1
|
Taheri M, Schindler K, Baniahmad A. The lncRNAs PART1 and ADAMTS9-AS2 act in an antithetic manner on AR signaling and induction of cellular senescence in prostate cancer cells. Int J Surg 2025; 111:3646-3664. [PMID: 40143747 DOI: 10.1097/js9.0000000000002334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/16/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND Prostate cancer (PCa) is initially a hormone-dependent disease and the development and spread of PCa are tightly linked to the androgen receptor (AR) signaling activity. Therapy that targets the AR pathway is a standard approach for treating PCa including AR antagonists and supraphysiological androgen levels (SAL) used in bipolar androgen therapy. Here, we identified that the two lncRNAs PART1 and ADAMTS9-AS2 mediate in part androgen signaling in PCa cells by examining PCa specimen and response to AR antagonists or SAL as well as functionally by knockdown. METHODS This study utilized expression analysis of tumor tissues (TT) samples in comparison to their corresponding normal tissue adjacent to the tumor (NTAT) counterparts of 50 patients. RNA-seq and treatment of patient prostatectomy samples ex-vivo confirmed regulation of lncRNAs by SAL. Knockdown of both lncRNAs were used to analyze androgen signaling of AR target genes by qRT-PCR and in PCa senescence pathway by analyzing senescence markers. Correlation analyses of patient tumor samples confirmed co-expression. RNA immunoprecipitation (RIP) used in both LNCaP and C4-2 cells detect AR-lncRNA interaction. Bioinformatic analyses were employed to identify ligand-specific lncRNAs and miRNA interactions with PART1 and ADAMTS9-AS2 and confirmed by treatment of patient prostatectomy samples ex-vivo . RESULTS PART1 and ERVH48-1 were significantly overexpressed in TT samples, ADAMTS9-AS2 expression is lower in TT samples compared to NTAT samples. SAL treatment indicates opposite regulation in two human PCa cell lines and patient tumor samples. While ADAMTS9-AS2 is upregulated, PART1 is repressed by SAL. Furthermore, the obtained data suggest that ADAMTS9-AS2 may act as a co-activator and PART1 as a co-repressor of AR signaling. Interestingly, the knockdown indicates that both lncRNAs ADAMTS9-AS2 and PART1 regulate AR activity and protein level as well as SAL-mediated induction of cellular senescence. Thus, the data suggest that ADAMTS9-AS2 and PART1 control AR signaling at SAL. CONCLUSION In summary, we identified novel AR signaling pathways that involve lncRNAs oppositely regulated by SAL and in PCa tumorigenesis.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | | | | |
Collapse
|
2
|
Guo R, Shi L, Chen Y, Lin C, Yin W. Exploring the roles of ncRNAs in prostate cancer via the PI3K/AKT/mTOR signaling pathway. Front Immunol 2025; 16:1525741. [PMID: 40170845 PMCID: PMC11959002 DOI: 10.3389/fimmu.2025.1525741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
Although various treatment options are available for prostate cancer (PCa), including androgen deprivation therapy (ADT) and chemotherapy, these approaches have not achieved the desired results clinically, especially in the treatment of advanced chemotherapy-resistant PCa. The PI3K/AKT/mTOR (PAM) signaling pathway is a classical pathway that is aberrantly activated in cancer cells and promotes the tumorigenesis, metastasis, resistance to castration therapy, chemoresistance, and recurrence of PCa. Noncoding RNAs (ncRNAs) are a class of RNAs that do not encode proteins. However, some ncRNAs have recently been shown to be differentially expressed in tumor tissues compared with noncancerous tissues and play important roles at the transcription and posttranscription levels. Among the types of ncRNAs, long noncoding RNAs (lncRNAs), microRNAs (miRNAs), circular RNAs (circRNAs), and Piwi-interacting RNAs (piRNAs) can participate in the PAM pathway to regulate PCa growth, metastasis, angiogenesis, and tumor stemness. Therefore, ncRNA therapy that targets the PAM signaling pathway is expected to be a novel and effective approach for treating PCa. In this paper, we summarize the types of ncRNAs that are associated with the PAM pathway in PCa cells as well as the functions and clinical roles of these ncRNAs in PCa. We hope to provide novel and effective strategies for the clinical diagnosis and treatment of PCa.
