1
|
Wang A, Huo R, Wei Y, Guo X, Wang Z, Zhao Q, Liu Y, Yuan H. Evaluation of brain microstructure changes in surviving fetus of monochorionic twin pregnancies with single intrauterine fetal death using diffusion weighted imaging: a MRI-based cohort study. BMC Med Imaging 2025; 25:70. [PMID: 40033237 PMCID: PMC11877868 DOI: 10.1186/s12880-025-01609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Single intrauterine fetal death (sIUFD) will lead to an increased risk of adverse events such as fetal brain abnormalities in the survivor. However, how to detect these anomalies in the early stages remains to be explored. OBJECTIVE To compare apparent diffusion coefficient (ADC) values of fetal brain in cases of single intrauterine fetal death (sIUFD) with twins control and singleton control using diffusion weighted imaging (DWI), and to perform follow-up study to reveal the underlying cerebral microstructure changes. MATERIALS AND METHODS In this prospective MRI-based cohort study, we compared 43 surviving fetuses of sIUFD (18 following selective fetal reduction, 2 following laser ablation treatment for twin-to-twin transfusion syndrome, and 23 spontaneous) with 2 control cohorts ( 43 healthy twin fetuses, 43 singletons). All fetuses underwent fetal brain MRI. DWI was performed and ADC map was reconstructed. ADC values of certain regions were compared among the three groups. RESULTS ADC values were lower in bilateral white matter of frontal, parietal, temporal lobes and cerebellum in surviving fetuses compared with twins control and singleton control, respectively. ADC values of bilateral basal ganglia, thalamus and cerebellum in surviving fetuses, that of bilateral frontal lobes, cerebellum in twins control and that of right temporal lobe, left basal ganglia, and bilateral cerebellum in singleton control, were negatively correlated with gestational age. ADC values of left cerebellum in surviving fetuses were positively correlated with interval time. CONCLUSIONS DWI is a very useful sequence for detecting underlying changes. ADC value might be a effective indicator of subtle anomalies in surviving fetuses.
Collapse
Affiliation(s)
- Aonan Wang
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
| | - Ran Huo
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaoyue Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Zheng Wang
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
| | - Qiang Zhao
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
| | - Ying Liu
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
2
|
Meijerink L, van Ooijen IM, Alderliesten T, Terstappen F, Benders MJNL, Bekker MN. Fetal brain development in fetal growth restriction using MRI: a systematic review. BMC Pregnancy Childbirth 2025; 25:208. [PMID: 40012049 PMCID: PMC11863776 DOI: 10.1186/s12884-024-07124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/26/2024] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND This systematic review investigates potential differences in brain development between growth restricted (FGR)-fetuses compared to appropriate for gestational age (AGA) fetuses using MRI. METHODS PubMed, Embase, Cochrane Library and Web of Science databases were searched from 1985 to 2023. FGR was defined as an estimated fetal weight (EFW) < p10 and/or an abdominal circumference (AC) < p10, or 20% reduction in EFW or AC using a minimum interval of two weeks. Outcomes included volumetrics, biometrics, apparent diffusion coefficients (ADC), 1H-MRS-metabolites, and oxygenation of the fetal brain. Risk of bias was assessed using Newcastle-Ottawa Scale (NOS). A meta-analysis was conducted on variables when reported in at least three studies, calculating the mean difference (MD) with a 95% confidence interval (CI). RESULTS Twenty-nine studies were included after three-phase screening, 13 used the FGR consensus definition according to the Delphi procedure. Total brain volume and cerebellar volume were significantly reduced in FGR fetuses (n = 183; 74) when compared to AGA fetuses (n = 283; 166) with a MD of -30.84 cm3 (p < 0.01) and - 2.24 cm3 (p < 0.01). ADC values in the frontal white matter (FWM), occipital white matter (OWM), temporal white matter (TWM), thalami, centrum semiovale (CSO), basal ganglia, pons and cerebellum, significantly lower in growth restricted fetuses (-0.07 × 10-3 mm2/s (p < 0.01); -0.06 × 10-3 mm2/s (p < 0.01); -0.07 × 10-3 mm2/s (p < 0.01); -0.10 × 10-3 mm2/s (p < 0.01); -0.06 × 10-3 mm2/s (p < 0.01); -0.07 × 10-3 mm2/s (p < 0.01); -0.07 × 10-3 mm2/s (p < 0.01); -0.02 × 10-3 mm2/s (p < 0.01); respectively). 1H-MRS showed reduced levels of N-acetyl aspartate (NAA): Choline (Cho) and NAA: Creatine(CR) levels in the frontal lobe and central brain tissue, whilst contradictive findings concerning Cho: Cr and Inositol(Ino): Cho ratios were found. Two studies investigated the cerebral hemodynamic changes in FGR fetuses showing no difference in fractional moving blood volume, similar venous blood oxygenation in the superior sagittal sinus and no difference in T2* in the fetal brain. DISCUSSION MRI provides additional information on fetal brain development in a growth restricted population. Smaller total brain and cerebellar volumes and lower ADC values in the FWM, OWM, TWM, thalami, CSO, basal ganglia, pons and cerebellum have been observed in FGR. These conclusions are drawn on relatively small sample sizes with high heterogeneity resulting from diverse study populations and MRI techniques. Furthermore, how these findings correlate to long-term neurocognitive abnormalities associated with FGR remains to be elucidated. A large cohort study comparing brain maturation, myelination, metabolic and hemodynamic status between brain-sparing FGR fetuses to healthy age-matched controls is needed.
