang CH, Lia WC, Kuo CY, Chang KC, Huang CF, Chen YW, Yang CY. The herbicide 2,4-dichlorophenoxyacetic acid induces pancreatic β-cell death via oxidative stress-activated AMPKα signal downstream-regulated apoptotic pathway. Toxicol Lett 2025; 405:16-29. [PMID: 39921193 DOI: 10.1016/j.toxlet.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/07/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is one of commonly and widely used organic herbicides in agriculture. It has been reported that 2,4-D can induce adverse effects in mammalian cells. Epidemiological and animal studies have indicated that exposure to 2,4-D is associated with poorer glycemic control and impaired pancreatic β-cell function. However, limited information is available on 2,4-D-induced toxicological effects in β-cells, with the underlying toxicological mechanisms remains unclear. Herein, our results showed that 2,4-D exposure (30-500 μg/mL) significantly reduced cell viability, induced mitochondria dysfunction (including the mitochondrial membrane potential (MMP) loss, the increase in cytosolic cytochrome c release, and the change in Bcl-2 and Bax protein expression), and triggered apoptotic events (including the increased population of apoptotic cells, caspase-3 activity, and caspase-3/-7 and PAPR activation) in RIN-m5F β-cells, accompanied with insulin secretion inhibition. Exposure of cells to 2,4-D could also evoke JNK, ERK1/2, p38, and AMP-activated protein kinase (AMPK)α activation as well as reactive oxygen species (ROS) generation. Pretreatment of cells with compound C (an AMPK inhibitor) and the antioxidantN-acetylcysteine (NAC), but not that SP600125/PD98059/SB203580 (the inhibitors of JNK/ERK/p38, respectively), obviously attenuated the 2,4-D-triggered AMPKα phosphorylation, MMP loss, apoptotic events, and insulin secretion dysfunction,as similar effects with the transfection with AMPKα1-specific siRNA. Of note, buffering the ROS production with NAC obviously prevented the 2,4-D-induced ROS generation as well as AMPKα activation, but the either compound C and AMPKα1-specific siRNA transfection could not effectively reduce 2,4-D-induced ROS generation. Collectively, these findings indicate that the induction of oxidative stress-activated AMPKα signaling is a crucial mechanism underlying 2,4-D-triggered mitochondria-dependent apoptosis, ultimately leading to β-cell death.
Collapse
Affiliation(s)
- Ken-An Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Wei-Cheng Lia
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Chun-Ying Kuo
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan
| | - Kai-Chih Chang
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; Department of Nursing, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
| | - Ya-Wen Chen
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Ching-Yao Yang
- Department of Surgery, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan.
| |
Collapse
|
2
|
Zhu R, Tong X, Du Y, Liu J, Xu X, He Y, Wen L, Wang Z. Improvement of chlorpyrifos-induced cognitive impairment by mountain grape anthocyanins based on PI3K/Akt signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106172. [PMID: 39477625 DOI: 10.1016/j.pestbp.2024.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024]
Abstract
The organophosphorus insecticide Chlorpyrifos (CPF) is widely used worldwide due to its high effectiveness. However, when ingested through the mouth and nose, it can cause severe neurotoxic effects and cognitive impairment. Natural anthocyanins show great potential in improving cognitive impairment. In this paper, we will delve into the protective effect of anthocyanins on CPF-induced cognitive impairment and its mechanism through the PI3K/Akt signaling pathway. Morris water maze, histopathological, ELISA and western blot analyses showed that anthocyanins effectively ameliorated CPF-induced spatial learning memory impairment in mice by ameliorating CPF-induced AChE inhibition, oxidative stress, and neuroinflammation and by modulating the levels of apoptosis (Caspase-3, Caspase-9) and autophagy (LC3II/ LC3I, Beclin1, p62, mTOR) biomarkers, in order to restore damaged hippocampal tissue morphology, neuron and synapse structures. To identify the action pathway of anthocyanins, we used KEGG and GO pathway enrichment analysis for screening prediction and western blot and molecular docking to verify that anthocyanins improve CPF-induced cognitive impairment by activating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Rongchen Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xuewen Tong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yuhan Du
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jiahua Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xuefei Xu
- Jilin Province Product Quality Supervision and Inspection Institute of Light Industrial and Chemical Products Inspection, Changchun 130022, China
| | - Yang He
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Zhitong Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
3
|
