1
|
Santra HK, Banerjee D. Bioactivities of secondary metabolites of two actinomycetes Streptomyces parvulus GloL3, and Streptomyces lienomycini SK5, endophytes of two Indian medicinal herbs- Globba marantina L. and Selaginella kraussiana (Kunze) A. Braun. Braz J Microbiol 2025; 56:779-795. [PMID: 39878823 PMCID: PMC12095722 DOI: 10.1007/s42770-025-01615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
Endophytic actinomycetes are potential sources of novel pharmaceutically active metabolites, significantly advancing natural product research. In the present investigation, secondary metabolites from two endophytic actinomycetes, Streptomyces parvulus GloL3, and Streptomyces lienomycini SK5, isolated from medicinal plant taxa, Globba marantina, and Selaginella kraussiana, exhibited broad-spectrum bioactivity. Ethyl Acetate (EA) extract of SK5 showed antimicrobial activity against nine human pathogens, including Methicillin-resistant Staphylococcus aureus (MRSA), Candida tropicalis, and C. albicans, with a minimum microbicidal concentration (MMC) of 50-300 µg mL-1. It healed the MRSA-mediated wounds in Swiss albino mice in vivo. EA extracts dissociate the pathogenic cell membranes and cause leakage of biomacromolecules-nucleic acid, protein, and potassium ions. Also, critical housekeeping enzymes involved in the cellular respiratory mechanisms of the pathogens were blocked. GloL3 has antioxidative potentialities against DPPH, ABTS, FRAP, and H2O2 free radical generators with an IC50 value of 21.18 ± 0.33, 43.58 ± 0.91, 88.24 ± 1.24, and 111.03 ± 6.42 µg mL-1. It improves the enzymatic antioxidant parameters in treated peritoneal macrophage cells of Swiss albino mice. Constituents of the EA extracts of GloL3 and SK5 are bactobolin, actinobolin, 5-(2-aminoethyl)-1 H imidazole-2-carbaldehyde, isovaleric acid, fulvic acid, phenol, 4-[2-(methylamino) ethyl]-, eicosanoic acid, heptadecanoic acid, etc. The present findings suggest that metabolites from the endophytes of medicinal plants hold potent pharmaceutical utilities.
Collapse
Affiliation(s)
- Hiran Kanti Santra
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, 721102, Midnapore, West Bengal, India
| | - Debdulal Banerjee
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, 721102, Midnapore, West Bengal, India.
- Center for Life Sciences, Vidyasagar University, 721102, Midnapore, West Bengal, India.
| |
Collapse
|
2
|
Verma A, Chattopadhaya A, Gupta P, Tiwari H, Singh S, Kumar L, Gautam V. Integration of Hyphenated Techniques for Characterizing and Chemical Profiling of Natural Products. Chem Biodivers 2025:e202500234. [PMID: 40257985 DOI: 10.1002/cbdv.202500234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
The drug discovery from natural products has played an important role for therapeutic purposes, however, but in the past two decades, there has been a hurdle faced by researchers during purification and characterization. Traditional analytical approaches are insufficient to address the growing number of difficulties in natural product research. The hyphenated approach is a more advanced form that combines the benefits of separation with spectroscopy. The exceptional advancements in hyphenated systems have significantly expanded their applications in the investigation of natural products. The advancement of numerous chromatographic techniques such as HPLC, HPTLC, and GC, as well as spectroscopic techniques such as NMR, MS, FTIR, and UV, in addition to the advent of hyphenated techniques such as LC-MS, GC-MS, and LC-NMR, have significantly transformed the method of drug discovery from natural resources. This study discusses the general concepts and literature applications of productivity tools for natural product isolation and structural elucidation. These hyphenated methodologies will enhance the course of natural product research while reducing the time and cost invested in its investigation, hence speeding up the drug development process.