Collapse
Affiliation(s)
- L Meijerink
- Department of Obstetrics, Division Woman and Baby, University Medical Center Utrecht, location Wilhelmina Children's Hospital, Lundlaan 6, Utrecht, the Netherlands.
| | - I M van Ooijen
- Department of Neonatology, Divison Woman and Baby, University Medical Center Utrecht, location Wilhelmina Children's Hospital, Lundlaan 6, Utrecht, the Netherlands
| | - T Alderliesten
- Department of Neonatology, Divison Woman and Baby, University Medical Center Utrecht, location Wilhelmina Children's Hospital, Lundlaan 6, Utrecht, the Netherlands
| | - F Terstappen
- Department of Neonatology, Divison Woman and Baby, University Medical Center Utrecht, location Wilhelmina Children's Hospital, Lundlaan 6, Utrecht, the Netherlands
- Department of Obstetrics, Division Woman and Baby, University Medical Center Utrecht, location Wilhelmina Children's Hospital, Lundlaan 6, Utrecht, the Netherlands
| | - M J N L Benders
- Department of Neonatology, Divison Woman and Baby, University Medical Center Utrecht, location Wilhelmina Children's Hospital, Lundlaan 6, Utrecht, the Netherlands
| | - M N Bekker
- Department of Obstetrics, Division Woman and Baby, University Medical Center Utrecht, location Wilhelmina Children's Hospital, Lundlaan 6, Utrecht, the Netherlands
| |
Collapse
|
3
|
Ercolani G, Capuani S, Celli V, Ciulla S, Ninkova R, Gennarini M, Miceli V, Grimm R, Di Mascio D, Porpora MG, Giancotti A, Catalano C, Manganaro L. Intravoxel incoherent motion MRI to assess feto-placental diffusion and perfusion properties in small fetuses. LA RADIOLOGIA MEDICA 2025; 130:81-95. [PMID: 39541066 DOI: 10.1007/s11547-024-01918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES To investigate the use of intravoxel incoherent motion (IVIM) to study microperfusion and microstructural characteristics of lungs, brain, and placenta in normal and small fetuses. METHODS We retrospectively enrolled 30 small fetuses and 82 normal pregnancies who underwent a 1.5-T MRI examination using an IVIM-DWI. Small fetuses were distinguished in small for gestational age (SGA) and "true" fetal growth restriction (FGR). ROIs were placed on the brain parenchyma, lungs, and fetal/maternal placental sides. Differences in perfusion fraction f, diffusion coefficient D, and pseudo-diffusion coefficient D* and their correlation with gestational age (GA) and birth weight (BW) were investigated. RESULTS LUNG: f showed significantly lower values (p = 2·10-7) in small fetuses (SGA + FGR); f discriminates SGA and FGR from normal (p = 0.001; p = 1·10-6). f increases with GA (p < 0.0001) in the control group; a positive correlation was also obtained in small fetuses, although less significant. PLACENTA FGR showed lower f values than normal ones, in both the fetal (p = 1.4·10-7) and maternal side (p = 0.001); f discriminates between SGA and FGR (p = 0.03). In small fetuses (SGA + FGR), f correlates positively with BW. BRAIN D values in supratentorial white matter (WM) were significantly higher compared to other regions, in both normal and small fetuses. Small fetuses showed higher D values in occipital WM and pons (p = 0.041; p = 0.027) than in normal. D correlates negatively with GA in the healthy group. No correlation between D and GA was found in SGA + FGR group. CONCLUSIONS In our study, IVIM-MRI allowed us to detect microstructural and microperfusion changes in the placenta, brain, and lung of small fetuses, noninvasively.