Zhang C, Shi G, Meng Q, Hu R, Li Y, Hu G, Wang K, Huang M. An approach based on a combination of toxicological experiments and in silico predictions to investigate the adverse outcome pathway (AOP) of paraquat neuro-immunotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134607. [PMID: 38761765 DOI: 10.1016/j.jhazmat.2024.134607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Paraquat (PQ) exposure is strongly associated with neurotoxicity. However, research on the neurotoxicity mechanisms of PQ varies in terms of endpoints of toxic assessment, resulting in a great challenge to understand the early neurotoxic effects of PQ. In this study, we developed an adverse outcome pathway (AOP) to investigate PQ-induced neuro-immunotoxicity from an immunological perspective, combining of traditional toxicology methods and computer simulations. In vivo, PQ can microstructurally lead to an early synaptic loss in the brain mice, which is a large degree regarded as a main reason for cognitive impairment to mice behavior. Both in vitro and in vivo demonstrated synapse loss is caused by excessive activation of the complement C1q/C3-CD11b pathway, which mediates microglial phagocytosis dysfunction. Additionally, the interaction between PQ and C1q was validated by molecular simulation docking. Our findings extend the AOP framework related to PQ neurotoxicity from a neuro-immunotoxic perspective, highlighting C1q activation as the initiating event for PQ-induced neuro-immunotoxicity. In addition, downstream complement cascades induce abnormal microglial phagocytosis, resulting in reduced synaptic density and subsequent non-motor dysfunction. These findings deepen our understanding of neurotoxicity and provide a theoretical basis for ecological risk assessment of PQ.
Collapse
Affiliation(s)
- Chunhui Zhang
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Ge Shi
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Qi Meng
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Rong Hu
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Yang Li
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Guiling Hu
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Kaidong Wang
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China.
| | - Min Huang
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
4
|
Yang Y, Fan R, Li H, Chen H, Gong H, Guo G. Polysaccharides as a promising platform for the treatment of spinal cord injury: A review. Carbohydr Polym 2024; 327:121672. [PMID: 38171685 DOI: 10.1016/j.carbpol.2023.121672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Spinal cord injury is incurable and often results in irreversible damage to motor function and autonomic sensory abilities. To enhance the effectiveness of therapeutic substances such as cells, growth factors, drugs, and nucleic acids for treating spinal cord injuries, as well as to reduce the toxic side effects of chemical reagents, polysaccharides have been gained attention due to their immunomodulatory properties and the biocompatibility and biodegradability of polysaccharide scaffolds. Polysaccharides hold potential as drug delivery systems in treating spinal cord injuries. This article aims to present an extensive evaluation of the potential applications of polysaccharide materials in scaffold construction, drug delivery, and immunomodulation over the past five years so that offering new directions and opportunities for the treatment of spinal cord injuries.
Collapse
Affiliation(s)
- Yuanli Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rangrang Fan
- Department of Neurosurgery and Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haifeng Chen
- Department of Neurosurgery and Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Shi B, Liu Q, Xu C, Zhang Z, Cai J. Chlorantraniliprole induces mitophagy, ferroptosis, and cytokine homeostasis imbalance in grass carp (Ctenopharyngodon idella) hepatocytes via the mtROS-mitochondrial fission/fusion axis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105830. [PMID: 38582593 DOI: 10.1016/j.pestbp.2024.105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/03/2024] [Accepted: 02/11/2024] [Indexed: 04/08/2024]
Abstract
Chlorantraniliprole (CAP) is a bis-amide pesticide used for pest control mainly in agricultural production activities and rice-fish co-culture systems. CAP residues cause liver damage in non-target organism freshwater fish. However, it is unclear whether CAP-exposure-induced liver injury in fish is associated with mitochondrial dysfunction-mediated mitophagy, ferroptosis, and cytokines. Therefore, we established grass carp hepatocyte models exposed to different concentrations of CAP (20, 40, and 80 μM) in vitro. MitoSOX probe, JC-1 staining, immunofluorescence double staining, Fe2+ staining, lipid peroxidation staining, qRT-PCR, and Western blot were used to verify the physiological regulatory mechanism of CAP induced liver injury. In the present study, the CAP-treated groups exhibited down-regulation of antioxidant-related enzyme activities and accumulation of peroxides. CAP treatment induced an increase in mitochondrial reactive oxygen species (mtROS) levels and altered expression of mitochondrial fission/fusion (Drp1, Fis1, Mfn1, Mfn2, and Opa1) genes in grass carp hepatocytes. In addition, mitophagy (Parkin, Pink1, p62, LC3II/I, and Beclin-1), ferroptosis (GPX4, COX2, ACSL4, FTH, and NCOA4), and cytokine (IFN-γ, IL-18, IL-17, IL-6, IL-10, IL-1β, IL-2, and TNF-α)-related gene expression was significantly altered. Collectively, these findings suggest that CAP exposure drives mitophagy activation, ferroptosis occurrence, and cytokine homeostasis imbalance in grass carp hepatocytes by triggering mitochondrial dysfunction mediated by the mtROS-mitochondrial fission/fusion axis. This study partly explained the physiological regulation mechanism of grass carp hepatocyte injury induced by insecticide CAP from the physiological and biochemical point of view and provided a basis for evaluating the safety of CAP environmental residues to non-target organisms.