Collapse
Affiliation(s)
- Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Amrit Chattopadhaya
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Lalit Kumar
- Department of Urology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Gupta P, Chattopadhaya A, Gautam V. Myco-nanotechnological approach to synthesize gold nanoparticles using a fungal endophyte, Penicillium oxalicum, and unravelling its antibacterial activity and anti-breast cancer role via metabolic reprogramming. Biomed Mater 2024; 19:065030. [PMID: 39312952 DOI: 10.1088/1748-605x/ad7e6a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
The present study has been designed to fabricate fungal endophyte-assisted gold nanoparticles (AuNPs) and elucidate their anti-breast cancer potential. The aqueous extract of fungal endophytePenicillium oxalicum(PO), associated with the medicinal plantAmoora rohituka, was used for the fabrication of AuNPs (POAuNPs). Physico-chemical characterization using Ultraviolet-visible spectroscopy, Fourier transform infrared, X-ray diffraction, Dynamic light scattering, Zeta potential, Transmission electron microscopy and Field emission scanning electron microscopy analysis revealed stable, uniform distribution, spherical shape and crystalline nature of POAuNPs with a size range of 3-46 nm. Furthermore, the POAuNPs potentially inhibited the growth of pathogenic bacterial strainsEscherichia coliandStaphylococcus aureus. The synthesized POAuNPs have shown potential antioxidant effects against 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide and nitric oxide (NO) radical scavenging assays with an EC50value of 8.875 ± 0.082, 52.593 ± 2.506 and 43.717 ± 1.449 µg mL-1, respectively. Moreover, the value of EC50for the total antioxidant capacity of POAuNPs was found to be 23.667 ± 1.361 µg mL-1. The cell viability of human breast cancer cells, MDA-MB-231 and MCF-7, was found to be reduced after treatment with POAuNPs, and IC50values were found to be 19.753 ± 0.640 and 35.035 ± 0.439 µg mL-1, respectively. Further,in vitrobiochemical assays revealed that POAuNPs induces metabolic reprogramming in terms of reduced glucose uptake, increased lactate dehydrogenase (LDH) release and, disruption of oxidative balance through depletion of glutathione levels, increased nitric oxide (NO) and lipid peroxidation levels as a possible pathway to suppress human breast cancer cell proliferation. Apoptosis-specific nuclear modulations induced by POAuNPs in human breast cancer cells were validated through 4',6-diamidino-2-phenylindole (DAPI) nuclear staining. The present investigation thus attempts to show the first ever fabrication of AuNPs using an aqueous extract ofP. oxalicumassociated withA. rohituka. The results revealed unique physico-chemical characteristics of mycogenic AuNPs, and screening their effect against breast cancer via metabolic reprogramming and induction of apoptosis thus adds great significance for cancer therapeutics, suggesting further exploration to develop nanotherapeutic drugs.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Amrit Chattopadhaya
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
4
|
Bhardwaj N, Gupta P, Tripathi N, Chakrabarty S, Verma A, Kumari S, Gautam V, Ravikanth G, Jain SK. New ring-A modified cycloartane triterpenoids from Dysoxylum malabaricum bark: Isolation, structure elucidation and their cytotoxicity. Steroids 2024; 205:109390. [PMID: 38367679 DOI: 10.1016/j.steroids.2024.109390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
The Genus Dysoxylum (Meliaceae) consists of approximately 80 species that are abundant in structurally diverse triterpenoids. The present study focused on isolating new triterpenoids from the bark of Dysoxylum malabaricum, one of the predominant species of Dysoxylum present in India. The methanol-dichloromethane bark extract was subjected to LCMS profiling followed by silica gel column chromatography and HPLC analysis to target new compounds. Two new ring A-modified cycloartane-type triterpenoids (1 and 2) were isolated from the bark extract. Spectroscopic methods like NMR, HRESIMS data, and electronic circular dichroism calculations elucidated the structuresandabsolute configurations of the isolated compounds. These compounds were evaluated for their cytotoxic potential against breast cancer cells and displayed notable cytotoxicity. Compound 1 exhibited the highest cytotoxicity against the MDA-MB-231 cells and induced apoptotic cell death. Also, it was able to inhibit glucose uptake and increase nitric oxide production in breast cancer cells.