Collapse
Affiliation(s)
- Rongwang Guo
- Nanchang University, 999 University Avenue, Honggutan District, Nanchang, China
| | - Liji Shi
- School of Chemical and Biological Engineering, Yichun College, Yichun, China
| | - Yonghui Chen
- School of Chemical and Biological Engineering, Yichun College, Yichun, China
| | - Canling Lin
- School of Chemical and Biological Engineering, Yichun College, Yichun, China
| | - Weihua Yin
- Department of Oncology, Baoan Central Hospital of Shenzhen, Bao’ an District, Shenzhen, China
| |
Collapse
|
3
|
Mirzaei Z, Barati T, Ebrahimi A, Derakhshan SM, Khaniani MS. The role of mir-7-5p in cancer: function, prognosis, diagnosis, and therapeutic implications. Mol Biol Rep 2024; 52:12. [PMID: 39585455 DOI: 10.1007/s11033-024-10107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
One of the important and conserved microRNAs (miRNAs), miR-7-5p, is involved in several pathological mechanisms, including cell proliferation, apoptosis, migration, and metastasis. Dysregulation of this miRNA's expression is correlated with multiple diseases, especially cancer. Its role as a tumor suppressor has been demonstrated in various types of cancer, such as colorectal cancer, lung cancer, bladder cancer, breast cancer, and glioblastoma. Furthermore, several studies have highlighted the prognostic and diagnostic value of this miRNA, which could be valuable for the diagnosis and treatment of certain disorders. We present an overview of the latest findings regarding miR-7-5p's role in the development of cancer, its action mechanisms, and expression, based on in vivo, in vitro, and human research. Additionally, we discuss the function of miR-7-5p as a prognostic biomarker in cancer and explore its potential as a therapeutic target.
Collapse
Affiliation(s)
- Zohreh Mirzaei
- Department of Medical Genetics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Barati
- Department of Medical Genetics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ebrahimi
- Department of Medical Genetics, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
4
|
Yuan Z, He J, Li Z, Fan B, Zhang L, Man X. Targeting autophagy in urological system cancers: From underlying mechanisms to therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189196. [PMID: 39426690 DOI: 10.1016/j.bbcan.2024.189196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The urological system, including kidneys, ureters, bladder, urethra and prostate is known to be vital for blood filtration, waste elimination and electrolyte balance. Notably, urological system cancers represent a significant portion of global cancer diagnoses and mortalities. The current therapeutic strategies for early-stage cancer primarily involve resection surgery, which significantly affects the quality of life of patients, whereas advanced-stage cancer often relies on less effective chemo- or radiotherapy. Recently, accumulating evidence has revealed that autophagy, a crucial process in which excess organelles or inclusions within cells are removed to maintain cell homeostasis, has numerous links to urological system cancers. In this review, we focus on summarizing the underlying two-sided mechanisms of autophagy in urological system cancers. We also review the current clinical drugs targeting autophagy, which demonstrate significant potential in improving treatment outcomes for urological system cancers. In addition, we provide an overview of the research status of novel small molecule compounds targeting autophagy that are in the preclinical stages of investigation. Furthermore, drug combinations based on autophagy modulation strategies in urological system cancers are systematically summarized and discussed. These findings provide comprehensive new insight for the future discovery of more autophagy-related drug candidates.