Collapse
Affiliation(s)
- Bendong Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chenchen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
6
|
Russ T, Enders L, Zbiegly JM, Potru PS, Wurm J, Spittau B. 2,4-Dichlorophenoxyacetic Acid Induces Degeneration of mDA Neurons In Vitro. Biomedicines 2023; 11:2882. [PMID: 38001883 PMCID: PMC10669833 DOI: 10.3390/biomedicines11112882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Background: Parkinson's disease (PD) affects 1-2% of the population over the age of 60 and the majority of PD cases are sporadic, without any family history of the disease. Neuroinflammation driven by microglia has been shown to promote the progression of midbrain dopaminergic (mDA) neuron loss through the release of neurotoxic factors. Interestingly, the risk of developing PD is significantly higher in distinct occupations, such as farming and agriculture, and is linked to the use of pesticides and herbicides. Methods: The neurotoxic features of 2,4-Dichlorophenoxyacetic acid (2,4D) at concentrations of 10 µM and 1 mM were analyzed in two distinct E14 midbrain neuron culture systems and in primary microglia. Results: The application of 1 mM 2,4D resulted in mDA neuron loss in neuron-enriched cultures. Notably, 2,4D-induced neurotoxicity significantly increased in the presence of microglia in neuron-glia cultures, suggesting that microglia-mediated neurotoxicity could be one mechanism for progressive neuron loss in this in vitro setup. However, 2,4D alone was unable to trigger microglia reactivity. Conclusions: Taken together, we demonstrate that 2,4D is neurotoxic for mDA neurons and that the presence of glia cells enhances 2,4D-induced neuron death. These data support the role of 2,4D as a risk factor for the development and progression of PD and further suggest the involvement of microglia during 2,4D-induced mDA neuron loss.
Collapse
Affiliation(s)
- Tamara Russ
- Medical School OWL, Anatomy and Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (T.R.)
- Institute of Anatomy, University of Rostock, 18051 Rostock, Germany
| | - Lennart Enders
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany (J.M.Z.)
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Julia M. Zbiegly
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany (J.M.Z.)
- UK Dementia Research Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SL, UK
| | - Phani Sankar Potru
- Medical School OWL, Anatomy and Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (T.R.)
- Institute of Anatomy, University of Rostock, 18051 Rostock, Germany
| | - Johannes Wurm
- Medical School OWL, Anatomy and Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (T.R.)
- Institute of Anatomy, University of Rostock, 18051 Rostock, Germany
| | - Björn Spittau
- Medical School OWL, Anatomy and Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (T.R.)
- Institute of Anatomy, University of Rostock, 18051 Rostock, Germany
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany (J.M.Z.)