Collapse
Affiliation(s)
- Nivedita Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Nancy Tripathi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Sanheeta Chakrabarty
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sanju Kumari
- Department of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - G Ravikanth
- S.M. Sehgal Foundation Center for Biodiversity and Conservation, Ashoka Trust for Research in Ecology and the Environment, Bangalore 560064, Karnataka, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
5
|
Gupta P, Singh S, Rai N, Verma A, Tiwari H, Kamble SC, Gautam HK, Gautam V. Unveiling the cytotoxic and anti-proliferative potential of green-synthesized silver nanoparticles mediated by Colletotrichum gloeosporioides. RSC Adv 2024; 14:4074-4088. [PMID: 38292267 PMCID: PMC10825743 DOI: 10.1039/d3ra06145k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Fungal endophytes are a putative source of bioactive metabolites that have found significant applications in nanomedicine due to their metabolic versatility. In the present study, an aqueous extract of the fungal endophyte, Colletotrichum gloeosporioides associated with a medicinal plant Oroxylum indicum, has been used for the fabrication of green silver nanoparticles (CgAgNPs) and further evaluated their cytotoxic and anti-proliferative activity. Bioanalytical techniques including UV-Vis spectral analysis revealed a sharp band at 435 nm and functional molecules from the aqueous extract involved in the synthesis of CgAgNPs were evidenced through FTIR. Further, the crystalline nature of CgAgNPs was determined through XRD analysis and microscopy techniques including AFM, TEM and FESEM demonstrated the spherical shape of CgAgNPs exhibiting a crystalline hexagonal lattice and the size was found to be in the range of 9-29 nm. The significant cytotoxic potential of CgAgNPs was observed against breast cancer cells, MDA-MB-231 and MCF-7 with IC50 values of 18.398 ± 0.376 and 38.587 ± 1.828 μg mL-1, respectively. The biochemical study revealed that the treatment of MDA-MB-231 and MCF-7 cells with CgAgNPs reduces glucose uptake, suppresses cell proliferation, and enhances LDH release, indicating reduced cell viability and progression. Moreover, our research revealed differential expression of genes associated with apoptosis, cell cycle inhibition and metastasis suppression, evidencing anti-proliferative activity of CgAgNPs. The main objective of the present study is to harness anti-breast cancer activity of novel biogenic nanoparticles synthesized using the aqueous extract of O. indicum associated C. gloeosporioides and study the underlying mechanistic pathway exerted by these mycogenic nanoparticles.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 India +918860182113
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 India +918860182113
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 India +918860182113
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 India +918860182113
| | - Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 India +918860182113
| | - Swapnil C Kamble
- Department of Technology, Savitribai Phule Pune University Ganeshkhind Pune 411007 India
| | - Hemant Kumar Gautam
- Department of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology Sukhdev Vihar New Delhi 110025 India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 India +918860182113
| |
Collapse
|
6
|
Rai N, Kailashiya V, Gautam V. Exploring the Protective Effect against 7,12-Dimethylbenz[a]anthracene-Induced Breast Tumors of Palmitoylethanolamide. ACS Pharmacol Transl Sci 2024; 7:97-109. [PMID: 38230286 PMCID: PMC10789129 DOI: 10.1021/acsptsci.3c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 01/18/2024]
Abstract
Breast cancer remains a global health burden, and the need for effective therapies is of chief importance. The current study explored the in vivo chemoprotective activity of palmitoylethanolamide (PEA) against 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast tumor in rats. Results of noninvasive photoacoustic imaging showed real-time progression in the tumor area and volume in DMBA-induced rats, while there was a reduction in tumor area and volume in PEA-treated tumor-bearing rats. The increase in the average oxygen saturation (sO2 %) and decrease in the average total hemoglobin (HbT %) indicated the PEA-mediated attenuation of hypoxia-induced neovascularization in DMBA-induced rats. Histopathological investigations confirmed the efficacy of PEA in mitigating breast carcinoma, hepatotoxicity and nephrotoxicity driven by DMBA. Moreover, PEA-mediated alterations in the metabolic activity of the tumor microenvironment were evidenced by decreased glucose and lactate dehydrogenase enzyme level in the blood plasma and mammary tissue. PEA also maintained the redox balance by inhibiting nitric oxide level, reducing malondialdehyde (a product of lipid peroxidation), and increasing the level of antioxidant enzyme reduced glutathione. PEA altered the expression of apoptosis-related genes (BAX, P53,BCL-XL, CASPASE-8, and CASPASE-9) and induced the activity of Caspase-3 protein in the mammary tissue of tumor-bearing rats, indicating its apoptosis inducing ability. Taken together, the findings of this study suggest that PEA may have a protective effect against DMBA-induced breast tumors.
Collapse
Affiliation(s)
- Nilesh Rai
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vikas Kailashiya
- Department
of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|