Collapse
Affiliation(s)
- Giada Ercolani
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Silvia Capuani
- CNR ISC, Physics Department, "Sapienza" University of Rome, Rome, Italy
| | - Veronica Celli
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Sandra Ciulla
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Roberta Ninkova
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Marco Gennarini
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Valentina Miceli
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| | | | - Daniele Di Mascio
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Maria Grazia Porpora
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Antonella Giancotti
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Lucia Manganaro
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
4
|
Chandra Sekhar P, Rangasami R, Andrew C, Natarajan P. Measurement of apparent diffusion coefficient (ADC) in fetal organs and placenta using 3 Tesla magnetic resonance imaging (MRI) across gestational ages. Sci Rep 2024; 14:23811. [PMID: 39394357 PMCID: PMC11470107 DOI: 10.1038/s41598-024-73902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024] Open
Abstract
Diffusion-weighted imaging (DWI) is a technique used to probe the random microscopic motion of water protons in living tissue, represented by a parameter measurement of apparent diffusion coefficient (ADC) values. This study aimed to measure the ADC values of various fetal organs and placenta using 3T at various gestational ages. This was a prospective observational study. A total of 103 singleton pregnancies from 20 to 38 weeks of gestational age were included. Diffusion-weighted imaging was performed in the axial plane from the fetal head to the trunk with the following parameters: TR: 2000-2500 ms; TE: 88 ms; FOV: 250 mm; 256 matrix; slice thickness: 4 mm with a 0 mm gap; acquisition time: 1 min, 18 s. Diffusion gradient values were b = 0 and b = 700 s/mm2. ADC was measured in fetal brain regions (frontal white matter, occipital white matter, centrum semiovale, pons, thalamus, cerebellum, and fetal organs (lungs, kidney, and placenta). ANOVA was used to calculate the mean ADC values. Karl Pearson's coefficient of correlation was used to evaluate the correlation between ADC values and increasing gestational age. The mean ADC values of brain regions were: frontal white matter (1.64 ± 0.08 × 10- 3 mm2 /s, F-39.10,p-<0.001), occipital white matter (1.64 ± 0.06 × 10- 3 mm2/s, F-26.14, p-<0.001), centrum semiovale (1.62 ± 0.03 × 10- 3 mm2/s, F-49.88,p-<0.001, pons (1.23 ± 0.09 × 10- 3 mm2/s F-9.14,p-<0.001) ), Thalamus (1.21 ± 0.07 × 10- 3 mm2/s, F-13.54,p-<0.001) and cerebellum (1.36 ± 0.10 × 10- 3 mm2 /s, F-4.19,p-<0.001). The mean ADC values of fetal organs were lung (1.92 ± 0.15 × 10- 3 mm2 /s, F-28.24, p-<0.001), kidney (1.34 ± 0.11 × 10- 3 mm2 /s, F-1.05, p- 0.37) and placenta (1.94 ± 0.11 × 10- 3 mm2 /s, F-160.33, p-<0.001). White-matter regions showed a significant positive correlation with increasing gestational age. Statistically, a negative correlation was observed between increasing gestational age and ADC measurements obtained in the thalamus, cerebellum, pons, and kidney. This will be one of the first few studies to provide the ADC values of the fetal brain and fetal organs using 3T MRI. The current study shows that diffusion-weighted MRI can offer a promising technique to evaluate the structural development of fetal organs and can potentially lead to a biomarker for predicting the functionality of the fetal organs in abnormalities.
Collapse
Affiliation(s)
- Priyanka Chandra Sekhar
- Department of Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, 600116, India.