| |
Collapse
|
7
|
Zhang L, Li D, Yin L, Zhang C, Qu H, Xu J. Neuroglobin protects against cerebral ischemia/reperfusion injury in rats by suppressing mitochondrial dysfunction and endoplasmic reticulum stress-mediated neuronal apoptosis through synaptotagmin-1. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37195900 DOI: 10.1002/tox.23815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/22/2023] [Accepted: 04/16/2023] [Indexed: 05/19/2023]
Abstract
Cerebral ischemia/reperfusion (I/R) injury remains a grievous health threat, and herein effective therapy is urgently needed. This study explored the protection of neuroglobin (Ngb) in rats with cerebral I/R injury. The focal cerebral I/R rat models were established by middle cerebral artery occlusion (MCAO) and neuronal injury models were established by oxygen-glucose deprivation/reoxygenation (OGD/R) treatment. The brain injury of rats was assessed. Levels of Ngb, Bcl-2, Bax, endoplasmic reticulum stress (ERS)-related markers, and Syt1 were measured by immunofluorescence staining and Western blotting. The cytotoxicity in neurons was assessed by lactate dehydrogenase (LDH) release assay. Levels of intracellular Ca2+ and mitochondrial function-related indicators were determined. The binding between Ngb and Syt1 was detected by co-immunoprecipitation. Ngb was upregulated in cerebral I/R rats and its overexpression alleviated brain injury. In OGD/R-induced neurons, Ngb overexpression decreased LDH level and neuronal apoptosis, decreased Ca2+ content, and mitigated mitochondrial dysfunction and ERS-related apoptosis. However, Ngb silencing imposed the opposite effects. Importantly, Ngb could bind to Syt1. Syt1 knockdown partially counteracted the alleviation of Ngb on OGD/R-induced injury in neurons and cerebral I/R injury in rats. Briefly, Ngb extenuated cerebral I/R injury by repressing mitochondrial dysfunction and endoplasmic reticulum stress-mediated neuronal apoptosis through Syt1.
Collapse
Affiliation(s)
- Lihong Zhang
- Department of Neurointervention and Neurocritical Care, Dalian Central Hospital Affiliated to Dalian University of Technology, Dalian, China
| | - Di Li
- Department of Neurointervention and Neurocritical Care, Dalian Central Hospital Affiliated to Dalian University of Technology, Dalian, China
| | - Lin Yin
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ce Zhang
- Director's Office, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hong Qu
- Bidding and Procurement Office, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jianping Xu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhouy, China
| |
Collapse
|
8
|
Lv QK, Tao KX, Wang XB, Yao XY, Pang MZ, Liu JY, Wang F, Liu CF. Role of α-synuclein in microglia: autophagy and phagocytosis balance neuroinflammation in Parkinson's disease. Inflamm Res 2023; 72:443-462. [PMID: 36598534 DOI: 10.1007/s00011-022-01676-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease, and is characterized by accumulation of α-synuclein (α-syn). Neuroinflammation driven by microglia is an important pathological manifestation of PD. α-Syn is a crucial marker of PD, and its accumulation leads to microglia M1-like phenotype polarization, activation of NLRP3 inflammasomes, and impaired autophagy and phagocytosis in microglia. Autophagy of microglia is related to degradation of α-syn and NLRP3 inflammasome blockage to relieve neuroinflammation. Microglial autophagy and phagocytosis of released α-syn or fragments from apoptotic neurons maintain homeostasis in the brain. A variety of PD-related genes such as LRRK2, GBA and DJ-1 also contribute to this stability process. OBJECTIVES Further studies are needed to determine how α-syn works in microglia. METHODS A keyword-based search was performed using the PubMed database for published articles. CONCLUSION In this review, we discuss the interaction between microglia and α-syn in PD pathogenesis and the possible mechanism of microglial autophagy and phagocytosis in α-syn clearance and inhibition of neuroinflammation. This may provide a novel insight into treatment of PD.