Collapse
Affiliation(s)
- Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiani He
- Department of Urology, Department of Surgical Oncology and Breast Surgery, Institute of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Bo Fan
- Department of Urology, Institute of Precision Drug Innovation and Cancer Center, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Urology, Institute of Precision Drug Innovation and Cancer Center, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Xiaojun Man
- Department of Urology, Department of Surgical Oncology and Breast Surgery, Institute of Urology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
5
|
Wang S, Bai Y, Ma J, Qiao L, Zhang M. Long non-coding RNAs: regulators of autophagy and potential biomarkers in therapy resistance and urological cancers. Front Pharmacol 2024; 15:1442227. [PMID: 39512820 PMCID: PMC11540796 DOI: 10.3389/fphar.2024.1442227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
The non-coding RNAs (ncRNAs) comprise a large part of human genome that mainly do not code for proteins. Although ncRNAs were first believed to be non-functional, the more investigations highlighted tthe possibility of ncRNAs in controlling vital biological processes. The length of long non-coding RNAs (lncRNAs) exceeds 200 nucleotidesand can be present in nucleus and cytoplasm. LncRNAs do not translate to proteins and they have been implicated in the regulation of tumorigenesis. On the other hand, One way cells die is by a process called autophagy, which breaks down proteins and other components in the cytoplasm., while the aberrant activation of autophagy allegedly involved in the pathogenesis of diseases. The autophagy exerts anti-cancer activity in pre-cancerous lesions, while it has oncogenic function in advanced stages of cancers. The current overview focuses on the connection between lncRNAs and autophagy in urological cancers is discussed. Notably, one possible role for lncRNAs is as diagnostic and prognostic variablesin urological cancers. The proliferation, metastasis, apoptosis and therapy response in prostate, bladder and renal cancers are regulated by lncRNAs. The changes in autophagy levels can also influence the apoptosis, proliferation and therapy response in urological tumors. Since lncRNAs have modulatory functions, they can affect autophagy mechanism to determine progression of urological cancers.
Collapse
Affiliation(s)
- Shizong Wang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Yang Bai
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Jie Ma
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Liang Qiao
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Mingqing Zhang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| |
Collapse
|
6
|
Hushmandi K, Saadat SH, Raei M, Daneshi S, Aref AR, Nabavi N, Taheriazam A, Hashemi M. Implications of c-Myc in the pathogenesis and treatment efficacy of urological cancers. Pathol Res Pract 2024; 259:155381. [PMID: 38833803 DOI: 10.1016/j.prp.2024.155381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Urological cancers, including prostate, bladder, and renal cancers, are significant causes of death and negatively impact the quality of life for patients. The development and progression of these cancers are linked to the dysregulation of molecular pathways. c-Myc, recognized as an oncogene, exhibits abnormal levels in various types of tumors, and current evidence supports the therapeutic targeting of c-Myc in cancer treatment. This review aims to elucidate the role of c-Myc in driving the progression of urological cancers. c-Myc functions to enhance tumorigenesis and has been documented to increase growth and metastasis in prostate, bladder, and renal cancers. Furthermore, the dysregulation of c-Myc can result in a diminished response to therapy in these cancers. Non-coding RNAs, β-catenin, and XIAP are among the regulators of c-Myc in urological cancers. Targeting and suppressing c-Myc therapeutically for the treatment of these cancers has been explored. Additionally, the expression level of c-Myc may serve as a prognostic factor in clinical settings.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health,School of Health,Jiroft University Of Medical Sciences, Jiroft, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Gan L, Zheng L, Zou J, Luo P, Chen T, Zou J, Li W, Chen Q, Cheng L, Zhang F, Qian B. Critical roles of lncRNA-mediated autophagy in urologic malignancies. Front Pharmacol 2024; 15:1405199. [PMID: 38939836 PMCID: PMC11208713 DOI: 10.3389/fphar.2024.1405199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
Urologic oncology is a significant public health concern on a global scale. Recent research indicates that long chain non-coding RNAs (lncRNAs) and autophagy play crucial roles in various cancers, including urologic malignancies. This article provides a summary of the latest research findings, suggesting that lncRNA-mediated autophagy could either suppress or promote tumors in prostate, kidney, and bladder cancers. The intricate network involving different lncRNAs, target genes, and mediated signaling pathways plays a crucial role in urological malignancies by modulating the autophagic process. Dysregulated expression of lncRNAs can disrupt autophagy, leading to tumorigenesis, progression, and enhanced resistance to therapy. Consequently, targeting particular lncRNAs that control autophagy could serve as a dependable diagnostic tool and a promising prognostic biomarker in urologic oncology, while also holding potential as an effective therapeutic approach.
