1
|
Özdemir AY, Çetin EA, Novotný J, Rudajev V. Daidzein effectively mitigates amyloid-β-induced damage in SH-SY5Y neuroblastoma cells and C6 glioma cells. Biomed Pharmacother 2025; 187:118157. [PMID: 40359691 DOI: 10.1016/j.biopha.2025.118157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is the most debilitating form of dementia, characterized by amyloid-β (Aβ)-related toxic mechanisms such as oxidative stress, neuroinflammation, and mitochondrial dysfunction. The development of AD is influenced by environmental factors linked to lifestyle, including physical and mental inactivity, diet, and smoking, all of which have been associated with the severity of the disease and Aβ-related pathology. In this study, we used differentiated SH-SY5Y neuroblastoma and C6 glioma cells to investigate the neuroprotective and anti-inflammatory effects of daidzein, a naturally occurring isoflavone, in the context of Aβ oligomer-related toxicity. We observed that pre-treatment with daidzein prevented Aβ-induced cell viability loss, increased oxidative stress, and mitochondrial membrane potential decline in both SH-SY5Y and C6 cells. Furthermore, daidzein application reduced elevated levels of MAPK pathway proteins, pro-inflammatory molecules (cyclooxygenase-2 and IL-1β), and pyroptosis markers, including caspase-1 and gasdermin D, all of which were increased by Aβ exposure. These findings strongly suggest that daidzein alleviates inflammation and toxicity caused by Aβ oligomers. Our results indicate that daidzein could be a potential therapeutic agent for AD and other Aβ-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Alp Yiğit Özdemir
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, Prague 2 12844, Czech Republic
| | - Esin Akbay Çetin
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, Prague 2 12844, Czech Republic; Department of Biology, Hacettepe University, Ankara 06800, Turkey
| | - Jiří Novotný
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, Prague 2 12844, Czech Republic
| | - Vladimír Rudajev
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, Prague 2 12844, Czech Republic.
| |
Collapse
|
2
|
Anuradha U, Bhavana V, Chary PS, Rajana N, Parida KK, Kalia NP, Khatri DK, Mehra NK. Thymoquinone loaded nanoemulgel in streptozotocin induced diabetic wound. Nanomedicine (Lond) 2024; 19:2577-2604. [PMID: 39569618 DOI: 10.1080/17435889.2024.2422805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Aim: To treat diabetic wound healing with a novel Thymoquinone (TQ) loaded nanoformulation by using combination of essentials oils.Methods: TQ nanoemulsion (NE) was developed with seabuckthorn & lavender essential oils by phase inversion method and mixture design. Further, DIAGEL is obtained by incorporating NE into 1% carbopol®934. Furthermore, particle size, polydispersity index, thermodynamic stability studies, rheology, spreadability, drug content, in-vitro drug release, ex-vivo permeation, anti-oxidant assay, antimicrobial studies, angioirritance, HAT-CAM assay, in-vitro and in-vivo studies were determined.Results: NE has a particle size of 17.79 ± 0.61 nm, 0.206 ± 0.012 PDI & found to be thermodynamically stable. DIAGEL exhibited pseudoplastic behavior, sustained drug release, better permeation of TQ and a drug content of 98.54 ± 0.08%. DIAGEL stored for 6 months at room temperature and 2-8°C showed no degradation. Further, an improved angiogenesis, absence of angio-irritancy, remarkable antioxidant and antimicrobial activities against Candida albicans & S. aureus were observed. Cytotoxicity analysis revealed nearly 2.28 -folds higher IC50 value than drug solution. Furthermore, inflammatory mediators were reduced in DIAGEL treated animal groups. The histopathological studies confirmed skin healing with regeneration and granulation of tissue.Conclusion: The novel formulation has strong anti-inflammatory, angiogenesis, antioxidant and appreciable diabetic wound healing properties.