- Department of Allied Health Sciences, The Apollo University, Chittoor, India.
| | - Rajeswaran Rangasami
- Department of Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, 600116, India
| | - Chitra Andrew
- Department of Fetal Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, India
| | - Paarthipan Natarajan
- Department of Radiology, Saveetha Medical College and Hospital, Chennai, 602105, India
| |
Collapse
|
5
|
Dap M, Albert T, Ramdhani I, Couturier-Tarrade A, Morel O, Chavatte-Palmer P, Beaumont M, Bertholdt C. Is the rabbit a natural model of fetal growth restriction? Morphological and functional characterization study using diffusion-weighted MRI and stereology. Placenta 2024; 154:74-79. [PMID: 38909564 DOI: 10.1016/j.placenta.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Rabbits are routinely used as a natural model of fetal growth restriction (FGR); however, no studies have confirmed that rabbits have FGR. This study aimed to characterize the fetoplacental unit (FPU) in healthy pregnant rabbits using diffusion-weighted MRI and stereology. A secondary objective of the study was to describe the associations among findings from diffusion-weighted MRI (DW-MRI), fetal weight measurement and histological analysis of the placenta. METHODS Pregnant rabbits underwent DW-MRI under general anesthesia on embryonic day 28 of pregnancy. MR imaging was performed at 3.0 T. The apparent diffusion coefficient (ADC) values were calculated for the fetal brain, liver, and placenta. The placenta was analyzed by stereology (volume density of trophoblasts, the maternal blood space and fetal vessels). Each fetus and placenta were weighed. Two groups of fetuses were defined according to the position in the uterine horn (Cervix group versus Ovary group). RESULTS We analyzed 20 FPUs from 5 pregnant rabbits. Fetuses and placentas were significantly lighter in the Cervix group than in the Ovary group (34.7 ± 3.7 g vs. 40.2 ± 5.4 g; p = 0.02). Volume density analysis revealed that the percentage of fetal vessels, the maternal blood space and trophoblasts was not significantly affected by the position of the fetus in the uterine horn. There was no difference in ADC values according to the position of the fetus in the uterine horn, and there was no correlation between ADC values and fetal weight. DISCUSSION The findings of a multimodal evaluation of the placenta in a rabbit model of FGR suggested is not a natural model of fetal growth restriction.
Collapse
Affiliation(s)
- Matthieu Dap
- Université de Lorraine, CHRU-NANCY, Pôle de la Femme, F-54000, Nancy, France; Université de Lorraine, Inserm, IADI, F-54000, Nancy, France; Université de Lorraine, Pôle Laboratoire, F-54000, Nancy, France.
| | - Théo Albert
- Université de Lorraine, Inserm, IADI, F-54000, Nancy, France
| | - Ikrame Ramdhani
- Université de Lorraine, Inserm, IADI, F-54000, Nancy, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Olivier Morel
- Université de Lorraine, CHRU-NANCY, Pôle de la Femme, F-54000, Nancy, France; Université de Lorraine, Inserm, IADI, F-54000, Nancy, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Marine Beaumont
- Université de Lorraine, Inserm, IADI, F-54000, Nancy, France; CHRU-NANCY, Inserm, Université de Lorraine, CIC, Innovation Technologique, F-54000, Nancy, France
| | - Charline Bertholdt
- Université de Lorraine, CHRU-NANCY, Pôle de la Femme, F-54000, Nancy, France; Université de Lorraine, Inserm, IADI, F-54000, Nancy, France
| |
Collapse
|
6
|
Xu E, Jouannic JM, Alison M, Ancel PY, Friszer S, Rousseau J, Guilbaud L, Adamsbaum C, Goffinet F, Blondiaux E. Analysis of MRI brain biometrics in fetuses monitored for intra uterine growth restriction and their prognostic value: Results of a prospective multicenter study. Eur J Obstet Gynecol Reprod Biol 2024; 298:91-97. [PMID: 38735121 DOI: 10.1016/j.ejogrb.2024.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVE Show a prognostic value of brain changes in fetuses with intra uterine growth restriction (IUGR) on early neonatal outcome. STUDY DESIGN We prospectively recruited pregnant women whose fetuses presented fetal weight < 5th centile. A brain MRI was performed between 28 and 32 weeks of gestation (WG). Several brain biometrics were measured (as fronto-occipital diameter (FOD) and transverse cerebellar diameter (TCD)). Neonatal prognosis was evaluated according to a composite criterion. RESULTS Of the 78 patients included, 62 had a fetal brain MRI. The mean centile value of FOD was lower in the unfavorable outcome group (n = 9) compared to the favorable outcome group (n = 53) (24.5 ± 16.8 vs. 8.6 ± 13.2, p = 0.004). The ROC curve for predicting risk of unfavorable neonatal outcome based on FOD presented an area under the curve of 0.81 (95 % CI, [0.63---0.99]) and a threshold determined at the 3rd centile was associated with sensitivity of 0.78 and a specificity of 0.89. In multivariate analysis, a FOD less than the 3rd centile was significantly associated with an unfavorable neonatal risk. There also was a reduction in TCD (25.5 ± 21.5 vs. 10.4 ± 10.4, p = 0.03) in the unfavorable neonatal outcome group. CONCLUSION We found an association between a reduction in FOD and TCD in fetal MRIs conducted between 28 and 32 WG in fetuses monitored for IUGR with an unfavorable neonatal outcome. Our results suggest that these biometric changes could constitute markers of poor neonatal prognosis.