Collapse
Affiliation(s)
- Lifeng Gan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Fangtao Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
8
|
Liu ZY, Tang JM, Yang MQ, Yang ZH, Xia JZ. The role of LncRNA-mediated autophagy in cancer progression. Front Cell Dev Biol 2024; 12:1348894. [PMID: 38933333 PMCID: PMC11199412 DOI: 10.3389/fcell.2024.1348894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are a sort of transcripts that are more than 200 nucleotides in length. In recent years, many studies have revealed the modulatory role of lncRNAs in cancer. Typically, lncRNAs are linked to a variety of essential events, such as apoptosis, cellular proliferation, and the invasion of malignant cells. Simultaneously, autophagy, an essential intracellular degradation mechanism in eukaryotic cells, is activated to respond to multiple stressful circumstances, for example, nutrient scarcity, accumulation of abnormal proteins, and organelle damage. Autophagy plays both suppressive and promoting roles in cancer. Increasingly, studies have unveiled how dysregulated lncRNAs expression can disrupt autophagic balance, thereby contributing to cancer progression. Consequently, exploring the interplay between lncRNAs and autophagy holds promising implications for clinical research. In this manuscript, we methodically compiled the advances in the molecular mechanisms of lncRNAs and autophagy and briefly summarized the implications of the lncRNA-mediated autophagy axis.
Collapse
Affiliation(s)
- Zi-yuan Liu
- Gastroenterological Surgery, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Jia-ming Tang
- Department of Neurology, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Meng-qi Yang
- Gastroenterological Surgery, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Zhi-hui Yang
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Jia-zeng Xia
- Gastroenterological Surgery, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| |
Collapse
|
9
|
Hong W, Xiong Z, Wang X, Liao X, Liu M, Jiang Z, Min D, Li J, Guo G, Fu Z. Long noncoding RNA XIST promotes cell proliferation and migration in diabetic foot ulcers through the miR-126-3p/EGFR axis. Diabetol Metab Syndr 2024; 16:35. [PMID: 38317244 PMCID: PMC10845590 DOI: 10.1186/s13098-024-01260-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The prevalence of diabetic foot ulcers (DFUs) has caused serious harm to human health. To date, a highly effective treatment is lacking. Long noncoding RNA X-inactive specific transcript (lncRNA XIST) has been the subject of mounting research studies, all of which have found that it serves as a protective factor against certain diseases; however, its function in DFUs is not entirely understood. This study was performed to determine the importance of the lncRNA XIST in the pathogenesis and biological function of DFUs. METHODS Diabetic ulcer skin from rats was analysed using haematoxylin-eosin (HE), Masson's trichrome, and immunohistochemistry (IHC) staining. The differences in the expression of genes and proteins were examined with real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Next, the interaction was verified with a dual luciferase gene reporter assay. In addition, CCK-8, Transwell, and wound healing assays were used to assess the proliferation and migration of HaCaT cells. RESULTS The lncRNA XIST and epidermal growth factor receptor (EGFR) were downregulated, while microRNA-126-3p (miR-126-3p) was increased in diabetic ulcer rat skin tissues and high glucose-induced HaCaT cells. In addition, we found that the lncRNA XIST binds to miR-126-3p and that EGFR is directly targeted by miR‑126‑3p. Silencing XIST contributed to upregulated miR-126-3p expression, thus lowering EGFR levels and inhibiting the proliferative and migratory abilities of high glucose-treated HaCaT cells; however, the miR-126-3p inhibitor and overexpression of EGFR reversed this effect. CONCLUSION Decreased lncRNA XIST expression inhibits the proliferative and migratory abilities of high glucose-induced HaCaT cells by modulating the miR-126-3p/EGFR axis, causing delayed wound healing.
