1
|
de Geus MB, Leslie SN, Lam T, Wang W, Roux-Dalvai F, Droit A, Kivisakk P, Nairn AC, Arnold SE, Carlyle BC. Mass spectrometry in cerebrospinal fluid uncovers association of glycolysis biomarkers with Alzheimer's disease in a large clinical sample. Sci Rep 2023; 13:22406. [PMID: 38104170 PMCID: PMC10725469 DOI: 10.1038/s41598-023-49440-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023] Open
Abstract
Alzheimer's disease (AD) is a complex and heterogeneous neurodegenerative disorder with contributions from multiple pathophysiological pathways. One of the long-recognized and important features of AD is disrupted cerebral glucose metabolism, but the underlying molecular basis remains unclear. In this study, unbiased mass spectrometry was used to survey CSF from a large clinical cohort, comparing patients who are either cognitively unimpaired (CU; n = 68), suffering from mild-cognitive impairment or dementia from AD (MCI-AD, n = 95; DEM-AD, n = 72), or other causes (MCI-other, n = 77; DEM-other, n = 23), or Normal Pressure Hydrocephalus (NPH, n = 57). The results revealed changes related to altered glucose metabolism. In particular, two glycolytic enzymes, pyruvate kinase (PKM) and aldolase A (ALDOA), were found to be upregulated in CSF from patients with AD compared to those with other neurological conditions. Increases in full-length PKM and ALDOA levels in CSF were confirmed with immunoblotting. Levels of these enzymes furthermore correlated negatively with CSF glucose in matching CSF samples. PKM levels were also found to be increased in AD in publicly available brain-tissue data. These results indicate that ALDOA and PKM may act as technically-robust potential biomarkers of glucose metabolism dysregulation in AD.
Collapse
Affiliation(s)
- Matthijs B de Geus
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Leiden University Medical Center, Leiden, The Netherlands
| | - Shannon N Leslie
- Yale Department of Psychiatry, New Haven, CT, USA
- Janssen Pharmaceuticals, San Diego, CA, USA
| | - TuKiet Lam
- W.M. Keck Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, CT, USA
| | - Weiwei Wang
- W.M. Keck Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, CT, USA
| | | | - Arnaud Droit
- CHU de Québec - Université Laval, Quebec City, Canada
| | - Pia Kivisakk
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Steven E Arnold
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Becky C Carlyle
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.
- Department of Physiology Anatomy and Genetics, Oxford University, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, Oxford, UK.
| |
Collapse
|
2
|
Burnham SC, Iaccarino L, Pontecorvo MJ, Fleisher AS, Lu M, Collins EC, Devous MD. A review of the flortaucipir literature for positron emission tomography imaging of tau neurofibrillary tangles. Brain Commun 2023; 6:fcad305. [PMID: 38187878 PMCID: PMC10768888 DOI: 10.1093/braincomms/fcad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease is defined by the presence of β-amyloid plaques and neurofibrillary tau tangles potentially preceding clinical symptoms by many years. Previously only detectable post-mortem, these pathological hallmarks are now identifiable using biomarkers, permitting an in vivo definitive diagnosis of Alzheimer's disease. 18F-flortaucipir (previously known as 18F-T807; 18F-AV-1451) was the first tau positron emission tomography tracer to be introduced and is the only Food and Drug Administration-approved tau positron emission tomography tracer (Tauvid™). It has been widely adopted and validated in a number of independent research and clinical settings. In this review, we present an overview of the published literature on flortaucipir for positron emission tomography imaging of neurofibrillary tau tangles. We considered all accessible peer-reviewed literature pertaining to flortaucipir through 30 April 2022. We found 474 relevant peer-reviewed publications, which were organized into the following categories based on their primary focus: typical Alzheimer's disease, mild cognitive impairment and pre-symptomatic populations; atypical Alzheimer's disease; non-Alzheimer's disease neurodegenerative conditions; head-to-head comparisons with other Tau positron emission tomography tracers; and technical considerations. The available flortaucipir literature provides substantial evidence for the use of this positron emission tomography tracer in assessing neurofibrillary tau tangles in Alzheimer's disease and limited support for its use in other neurodegenerative disorders. Visual interpretation and quantitation approaches, although heterogeneous, mostly converge and demonstrate the high diagnostic and prognostic value of flortaucipir in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Ming Lu
- Avid, Eli Lilly and Company, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
3
|
Liu S, Liu Y, Zhang Z, Wang X, Yang Y, Sun K, Yu J, Chiu DT, Wu C. Near-Infrared Optical Transducer for Dynamic Imaging of Cerebrospinal Fluid Glucose in Brain Tumor. Anal Chem 2022; 94:14265-14272. [PMID: 36206033 DOI: 10.1021/acs.analchem.2c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aberrant cerebral glucose metabolism is related to many brain diseases, especially brain tumor. However, it remains challenging to measure the dynamic changes in cerebral glucose. Here, we developed a near-infrared (NIR) optical transducer to sensitively monitor the glucose variations in cerebrospinal fluid in vivo. The transducer consists of an oxygen-sensitive nanoparticle combined with glucose oxidase (GOx), yielding highly sensitive NIR phosphorescence in response to blood glucose change. We demonstrated long-term continuous glucose monitoring by using the NIR transducer. After subcutaneous implantation, the glucose transducer provides a strong luminescence signal that can continuously monitor blood glucose fluctuations for weeks. By using the NIR emission of the transducer, we further observed abnormal dynamic changes in cerebrospinal fluid glucose and quantitatively assessed cerebral glucose uptake rates in transgenic mice bearing brain tumors. This study provides a promising method for the diagnosis of various metabolic diseases with altered glucose metabolism.
