1
|
Fu JX, Jiao J, Gai QY, Gao J, Wang XQ, Zhang ZY, He J, Wen MN, Fu YJ. A Novel Endophytic Fungus Fusarium falciforme R-423 for the Control of Rhizoctonia solani Root Rot in Pigeon Pea as Reflected by the Alleviation of Reactive Oxygen Species-Mediated Host Defense Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3373-3388. [PMID: 39884855 DOI: 10.1021/acs.jafc.4c09886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Rhizoctonia solani root rot is a devastating fungal disease that causes significant yield losses in legume crops. A novel endophytic fungus Fusarium falciforme R-423 isolated from pigeon pea had a significant antagonistic capacity against R. solani. F. falciforme R-423 extracts could inhibit R. solani growth and cause it to die. Four host-specific and 15 genus-specific metabolites were identified as potential antimicrobial compounds. F. falciforme R-423's inoculation effectively controlled R. solani root rot in pigeon pea seedlings and promoted root growth. Co-inoculation of F. falciforme R-423 and R. solani reduced the levels of oxidative stress, pathogenesis- and biosynthesis-related gene expression, and phenolic compound accumulation in roots compared to those infected with R. solani, confirming that reactive oxygen species-mediated host defense responses were alleviated due to the effective control of R. solani by F. falciforme R-423. Overall, F. falciforme R-423 was a promising biocontrol agent against R. solani root rot in legume crops.
Collapse
Affiliation(s)
- Jin-Xian Fu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Jiao Jiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Qing-Yan Gai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Jie Gao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Xiao-Qing Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Zi-Yi Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Jing He
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Mo-Nan Wen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Yu-Jie Fu
- College of Forestry, Beijing Forestry University, Beijing 100083, People's Republic of China
| |
Collapse
|
2
|
DiBiase CN, Cheng X, Lee G, Moore RC, McCoy AG, Chilvers MI, Sun L, Wang D, Lin F, Zhao M. DNA methylation analysis reveals local changes in resistant and susceptible soybean lines in response to Phytophthora sansomeana. G3 (BETHESDA, MD.) 2024; 14:jkae191. [PMID: 39141590 PMCID: PMC11457093 DOI: 10.1093/g3journal/jkae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Phytophthora sansomeana is an emerging oomycete pathogen causing root rot in many agricultural species including soybean. However, as of now, only one potential resistance gene has been identified in soybean, and our understanding of how genetic and epigenetic regulation in soybean contributes to responses against this pathogen remains largely unknown. In this study, we performed whole genome bisulfite sequencing (WGBS) on two soybean lines, Colfax (resistant) and Williams 82 (susceptible), in response to P. sansomeana at two time points: 4 and 16 hours post-inoculation to compare their methylation changes. Our findings revealed that there were no significant changes in genome-wide CG, CHG (H = A, T, or C), and CHH methylation. However, we observed local methylation changes, specially an increase in CHH methylation around genes and transposable elements (TEs) after inoculation, which occurred earlier in the susceptible line and later in the resistant line. After inoculation, we identified differentially methylated regions (DMRs) in both Colfax and Williams 82, with a predominant presence in TEs. Notably, our data also indicated that more TEs exhibited changes in their methylomes in the susceptible line compared to the resistant line. Furthermore, we discovered 837 DMRs within or flanking 772 differentially expressed genes (DEGs) in Colfax and 166 DMRs within or flanking 138 DEGs in Williams 82. These DEGs had diverse functions, with Colfax primarily showing involvement in metabolic process, defense response, plant and pathogen interaction, anion and nucleotide binding, and catalytic activity, while Williams 82 exhibited a significant association with photosynthesis. These findings suggest distinct molecular responses to P. sansomeana infection in the resistant and susceptible soybean lines.
Collapse
Affiliation(s)
| | - Xi Cheng
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32611, USA
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Gwonjin Lee
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Richard C Moore
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Austin G McCoy
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Lianjun Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Fisher Delta Research, Extension, and Education Center, Division of Plant Sciences and Technology, University of Missouri, Portageville, MO 63873, USA
| | - Meixia Zhao
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32611, USA
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|