Collapse
Affiliation(s)
- Wangbing Hong
- Medical Center of Burn plastic and wound repair, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhenfang Xiong
- Department of Pathology, The 1 st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xin Wang
- Medical Center of Burn plastic and wound repair, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xincheng Liao
- Medical Center of Burn plastic and wound repair, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Mingzhuo Liu
- Medical Center of Burn plastic and wound repair, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhengying Jiang
- Medical Center of Burn plastic and wound repair, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Dinghong Min
- Medical Center of Burn plastic and wound repair, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Jiaqi Li
- Medical Center of Burn plastic and wound repair, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Guanghua Guo
- Medical Center of Burn plastic and wound repair, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
| | - Zhonghua Fu
- Medical Center of Burn plastic and wound repair, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
10
|
Zhang Y, Tang J, Wang C, Zhang Q, Zeng A, Song L. Autophagy-related lncRNAs in tumor progression and drug resistance: A double-edged sword. Genes Dis 2024; 11:367-381. [PMID: 37588204 PMCID: PMC10425854 DOI: 10.1016/j.gendis.2023.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 08/18/2023] Open
Abstract
The incidence and mortality rates of cancer are increasing every year worldwide but the survival rate of cancer patients is still unsatisfactory. Therefore, it is necessary to further elucidate the molecular mechanisms involved in tumor development and drug resistance to improve cancer cure or survival rates. In recent years, autophagy has become a hot topic in the field of oncology research, which plays a double-edged role in tumorigenesis, progression, and drug resistance. Meanwhile, long non-coding RNA (lncRNA) has also been shown to regulate autophagy, and the two-sided nature of autophagy determines the dual regulatory role of autophagy-related lncRNAs (ARlncRNAs). Therefore, ARlncRNAs can be effective therapeutic targets for various cancers. Furthermore, the high abundance and stability of ARlncRNAs in tumor tissues make them promising biomarkers. In this review, we summarized the roles and mechanisms of ARlncRNAs in tumor cell proliferation, apoptosis, migration, invasion, drug resistance, angiogenesis, radiation resistance, and immune regulation. In addition, we described the clinical significance of these ARlncRNAs, including as biomarkers/therapeutic targets and their association with clinical drugs.
Collapse
Affiliation(s)
- Yunchao Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Jiayu Tang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Cheng Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Qinxiu Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan 610041, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| |
Collapse
|
11
|
Rezaei S, Nikpanjeh N, Rezaee A, Gholami S, Hashemipour R, Biavarz N, Yousefi F, Tashakori A, Salmani F, Rajabi R, Khorrami R, Nabavi N, Ren J, Salimimoghadam S, Rashidi M, Zandieh MA, Hushmandi K, Wang Y. PI3K/Akt signaling in urological cancers: Tumorigenesis function, therapeutic potential, and therapy response regulation. Eur J Pharmacol 2023; 955:175909. [PMID: 37490949 DOI: 10.1016/j.ejphar.2023.175909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
In addition to environmental conditions, lifestyle factors, and chemical exposure, aberrant gene expression and mutations involve in the beginning and development of urological tumors. Even in Western nations, urological malignancies are among the top causes of patient death, and their prevalence appears to be gender dependent. The prognosis for individuals with urological malignancies remains dismal and unfavorable due to the ineffectiveness of conventional treatment methods. PI3K/Akt is a popular biochemical mechanism that is activated in tumor cells as a result of PTEN loss. PI3K/Akt escalates growth and metastasis. Moreover, due to the increase in tumor cell viability caused by PI3K/Akt activation, cancer cells may acquire resistance to treatment. This review article examines the function of PI3K/Akt in major urological tumors including bladder, prostate, and renal tumors. In prostate, bladder, and kidney tumors, the level of PI3K and Akt are notably elevated. In addition, the activation of PI3K/Akt enhances the levels of Bcl-2 and XIAP, hence increasing the tumor cell survival rate. PI3K/Akt ] upregulates EMT pathways and matrix metalloproteinase expression to increase urological cancer metastasis. Furthermore, stimulation of PI3K/Akt results in drug- and radio-resistant cancers, but its suppression by anti-tumor drugs impedes the tumorigenesis.
Collapse
Affiliation(s)
- Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Negin Nikpanjeh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Iran University of Medical Sciences, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Islamic Azad University, Babol Branch, Babol, Iran
| | - Reza Hashemipour
- Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Negin Biavarz
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farnaz Yousefi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Tashakori
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Yu F, He H, Zhou Y. Roles, biological functions, and clinical significances of RHPN1-AS1 in cancer. Pathol Res Pract 2023; 248:154589. [PMID: 37285733 DOI: 10.1016/j.prp.2023.154589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
For the complex and multifaceted challenge of cancer eradication, a comprehensive approach is required. Molecular strategies are critical in the fight against cancer as they allow us to understand the underlying fundamental mechanisms and develop specialized treatments. The role of long non-coding RNAs (lncRNAs), a class of ncRNA molecules longer than 200 nucleotides, in cancer biology has attracted growing attention in recent years. These roles include but are not limited to regulating gene expression, protein localization, and chromatin remodeling. LncRNAs can influence a range of cellular functions and pathways, including those involved in cancer development. The first study on RHPN1 antisense RNA 1 (RHPN1-AS1), a 2030-bp transcript originating from human chromosome 8q24, in uveal melanoma (UM) demonstrated that this lncRNA was significantly upregulated in several UM cell lines. Further studies in various cancer cell lines showed that this lncRNA is significantly overexpressed and exerts oncogenic functions. This review will provide an overview of current knowledge regarding the roles played by RHPN1-AS1 in the emergence of various cancers, focusing on its biological and clinical functions.