Collapse
Affiliation(s)
- Siyang Liu
- Harbin Institute of Technology, Harbin 150001, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ye Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhe Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaodong Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yicheng Yang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kai Sun
- Department of Chemistry and Bioengineering, University of Washington, 4000 15th NE, Seattle, Washington 98195, United States
| | - Jiangbo Yu
- Department of Chemistry and Bioengineering, University of Washington, 4000 15th NE, Seattle, Washington 98195, United States
| | - Daniel T Chiu
- Department of Chemistry and Bioengineering, University of Washington, 4000 15th NE, Seattle, Washington 98195, United States
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Metabolites and Biomarker Compounds of Neurodegenerative Diseases in Cerebrospinal Fluid. Metabolites 2022; 12:metabo12040343. [PMID: 35448530 PMCID: PMC9031591 DOI: 10.3390/metabo12040343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 12/25/2022] Open
Abstract
Despite recent advances in diagnostic procedures for neurological disorders, it is still difficult to definitively diagnose some neurodegenerative diseases without neuropathological examination of autopsied brain tissue. As pathological processes in the brain are frequently reflected in the components of cerebrospinal fluid (CSF), CSF samples are sometimes useful for diagnosis. After CSF is secreted from the choroid plexus epithelial cells in the ventricles, some flows in the brain, some is mixed with intracerebral interstitial fluid, and some is excreted through two major drainage pathways, i.e., the intravascular periarterial drainage pathway and the glymphatic system. Accordingly, substances produced by metabolic and pathological processes in the brain may be detectable in CSF. Many papers have reported changes in the concentration of substances in the CSF of patients with metabolic and neurological disorders, some of which can be useful biomarkers of the disorders. In this paper, we show the significance of glucose- and neurotransmitter-related CSF metabolites, considering their transporters in the choroid plexus; summarize the reported candidates of CSF biomarkers for neurodegenerative diseases, including amyloid-β, tau, α-synuclein, microRNAs, and mitochondrial DNA; and evaluate their potential as efficient diagnostic tools.
Collapse
|
5
|
de Souza GS, Andrade MA, Borelli WV, Schilling LP, Matushita CS, Portuguez MW, da Costa JC, Marques da Silva AM. Amyloid-β PET Classification on Cognitive Aging Stages Using the Centiloid Scale. Mol Imaging Biol 2021; 24:394-403. [PMID: 34611766 DOI: 10.1007/s11307-021-01660-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
PROPOSE This study aims to explore the use of the Centiloid (CL) method in amyloid-β PET quantification to evaluate distinct cognitive aging stages, investigating subjects' mismatch classification using different cut-points for amyloid-β positivity. PROCEDURES The CL equation was applied in four groups of individuals: SuperAgers (SA), healthy age-matched controls (AC), healthy middle-aged controls (MC), and Alzheimer's disease (AD). The amyloid-β burden was calculated and compared between groups and quantitative variables. Three different cut-points (Jack CR, Wiste HJ, Weigand SD, et al., Alzheimer's Dement 13:205-216, 2017; Salvadó G, Molinuevo JL, Brugulat-Serrat A, et al., Alzheimer's Res Ther 11:27, 2019; and Amadoru S, Doré V, McLean CA, et al., Alzheimer's Res Ther 12:22, 2020) were applied in CL values to differentiate the earliest abnormal pathophysiological accumulation of Aβ and the established Aβ pathology. RESULTS The AD group exhibited a significantly increased Aβ burden compared to the MC, but not AC groups. Both healthy control (MC and AC) groups were not significantly different. Visually, the SA group showed a diverse distribution of CL values compared with MC; however, the difference was not significant. The CL values have a moderate and significant relationship between Aβ visual read, RAVLT DR and MMSE. Depending on the cut-point used, 10 CL, 19 CL, or 30 CL, 7.5% of our individuals had a different classification in the Aβ positivity. For the AC group, we obtained about 40 to 60% of the individuals classified as positive. CONCLUSION SuperAgers exhibited a similar Aβ load to AC and MC, differing in cognitive performance. Independently of cut-point used (10 CL, 19 CL, or 30 CL), three SA individuals were classified as Aβ positive, showing the duality between the individual's clinics and the biological definition of Alzheimer's. Different cut-points lead to Aβ positivity classification mismatch in individuals, and an extra care is needed for individuals who have a CL value between 10 and 30 CL.
Collapse
Affiliation(s)
- Giordana Salvi de Souza
- School of Medicine, PUCRS, Porto Alegre, Brazil.
- Medical Image Computing Laboratory, School of Technology, PUCRS, Porto Alegre, Brazil.
| | - Michele Alberton Andrade
- School of Medicine, PUCRS, Porto Alegre, Brazil
- Medical Image Computing Laboratory, School of Technology, PUCRS, Porto Alegre, Brazil
- Brain Institute of Rio Grande Do Sul (BraIns), PUCRS, Porto Alegre, Brazil
| | | | | | | | - Mirna Wetters Portuguez
- School of Medicine, PUCRS, Porto Alegre, Brazil
- Brain Institute of Rio Grande Do Sul (BraIns), PUCRS, Porto Alegre, Brazil
| | - Jaderson Costa da Costa
- School of Medicine, PUCRS, Porto Alegre, Brazil
- Brain Institute of Rio Grande Do Sul (BraIns), PUCRS, Porto Alegre, Brazil
| | - Ana Maria Marques da Silva
- School of Medicine, PUCRS, Porto Alegre, Brazil
- Medical Image Computing Laboratory, School of Technology, PUCRS, Porto Alegre, Brazil
- Brain Institute of Rio Grande Do Sul (BraIns), PUCRS, Porto Alegre, Brazil
| |
Collapse
|