Collapse
Affiliation(s)
- Eric Xu
- Service de Radiologie Pédiatrique, Hôpital Armand Trousseau, GRC IMAGES, Médecine Sorbonne Université, APHP, Paris, France
| | - Jean-Marie Jouannic
- Service de Médecine Fœtale, Hôpital Armand Trousseau, Médecine Sorbonne Université, APHP, Paris, France
| | - Marianne Alison
- Service de Radiologie Pédiatrique, Hôpital Robert Debré, APHP, Université Paris Diderot, Paris France
| | - Pierre-Yves Ancel
- Obstetrical, Perinatal, and Pediatric Epidemiology Team and Biostatistics Sorbonne Paris Cité Research Center (U1153), INSERM and Université Paris Descartes, Paris, France; Unité de recherche clinique, CIC-Mère enfant, AP-HP, FHU PREMA, Hôpital Cochin, F-75014 Paris, France
| | - Stéphanie Friszer
- Service de Médecine Fœtale, Hôpital Armand Trousseau, Médecine Sorbonne Université, APHP, Paris, France
| | - Jessica Rousseau
- Obstetrical, Perinatal, and Pediatric Epidemiology Team and Biostatistics Sorbonne Paris Cité Research Center (U1153), INSERM and Université Paris Descartes, Paris, France
| | - Lucie Guilbaud
- Service de Médecine Fœtale, Hôpital Armand Trousseau, Médecine Sorbonne Université, APHP, Paris, France
| | - Catherine Adamsbaum
- Service de Radiopédiatrie, Hôpital Bicêtre, Université Paris Sud, Le Kremlin-Bicêtre, France
| | - François Goffinet
- Obstetrical, Perinatal, and Pediatric Epidemiology Team and Biostatistics Sorbonne Paris Cité Research Center (U1153), INSERM and Université Paris Descartes, Paris, France; Maternité Port Royal, Hôpital Cochin, APHP, DHU Risques et Grossesse, Université Paris Descartes, Paris, France
| | - Eléonore Blondiaux
- Service de Radiologie Pédiatrique, Hôpital Armand Trousseau, GRC IMAGES, Médecine Sorbonne Université, APHP, Paris, France.