Collapse
Affiliation(s)
- Fan Yu
- Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China
| | - Haihong He
- Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China
| | - Yiwen Zhou
- Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China.
| |
Collapse
|
13
|
Shree B, Das K, Sharma V. Emerging role of transforming growth factor-β-regulated long non-coding RNAs in prostate cancer pathogenesis. CANCER PATHOGENESIS AND THERAPY 2023; 1:195-204. [PMID: 38327834 PMCID: PMC10846338 DOI: 10.1016/j.cpt.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 02/09/2024]
Abstract
Prostate cancer (PCa) is the most common malignancy in men. Despite aggressive therapy involving surgery and hormonal treatments, the recurrence and emergence of metastatic castration-resistant prostate cancer (CRPCa) remain a major challenge. Dysregulation of the transforming growth factor-β (TGF-β) signaling pathway is crucial to PCa development and progression. This also contributes to androgen receptor activation and the emergence of CRPC. In addition, TGF-β signaling regulates long non-coding RNA (lncRNA) expression in multiple cancers, including PCa. Here, we discuss the complex regulatory network of lncRNAs and TGF-β signaling in PCa and their potential applications in diagnosing, prognosis, and treating PCa. Further investigations on the role of lncRNAs in the TGF-β pathway will help to better understand PCa pathogenesis.
Collapse
Affiliation(s)
- Bakhya Shree
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Koyel Das
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
14
|
Khorkova O, Stahl J, Joji A, Volmar CH, Zeier Z, Wahlestedt C. Long non-coding RNA-targeting therapeutics: discovery and development update. Expert Opin Drug Discov 2023; 18:1011-1029. [PMID: 37466388 DOI: 10.1080/17460441.2023.2236552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION lncRNAs are major players in regulatory networks orchestrating multiple cellular functions, such as 3D chromosomal interactions, epigenetic modifications, gene expression and others. Due to progress in the development of nucleic acid-based therapeutics, lncRNAs potentially represent easily accessible therapeutic targets. AREAS COVERED Currently, significant efforts are directed at studies that can tap the enormous therapeutic potential of lncRNAs. This review describes recent developments in this field, particularly focusing on clinical applications. EXPERT OPINION Extensive druggable target range of lncRNA combined with high specificity and accelerated development process of nucleic acid-based therapeutics open new prospects for treatment in areas of extreme unmet medical need, such as genetic diseases, aggressive cancers, protein deficiencies, and subsets of common diseases caused by known mutations. Although currently wide acceptance of lncRNA-targeting nucleic acid-based therapeutics is impeded by the need for parenteral or direct-to-CNS administration, development of less invasive techniques and orally available/BBB-penetrant nucleic acid-based therapeutics is showing early successes. Recently, mRNA-based COVID-19 vaccines have demonstrated clinical safety of all aspects of nucleic acid-based therapeutic technology, including multiple chemical modifications of nucleic acids and nanoparticle delivery. These trends position lncRNA-targeting drugs as significant players in the future of drug development, especially in the area of personalized medicine.