Collapse
Affiliation(s)
- Urati Anuradha
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Kishan Kumar Parida
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Nitin Pal Kalia
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
3
|
Wei R, Wei P, Yuan H, Yi X, Aschner M, Jiang YM, Li SJ. Inflammation in Metal-Induced Neurological Disorders and Neurodegenerative Diseases. Biol Trace Elem Res 2024; 202:4459-4481. [PMID: 38206494 DOI: 10.1007/s12011-023-04041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Essential metals play critical roles in maintaining human health as they participate in various physiological activities. Nonetheless, both excessive accumulation and deficiency of these metals may result in neurotoxicity secondary to neuroinflammation and the activation of microglia and astrocytes. Activation of these cells can promote the release of pro-inflammatory cytokines. It is well known that neuroinflammation plays a critical role in metal-induced neurotoxicity as well as the development of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Initially seen as a defense mechanism, persistent inflammatory responses are now considered harmful. Astrocytes and microglia are key regulators of neuroinflammation in the central nervous system, and their excessive activation may induce sustained neuroinflammation. Therefore, in this review, we aim to emphasize the important role and molecular mechanisms underlying metal-induced neurotoxicity. Our objective is to raise the awareness on metal-induced neuroinflammation in neurological disorders. However, it is not only just neuroinflammation that different metals could induce; they can also cause harm to the nervous system through oxidative stress, apoptosis, and autophagy, to name a few. The primary pathophysiological mechanism by which these metals induce neurological disorders remains to be determined. In addition, given the various pathways through which individuals are exposed to metals, it is necessary to also consider the effects of co-exposure to multiple metals on neurological disorders.
Collapse
Affiliation(s)
- Ruokun Wei
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Peiqi Wei
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Haiyan Yuan
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Xiang Yi
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Michael Aschner
- The Department of Molecular Pharmacology at Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yue-Ming Jiang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China.
| | - Shao-Jun Li
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China.
| |
Collapse
|
4
|
Gromadzka G, Wilkaniec A, Tarnacka B, Hadrian K, Bendykowska M, Przybyłkowski A, Litwin T. The Role of Glia in Wilson's Disease: Clinical, Neuroimaging, Neuropathological and Molecular Perspectives. Int J Mol Sci 2024; 25:7545. [PMID: 39062788 PMCID: PMC11276698 DOI: 10.3390/ijms25147545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Wilson's disease (WD) is inherited in an autosomal recessive manner and is caused by pathogenic variants of the ATP7B gene, which are responsible for impaired copper transport in the cell, inhibition of copper binding to apoceruloplasmin, and biliary excretion. This leads to the accumulation of copper in the tissues. Copper accumulation in the CNS leads to the neurological and psychiatric symptoms of WD. Abnormalities of copper metabolism in WD are associated with impaired iron metabolism. Both of these elements are redox active and may contribute to neuropathology. It has long been assumed that among parenchymal cells, astrocytes have the greatest impact on copper and iron homeostasis in the brain. Capillary endothelial cells are separated from the neuropil by astrocyte terminal legs, putting astrocytes in an ideal position to regulate the transport of iron and copper to other brain cells and protect them if metals breach the blood-brain barrier. Astrocytes are responsible for, among other things, maintaining extracellular ion homeostasis, modulating synaptic transmission and plasticity, obtaining metabolites, and protecting the brain against oxidative stress and toxins. However, excess copper and/or iron causes an increase in the number of astrocytes and their morphological changes observed in neuropathological studies, as well as a loss of the copper/iron storage function leading to macromolecule peroxidation and neuronal loss through apoptosis, autophagy, or cuproptosis/ferroptosis. The molecular mechanisms explaining the possible role of glia in copper- and iron-induced neurodegeneration in WD are largely understood from studies of neuropathology in Parkinson's disease and Alzheimer's disease. Understanding the mechanisms of glial involvement in neuroprotection/neurotoxicity is important for explaining the pathomechanisms of neuronal death in WD and, in the future, perhaps for developing more effective diagnostic/treatment methods.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland
| | - Beata Tarnacka
- Department of Rehabilitation, Medical University of Warsaw, Spartańska 1, 02-637 Warsaw, Poland
| | - Krzysztof Hadrian
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland (A.P.)
| | - Maria Bendykowska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis 5, 01-815 Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland (A.P.)