| |
Collapse
|
7
|
Zheng W, Yan G, Jiang Y, Bao Z, Li K, Deng M, Li B, Zou Y. Diffusion-Weighted MRI of the Fetal Brain in Fetal Growth Restriction With Maternal Preeclampsia or Gestational Hypertension. J Magn Reson Imaging 2024; 59:1384-1393. [PMID: 37315155 DOI: 10.1002/jmri.28861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND The fetal neurodevelopmental microstructural alterations of intrauterine exposure to preeclampsia (PE) or gestational hypertension (GH) remain unknown. PURPOSE To evaluate the differences in diffusion-weighted imaging (DWI) of the fetal brain between normotensive pregnancies and PE/GH pregnancies, with a focus on PE/GH pregnancies with fetal growth restriction (FGR). STUDY TYPE Retrospective matched case-control study. POPULATION 40 singleton pregnancies with PE/GH complicated by FGR, and 3 paired control groups (PE/GH without FGR, normotensive FGR, normotensive pregnancies) (28-38 gestational weeks). FIELD STRENGTH/SEQUENCE DWI with single-shot echo-planar imaging at 1.5 Tesla. ASSESSMENT The apparent diffusion coefficient (ADC) values were calculated in the centrum semi-ovale (CSO), parietal white matter (PWM), frontal white matter (FWM), occipital white matter (OWM), temporal white matter (TWM), basal ganglia, thalamus (THAL), pons, and cerebellar hemisphere. STATISTICAL TESTS Student t test or Wilcoxon matched test was used to reveal the difference of ADC values among the investigated brain regions. A correlation between gestational age (GA) and ADC values was determined by linear regression analysis. RESULTS Compared with fetuses in PE/GH without FGR and those with normotensive pregnancies, fetuses in the PE/GH with FGR group had significantly lower average ADC measurements of supratentorial regions (1.65 ± 0.09 vs. 1.71 ± 0.10 10-3 mm2 /sec; vs. 1.73 ± 0.11 10-3 mm2 /sec, respectively). Regions of significantly decreased ADC values in the fetal brain included CSO, FWM, PWM, OWM, TWM and THAL in cases of PE/GH with FGR. ADC values from supratentorial regions in PE/GH pregnancies were not significantly correlated with GA (P = 0.12, 0.26); however, this trend was statistically significant in the normotensive groups. DATA CONCLUSION ADC values may indicate fetal brain developmental alterations in PE/GH with FGR fetuses but more microscopic and morphological studies are necessary to provide additional evidence to offer a different interpretation of this trend in fetal brain. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Weizeng Zheng
- Department of Radiology, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Guohui Yan
- Department of Radiology, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Ying Jiang
- Department of Obstetrics, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Zhongkun Bao
- Department of Radiology, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Kui Li
- Department of Radiology, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Meixiang Deng
- Department of Radiology, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Baohua Li
- Department of Obstetrics, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Yu Zou
- Department of Radiology, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Aviles Verdera J, Story L, Hall M, Finck T, Egloff A, Seed PT, Malik SJ, Rutherford MA, Hajnal JV, Tomi-Tricot R, Hutter J. Reliability and Feasibility of Low-Field-Strength Fetal MRI at 0.55 T during Pregnancy. Radiology 2023; 309:e223050. [PMID: 37847139 PMCID: PMC10623193 DOI: 10.1148/radiol.223050] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/20/2023] [Accepted: 09/06/2023] [Indexed: 10/18/2023]
Abstract
Background The benefits of using low-field-strength fetal MRI to evaluate antenatal development include reduced image artifacts, increased comfort, larger bore size, and potentially reduced costs, but studies about fetal low-field-strength MRI are lacking. Purpose To evaluate the reliability and feasibility of low-field-strength fetal MRI to assess anatomic and functional measures in pregnant participants using a commercially available 0.55-T MRI scanner and a comprehensive 20-minute protocol. Materials and Methods This prospective study was performed at a large teaching hospital (St Thomas' Hospital; London, England) from May to November 2022 in healthy pregnant participants and participants with pregnancy-related abnormalities using a commercially available 0.55-T MRI scanner. A 20-minute protocol was acquired including anatomic T2-weighted fast-spin-echo, quantitative T2*, and diffusion sequences. Key measures like biparietal diameter, transcerebellar diameter, lung volume, and cervical length were evaluated by two radiologists and an MRI-experienced obstetrician. Functional organ-specific mean values were given. Comparison was performed with existing published values and higher-field MRI using linear regression, interobserver correlation, and Bland-Altman plots. Results A total of 79 fetal MRI examinations were performed (mean gestational age, 29.4 weeks ± 5.5 [SD] [age range, 17.6-39.3 weeks]; maternal age, 34.4 years ± 5.3 [age range, 18.4-45.5 years]) in 47 healthy pregnant participants (control participants) and in 32 participants with pregnancy-related abnormalities. The key anatomic two-dimensional measures for the 47 healthy participants agreed with large cross-sectional 1.5-T and 3-T control studies. The interobserver correlations for the biparietal diameter in the first 40 consecutive scans were 0.96 (95% CI: 0.7, 0.99; P = .002) for abnormalities and 0.93 (95% CI: 0.86, 0.97; P < .001) for control participants. Functional features, including placental and brain T2* and placental apparent diffusion coefficient values, strongly correlated with gestational age (mean placental T2* in the control participants: 5.2 msec of decay per week; R2 = 0.66; mean T2* at 30 weeks, 176.6 msec; P < .001). Conclusion The 20-minute low-field-strength fetal MRI examination protocol was capable of producing reliable structural and functional measures of the fetus and placenta in pregnancy. Clinical trial registration no. REC 21/LO/0742 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Gowland in this issue.
