1
|
Shaw P, Dey Bhowmik A, Gopinatha Pillai MS, Robbins N, Dwivedi SKD, Rao G. Anoikis resistance in Cancer: Mechanisms, therapeutic strategies, potential targets, and models for enhanced understanding. Cancer Lett 2025; 624:217750. [PMID: 40294841 DOI: 10.1016/j.canlet.2025.217750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/01/2025] [Accepted: 04/26/2025] [Indexed: 04/30/2025]
Abstract
Anoikis, defined as programmed cell death triggered by the loss of cell-extracellular matrix (ECM) and cell-cell interactions, is crucial for maintaining tissue homeostasis and preventing aberrant cell migration. Cancer cells, however, display anoikis resistance (AR) which in turn enables cancer metastasis. AR results from alterations in apoptotic signaling, metabolic reprogramming, autophagy modulation, and epigenetic changes, allowing cancer cells to survive in detached conditions. In this review we describe the mechanisms underlying both anoikis and AR, focusing on intrinsic and extrinsic pathways, disrupted cell-ECM interactions, and autophagy in cancer. Recent findings (i.e., between 2014 and 2024) on epigenetic regulation of AR and its role in metastasis are discussed. Therapeutic strategies targeting AR, including chemical inhibitors, are highlighted alongside a network analysis of 122 proteins reported to be associated with AR which identifies 53 hub proteins as potential targets. We also evaluate in vitro and in vivo models for studying AR, emphasizing their role in advancing metastasis research. Our overall goal is to guide future studies and therapeutic developments to counter cancer metastasis.
Collapse
Affiliation(s)
- Pallab Shaw
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Pathology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Arpan Dey Bhowmik
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Mohan Shankar Gopinatha Pillai
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Nathan Robbins
- James E. Hurley School of Science and Mathematics, Oklahoma Baptist University, Shawnee, OK, USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Pathology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA.
| |
Collapse
|
2
|
Zhu J, Hou Y, Yu W, Wang J, Chu X, Zhang X, Pang H, Ma D, Tang Y, Li M, Yuan C, Xie J, Wang C, Zhang J. Adipose tissue-derived microRNA-450a-5p induces type 2 diabetes mellitus by downregulating DUSP10. MOLECULAR BIOMEDICINE 2025; 6:7. [PMID: 39912972 PMCID: PMC11803021 DOI: 10.1186/s43556-025-00247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/11/2025] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) has rapidly increased worldwide, emerging as the fifth leading cause of death. The treatment of T2DM is challenging due to the side effects of oral hypoglycemic drugs and the limited efficacy of long-term insulin therapy, which can lead to insulin resistance (IR). Consequently, there is significant in discovering new drugs that have minimal side effects and a pronounced hypoglycemic effect. In obesity, microRNA levels have been implicated in glucose metabolism disorders and T2DM, although many aspects remain unresolved. Here, we confirmed that visceral adipose tissue and serum microRNA-450a-5p content increased under obesity and T2DM, and it was significantly positively associated with fasting blood glucose, triglycerides, cholesterol, low-density lipoproteins-cholesterol levels of the subjects. In high-fat diet (HFD)-induced obese mice, microRNA-450a-5p expression was increased in the serum, liver, and white adipose tissue. Moreover, the adipose Dicer-knockout mouse model was constructed to identify adipose tissue as the main source of microRNA-450a-5p. microRNA-450a-5p could inactivate the insulin signal pathway by targeting the inhibited Dual Specificity Phosphatase 10 (DUSP10) and inducing IR and glucose metabolism disorders in vitro cultured hepatocytes and adipocytes. Additionally, microRNA-450a-5p was found to regulate DUSP10 expression and insulin signaling activity, influencing glucose tolerance and insulin sensitivity across various models, including normal diet, HFD-induced obese, adipose tissue-specific microRNA-450a-5p-knockout, and db/db mice. Furthermore, gallic acid might play a potential role in inhibiting glucose levels by decreasing microRNA-450a-5p expression. Thus, microRNA-450a-5p emerges as an attractive therapeutic target for addressing obesity, IR, and T2DM.