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| |
Collapse
|
5
|
Kar F, Hacioğlu C, Kaçar S. The dual role of boron in vitro neurotoxication of glioblastoma cells via SEMA3F/NRP2 and ferroptosis signaling pathways. ENVIRONMENTAL TOXICOLOGY 2023; 38:70-77. [PMID: 36136913 DOI: 10.1002/tox.23662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Glioblastoma multiform (GBM) is a malignant tumor cancer that originates from the star-shaped glial support tissues, namely astrocytes, and it is associated with a poor prognosis in the brain. The GBM has no cure, and chemotherapy, radiation therapy, and immunotherapy are all ineffective. A certain dose of Boric acid (BA) has many biochemical effects, conspicuously over antioxidant/oxidant rates. This article sought to investigate the modifies of various doses of BA on the glioblastoma concerning cytotoxicity, ferroptosis, apoptosis, and semaphorin-neuropilin signaling pathway. The Cytotoxic activity and cell viability of BA (0.39-25 mM) in C6 cells were tested at 24, 48, and 72 h using 3-(4,5-dimethylthiazol, 2-yl)-2,5-diphenyl tetrazolium bromide (MTT). The IC50 concentration of BA at 1.56 mM was found and cell lysate used for biochemical analysis. Glutathione peroxidase 4 (GPx4) and ACLS4 levels of ferroptosis, levels of total antioxidant (TAS) and oxidant (TAS) parameters, malondialdehyde (MDA), apoptotic proteins as caspase 3 (CASP3) and caspase 7 (CASP7) were measured. The ferroptosis, semaphoring-neuropilin, apoptotic pathway markers and cell counts were analyzed with flow cytometry, Q-PCR, Western and Elisa technique in the C6 cell lysate. BA triggered ferroptosis in the C6 cells dose-dependently, affecting the semaphorin pathway, so reducing proliferation with apoptotic compared with untreated cell as control group (p < .05). This study revealed that BA, defined as trace element and natural compound, incubated ferroptosis, total oxidant molecules, and caspase protein in a dose-dependently by disrupting SEMA3F in tumor cells.
Collapse
Affiliation(s)
- Fatih Kar
- Department of Basic Science, Faculty of Engineering and Natural Science, Kutahya Health Sciences University, Kutahya, Turkey
| | - Ceyhan Hacioğlu
- Department of Biochemistry, Faculty of Pharmacy, Duzce University, Duzce, Turkey
| | - Sedat Kaçar
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
- Department of Surgery, Indiana University School of Medicine, Indiana University Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indianapolis, IN, USA
| |
Collapse
|
6
|
Zhang Y, Zhang Z, Wang J, Zhang X, Zhao J, Bai N, Vijayalakshmi A, Huo Q. Scutellarin alleviates cerebral ischemia/reperfusion by suppressing oxidative stress and inflammatory responses via MAPK/NF-κB pathways in rats. ENVIRONMENTAL TOXICOLOGY 2022; 37:2889-2896. [PMID: 36036213 DOI: 10.1002/tox.23645] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Neuroinflammation contributes to the progression of cerebral ischemia/reperfusion (I/R) damage. Scutellarin (SL) is a glucuronide flavonoid that has apoptotic, anti-inflammatory, and anti-tumor properties. It is anti-oxidant and anti-inflammatory mechanism as a neuroprotective against ischemic brain injury is unknown. The purpose of the study was to examine the role and mechanism of SL in preventing I/R damage in a rat model. SL (40 and 80 mg/kg) was given to the rats for 14 days before the ischemic stroke. SL administration prevented I/R mediated brain injury, and neuronal apoptosis. Malondialdehyde, superoxide dismutase, glutathione, IL-6, and IL-1β and nitric oxide were modulated by SL. SL suppressed the p65 and p38 expressions in particular. The findings show that SL protects rats from cerebral damage caused by I/R through the nuclear factor kappa-B p65 and p38 mitogen-activated protein kinase signaling pathway. Thus, SL protected the brain of rats from ischemic injury by inhibiting the inflammatory process.
Collapse
Affiliation(s)
- Yuming Zhang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zhen Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jun Wang
- Department of Anesthesiology, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Xiajing Zhang
- Institute of Medical Research, Nothwestern Polytechnical University, Xi'an, China
| | - Jing Zhao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ning Bai
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | | | - Qifan Huo
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|