Collapse
Affiliation(s)
- Qian-Kun Lv
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Kang-Xin Tao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiao-Bo Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiao-Yu Yao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Meng-Zhu Pang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Jun-Yi Liu
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
9
|
Zhao Q, Jing YM, He MT, Jing L, Xi YF, Zhang JZ. Lycium Barbarum polysaccharides ameliorates hyperglycemia-exacerbated cerebral ischemia/reperfusion injury via protecting blood-brain barrier. Transpl Immunol 2023; 76:101757. [PMID: 36436794 DOI: 10.1016/j.trim.2022.101757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hyperglycemia exacerbates brain damage in cerebral ischemia/reperfusion injury. Previous study found that Lycium barbarum polysaccharides (LBP) has a neuroprotective effect on hyperglycemia-aggravated ischemic brain injury, which raising the possibility for treatment of neurodegenerative diseases. However, the underlying mechanism of LBP-induced protection by ameliorating hyperglycemia-aggravated ischemia/reperfusion injury needs to be tested. This study aimed to investigate the effects of LBP on blood-brain barrier (BBB) integrity with a hyperglycemia-aggravated cerebral ischemia/reperfusion injury model. METHODS Sprague-Dawley male rats were randomly divided into three groups: normoglycemic (NG), hyperglycemic (HG), and LBP-pretreated hyperglycemic (HG + LBP). Animals underwent middle cerebral artery occlusion (MCAO) for 30 min, followed by 1-, 3-, and 7-day of reperfusion. RESULTS Our results showed that the neurological deficit, infarct volume, cell apoptosis, and IgG leakage in the HG group significantly increased separately, compared with that of the NG group, (p < 0.05). Pre-treatment with LBP reversed these injury indicators (p < 0.05). And much more severe degree of swelling endothelium, swollen astrocyte, and decreased tight junctions in the micro-vessel were detected in the HG group comparing to that of the NG group. In addition, increased degree of basement membrane degradation, dissociation between the astrocyte endfeet and basement membrane, and tight junction's protein degradation was found in the HG group compared with the NG group (p < 0.05). However, when exposure to LBP therapy could reverse the above alterations (p < 0.05). CONCLUSIONS These results demonstrated that LBP could ameliorate hyperglycemia-exacerbated cerebral ischemia/reperfusion injury via protecting the blood-brain barrier.
Collapse
Affiliation(s)
- Qi Zhao
- School of Basic Medical Sciences, Ningxia Key Laboratory of Vascular Injury and Repair, Ningxia Medical University, Yinchuan 750004, Ningxia, China; Department of Pathology, Shanxi Province Cancer Hospital / Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences / Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, Shanxi, China
| | - Yu-Meng Jing
- Department of Pathology, Shanxi Province Cancer Hospital / Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences / Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, Shanxi, China
| | - Mao-Tao He
- School of Basic Medical Sciences, Ningxia Key Laboratory of Vascular Injury and Repair, Ningxia Medical University, Yinchuan 750004, Ningxia, China; Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Li Jing
- School of Basic Medical Sciences, Ningxia Key Laboratory of Vascular Injury and Repair, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yan-Feng Xi
- Department of Pathology, Shanxi Province Cancer Hospital / Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences / Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, Shanxi, China.
| | - Jian-Zhong Zhang
- School of Basic Medical Sciences, Ningxia Key Laboratory of Vascular Injury and Repair, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
10
|
Wen L, Miao X, Ding J, Tong X, Wu Y, He Y, Zheng F. Pesticides as a risk factor for cognitive impairment: Natural substances are expected to become alternative measures to prevent and improve cognitive impairment. Front Nutr 2023; 10:1113099. [PMID: 36937345 PMCID: PMC10016095 DOI: 10.3389/fnut.2023.1113099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/01/2023] [Indexed: 03/08/2023] Open
Abstract
Pesticides are the most effective way to control diseases, insects, weeds, and fungi. The central nervous system (CNS) is damaged by pesticide residues in various ways. By consulting relevant databases, the systemic relationships between the possible mechanisms of pesticides damage to the CNS causing cognitive impairment and related learning and memory pathways networks, as well as the structure-activity relationships between some natural substances (such as polyphenols and vitamins) and the improvement were summarized in this article. The mechanisms of cognitive impairment caused by pesticides are closely related. For example, oxidative stress, mitochondrial dysfunction, and neuroinflammation can constitute three feedback loops that interact and restrict each other. The mechanisms of neurotransmitter abnormalities and intestinal dysfunction also play an important role. The connection between pathways is complex. NMDAR, PI3K/Akt, MAPK, Keap1/Nrf2/ARE, and NF-κB pathways can be connected into a pathway network by targets such as Ras, Akt, and IKK. The reasons for the improvement of natural substances are related to their specific structure, such as polyphenols with different hydroxyl groups. This review's purpose is to lay a foundation for exploring and developing more natural substances that can effectively improve the cognitive impairment caused by pesticides.