Collapse
Affiliation(s)
- Jiaojiao Zhu
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Yanting Hou
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Wei Yu
- School of Pharmacy, Xinjiang Shihezi University, Xinjiang, 832002, China
| | - Jingzhou Wang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Xiaolong Chu
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Xueting Zhang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Huai Pang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Dingling Ma
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Yihan Tang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Menghuan Li
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Chenggang Yuan
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Jianxin Xie
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China.
| | - Cuizhe Wang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China.
| | - Jun Zhang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
3
|
Wang D, Wang J, Yao F, Xie Z, Wu J, Chen H, Wu Q. miR-1247-3p regulation of CCND1 affects chemoresistance in colorectal cancer. PLoS One 2024; 19:e0309979. [PMID: 39739897 DOI: 10.1371/journal.pone.0309979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/20/2024] [Indexed: 01/02/2025] Open
Abstract
The effectiveness of chemotherapy involving 5-fluorouracil and cisplatin (DDP) for the treatment of colorectal cancer (CRC) is often limited due to the emergence of drug resistance. An increasing body of research highlights the crucial role of abnormally expressed microRNAs (miR/miRNAs) in fostering drug resistance in various types of cancer. The present study was the first to explore the potential roles and mechanisms of the small non-coding RNA miR-1247-3p in CRC, particularly its association with DDP resistance in CRC. The findings of the current study revealed a significant decrease in miR-1247-3p expression in CRC cells, especially those resistant to drugs. By contrast, there was a marked increase in the expression of cyclin D1 (CCND1), a known target gene of miR-1247-3p that is negatively regulated by this miRNA. By modulating CCND1, miR-1247-3p can effectively reduce drug resistance and promote apoptosis in CRC cells, suggesting that miR-1247-3p could potentially reduce chemotherapy resistance by targeting CCND1. These results highlight the pivotal role of miR-1247-3p in reducing chemotherapy resistance through the inhibition of CCND1, providing insight into a promising therapeutic strategy for overcoming CRC resistance.
Collapse
Affiliation(s)
- Dequan Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jielian Wang
- Department of Internal Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Fei Yao
- College of Health Medicine, China Three Gorges University, Yichang, Hubei, P.R. China
| | - Zhufu Xie
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jianze Wu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Huiguang Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Qingming Wu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Gastroenterology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Vlase AM, Toiu A, Gligor O, Muntean D, Casian T, Vlase L, Filip A, Bȃldea I, Clichici S, Decea N, Moldovan R, Toma VA, Virag P, Crișan G. Investigation of Epilobium hirsutum L. Optimized Extract's Anti-Inflammatory and Antitumor Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:198. [PMID: 38256751 PMCID: PMC10819739 DOI: 10.3390/plants13020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Epilobium hirsutum L., commonly known as hairy willowherb, is a perennial herbaceous plant native to Europe and Asia. In Romania, the Epilobium genus includes 17 species that are used in folk medicine for various purposes. This study aimed to investigate the anti-inflammatory and antitumor potential of the optimized extract of Epilobium hirsutum (EH) in animal models. The first study investigated the anti-inflammatory properties of EH optimized extract and the model used was carrageenan-induced paw inflammation. Wistar rats were divided into three groups: negative control, positive control treated with indomethacin, and a group treated with the extract. Oxidative stress markers, cytokine levels, and protein expressions were assessed. The extract demonstrated anti-inflammatory properties comparable to those of the control group. In the second study, the antitumor effects of the extract were assessed using the tumor model of Ehrlich ascites carcinoma. Swiss albino mice with Ehrlich ascites were divided into four groups: negative, positive treated with cyclophosphamide (Cph), Group 3 treated with Cph and EH optimized extract, and Group 4 treated with extract alone. Samples from the ascites fluid, liver, and heart were analyzed to evaluate oxidative stress, inflammation, and cancer markers. The extract showed a reduction in tumor-associated inflammation and oxidative stress. Overall, the EH optimized extract exhibited promising anti-inflammatory and antitumor effects in the animal models studied. These findings suggest its potential as a natural adjuvant therapeutic agent for addressing inflammation and oxidative stress induced by different pathologies.
Collapse
Affiliation(s)
- Ana-Maria Vlase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.-M.V.); (O.G.); (G.C.)
| | - Anca Toiu
- Department of Pharmacognosy, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Octavia Gligor
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.-M.V.); (O.G.); (G.C.)
| | - Dana Muntean
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.M.); (T.C.)
| | - Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.M.); (T.C.)
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.M.); (T.C.)
| | - Adriana Filip
- Department of Physiology, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.F.); (S.C.); (N.D.); (R.M.)
| | - Ioana Bȃldea
- Department of Physiology, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.F.); (S.C.); (N.D.); (R.M.)
| | - Simona Clichici
- Department of Physiology, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.F.); (S.C.); (N.D.); (R.M.)
| | - Nicoleta Decea
- Department of Physiology, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.F.); (S.C.); (N.D.); (R.M.)
| | - Remus Moldovan
- Department of Physiology, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.F.); (S.C.); (N.D.); (R.M.)
| | - Vlad-Alexandru Toma
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii Street, 400015 Cluj-Napoca, Romania;
- Institute of Biological Research, Branch of NIRDBS, 48 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Piroska Virag
- Department of Radiobiology and Tumor Biology, The Oncology Institute “Prof. Dr. Ion Chiricuță”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania;
| | - Gianina Crișan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.-M.V.); (O.G.); (G.C.)
| |
Collapse
|