Collapse
Affiliation(s)
- Olga Khorkova
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Jack Stahl
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Aswathy Joji
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Zane Zeier
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| |
Collapse
|
15
|
Wu Z, Yang Q, Xu K, Wu J, Yang B. Study on the Key Genes and Molecular Mechanisms of IL-27 Promoting Keratinocytes Proliferation Based on Transcriptome Sequencing. Clin Cosmet Investig Dermatol 2023; 16:1457-1472. [PMID: 37309428 PMCID: PMC10257925 DOI: 10.2147/ccid.s414633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
Background IL-27 involves psoriasis pathogenesis potentially by promoting excessive keratinocyte proliferation. However, the underlying mechanisms remain unclear. This study aims to explore the key genes and molecular mechanisms of IL-27-induced keratinocyte proliferation. Methods Primary keratinocytes and immortalized human keratinocyte HaCaT cells were treated with different concentrations of IL-27 for 24 h and 48 h respectively. CCK-8 assay was used to detect cell viability and Western blot was used to detect the expression of CyclinE and CyclinB1. Primary keratinocytes and HaCaT cells were treated with IL-27, and their differentially expressed (DE) genes were obtained by transcriptome sequencing. Then Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed to predict related pathways, and the long non-coding RNA-microRNA-messenger RNA network and protein-protein interaction network were constructed to screen key genes. Biochemical experiments were performed to assess the content of glucose (Glu), lactic acid (LA), and ATP. Flow cytometry and Mito-Tracker Green staining were used to detect mitochondrial membrane potential and the number of mitochondria respectively. Western blot was performed to assess the expression of glucose transporter 1 (GLUT1), hexokinase 2 (HK2), lactate dehydrogenase A (LDHA), phosphoglycerate kinase 1 (PGK1), phosphorylated dynamin-related protein 1 (p-DRP1) (s637) and mitofusin 2 (MFN2). Results IL-27 concentration-dependently increased keratinocyte viability and the expression of CyclinE and CyclinB1. Bioinformatics analysis showed that the enriched pathways of DE genes were closely associated with cellular metabolism. miR-7-5p, EGFR, PRKCB, PLCB1 and CALM3 were key genes. IL-27 increased the content of LA, mitochondrial membrane potential, and the expression of GLUT1, HK2, LDHA, PGK1, p-DRP1 (s637), and MFN2, accompanied by decreased contents of Glu and ATP (P<0.001). Conclusion IL-27 potentially promotes keratinocyte proliferation by enhancing glycolysis, mitochondrial function, and mitochondrial fusion. The findings of this study may be conducive to revealing the role of IL-27 in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Zijun Wu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Burn and Plastic Surgery, General Hospital of Central Theater Command, Wuhan, People’s Republic of China
| | - Qin Yang
- Department of Laboratory Medicine, General Hospital of Central Theater Command, Wuhan, People’s Republic of China
| | - Kai Xu
- Department of Burn and Plastic Surgery, General Hospital of Central Theater Command, Wuhan, People’s Republic of China
| | - Juanjuan Wu
- Department of Burn and Plastic Surgery, General Hospital of Central Theater Command, Wuhan, People’s Republic of China
| | - Bin Yang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Burn and Plastic Surgery, General Hospital of Central Theater Command, Wuhan, People’s Republic of China
| |
Collapse
|
16
|
Xu Y, Sun Y, Song X, Ren J. The mechanisms and diagnostic potential of lncRNAs, miRNAs, and their related signaling pathways in cervical cancer. Front Cell Dev Biol 2023; 11:1170059. [PMID: 37215076 PMCID: PMC10192553 DOI: 10.3389/fcell.2023.1170059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/24/2023] Open
Abstract
Cervical cancer (CC), the fourth most prevalent type of cancer among women worldwide, is associated with high rates of morbidity and mortality. Due to the long period of latency in CC, most patients are already in the middle to late stages when initially diagnosed, which greatly reduces the clinical cure rate and quality of survival, thus resulting in poor outcomes. In recent years, with continuous exploration in the fields of bioinformatics and molecules, it has been found that ncRNAs, including miRNAs and lncRNAs, without the ability to translate proteins are capable of activating or inhibiting certain signaling pathways by targeting and modulating the level of expression of proteins involved in these signaling pathways. ncRNAs play important roles in assisting with diagnosis, drug administration, and prediction of prognosis during CC progression. As an entry point, the mechanisms of interaction between miRNAs, lncRNAs, and signaling pathways have long been a focus in basic research relating to CC, and numerous experimental studies have confirmed the close relationship of miRNAs, lncRNAs, and signaling pathways with CC development. Against this background, we summarize the latest advances in the involvement of lncRNA- and miRNA-related signaling pathways in the development of CC to provide guidance for CC treatment.
Collapse
|