Collapse
Affiliation(s)
- Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Xiwen Miao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Jia Ding
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Xuewen Tong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yuzhu Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, China
- *Correspondence: Yuzhu Wu, ✉
| | - Yang He
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Yang He, ✉
| | - Fei Zheng
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
- Fei Zheng, ✉
| |
Collapse
|
11
|
Okano H, Takashima K, Takahashi Y, Ojiro R, Tang Q, Ozawa S, Zou X, Koyanagi M, Maronpot RR, Yoshida T, Shibutani M. Progressive disruption of neurodevelopment by mid-gestation exposure to lipopolysaccharides and the ameliorating effect of continuous alpha-glycosyl isoquercitrin treatment. ENVIRONMENTAL TOXICOLOGY 2023; 38:49-69. [PMID: 36125228 DOI: 10.1002/tox.23661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
We investigated the effect of lipopolysaccharide (LPS)-induced maternal immune activation used as a model for producing neurodevelopmental disorders on hippocampal neurogenesis and behaviors in rat offspring by exploring the antioxidant effects of alpha-glycosyl isoquercitrin (AGIQ). Pregnant Sprague-Dawley rats were intraperitoneally injected with LPS (50 μg/kg body weight) at gestational days 15 and 16. AGIQ was administered in the diet to dams at 0.5% (w/w) from gestational day 10 until weaning at postnatal day 21 and then to offspring until adulthood at postnatal day 77. During postnatal life, offspring of LPS-injected animals did not show neuroinflammation or oxidative stress in the brain. At weaning, LPS decreased the numbers of type-2b neural progenitor cells (NPCs) and PCNA+ proliferating cells in the subgranular zone, FOS-expressing granule cells, and GAD67+ hilar interneurons in the dentate gyrus. In adulthood, LPS decreased type-1 neural stem cells, type-2a NPCs, and GAD67+ hilar interneurons, and downregulated Dpysl3, Sst, Fos, Mapk1, Mapk3, Grin2a, Grin2b, Bdnf, and Ntrk2. In adults, LPS suppressed locomotor activity in the open field test and suppressed fear memory acquisition and fear extinction learning in the contextual fear conditioning test. These results indicate that mid-gestation LPS injections disrupt programming of normal neurodevelopment resulting in progressive suppression of hippocampal neurogenesis and synaptic plasticity of newborn granule cells by suppressing GABAergic and glutamatergic neurotransmitter signals and BDNF/TrkB signaling to result in adult-stage behavioral deficits. AGIQ ameliorated most aberrations in hippocampal neurogenesis and synaptic plasticity, as well as behavioral deficits. Effective amelioration by continuous AGIQ treatment starting before LPS injections may reflect both anti-inflammatory and anti-oxidative stress effects during gestation and neuroprotective effects of continuous exposure through adulthood.
Collapse
Affiliation(s)
- Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I. Inc., Osaka, Japan
| | | | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
12
|
Yang C, Zhao Q, Li S, Pu L, Yu L, Liu Y, Lai X. Effects of Lycium barbarum L. Polysaccharides on Vascular Retinopathy: An Insight Review. Molecules 2022; 27:5628. [PMID: 36080395 PMCID: PMC9457721 DOI: 10.3390/molecules27175628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Vascular retinopathy is a pathological change in the retina caused by ocular or systemic vascular diseases that can lead to blurred vision and the risk of blindness. Lycium barbarum polysaccharides (LBPs) are extracted from the fruit of traditional Chinese medicine, L. barbarum. They have strong biological activities, including immune regulation, antioxidation, and neuroprotection, and have been shown to improve vision in numerous studies. At present, there is no systematic literature review of LBPs on vascular retinal prevention and treatment. We review the structural characterization and extraction methods of LBPs, focus on the mechanism and pharmacokinetics of LBPs in improving vascular retinopathy, and discuss the future clinical application and lack of work. LBPs are involved in the regulation of VEGF, Rho/ROCK, PI3K/Akt/mTOR, Nrf2/HO-1, AGEs/RAGE signaling pathways, which can alleviate the occurrence and development of vascular retinal diseases in an inflammatory response, oxidative stress, apoptosis, autophagy, and neuroprotection. LBPs are mainly absorbed by the small intestine and stomach and excreted through urine and feces. Their low bioavailability in vivo has led to the development of novel dosage forms, including multicompartment delivery systems and scaffolds. Data from the literature confirm the medicinal potential of LBPs as a new direction for the prevention and complementary treatment of vascular retinopathy.
Collapse
Affiliation(s)
- Chunhong Yang
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Zhao
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shiling Li
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lili Pu
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liqiong Yu
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yaqin Liu
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianrong Lai
- Department of Ethnic Medicine, College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|