Collapse
Affiliation(s)
- Jordina Aviles Verdera
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Lisa Story
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Megan Hall
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Tom Finck
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Alexia Egloff
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Paul T. Seed
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Shaihan J. Malik
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Mary A. Rutherford
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Joseph V. Hajnal
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Raphaël Tomi-Tricot
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Jana Hutter
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| |
Collapse
|
9
|
De Asis-Cruz J, Limperopoulos C. Harnessing the Power of Advanced Fetal Neuroimaging to Understand In Utero Footprints for Later Neuropsychiatric Disorders. Biol Psychiatry 2022; 93:867-879. [PMID: 36804195 DOI: 10.1016/j.biopsych.2022.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Adverse intrauterine events may profoundly impact fetal risk for future adult diseases. The mechanisms underlying this increased vulnerability are complex and remain poorly understood. Contemporary advances in fetal magnetic resonance imaging (MRI) have provided clinicians and scientists with unprecedented access to in vivo human fetal brain development to begin to identify emerging endophenotypes of neuropsychiatric disorders such as autism spectrum disorder, attention-deficit/hyperactivity disorder, and schizophrenia. In this review, we discuss salient findings of normal fetal neurodevelopment from studies using advanced, multimodal MRI that have provided unparalleled characterization of in utero prenatal brain morphology, metabolism, microstructure, and functional connectivity. We appraise the clinical utility of these normative data in identifying high-risk fetuses before birth. We highlight available studies that have investigated the predictive validity of advanced prenatal brain MRI findings and long-term neurodevelopmental outcomes. We then discuss how ex utero quantitative MRI findings can inform in utero investigations toward the pursuit of early biomarkers of risk. Lastly, we explore future opportunities to advance our understanding of the prenatal origins of neuropsychiatric disorders using precision fetal imaging.
Collapse
|
10
|
Peretz R, Halevy T, Gafner M, Fried S, Revesz Y, Mayer A, Katorza E. Volumetric Brain MRI Study in Fetuses with Intrauterine Growth Restriction Using a Semiautomated Method. AJNR Am J Neuroradiol 2022; 43:1674-1679. [PMID: 36202548 PMCID: PMC9731260 DOI: 10.3174/ajnr.a7665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/31/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND PURPOSE According to the medical literature, it is known that intrauterine growth restriction is associated with abnormal fetal brain findings. The aim of this study was to assess the volume of fetal brain structures in fetuses with intrauterine growth restriction compared with the control group and to examine the effect of intrauterine growth restriction on birth weight in relation to the effect on the volumes of these structures. MATERIALS AND METHODS This historical cohort study included 26 fetuses diagnosed with intrauterine growth restriction due to placental insufficiency. The control group included 66 fetuses with MR imaging scans demonstrating normal brain structures. The volumes of the supratentorial brain, left and right hemispheres, and the cerebellum were measured using a semiautomatic method. In addition, the cerebellum and supratentorial brain ratio was calculated. The measurements of each brain structure were then converted to percentiles according to growth curves. RESULTS The absolute volumes and percentiles of all brain structures examined were smaller in the intrauterine growth restriction group. All examined brain structures showed results that were statistically significant (P < .015). There was no statistically significant difference in the cerebellum/supratentorial brain ratio (P > .39). The difference in brain volume percentiles was statistically smaller than the difference in birth weight and birth weight percentiles (Dolberg growth curves) between the groups. CONCLUSIONS Intrauterine growth restriction affects the volume of brain structures, as measured by quantitative MR imaging. Compared with healthy controls, the effect on birth weight was more prominent than the effect on brain structures, possibly due to the "brain-preserving" capability.
Collapse
Affiliation(s)
- R Peretz
- From the Sackler School of Medicine (R.P., M.G., S.F., Y.R., A.M., E.K.), Tel Aviv University, Tel Aviv, Israel
| | - T Halevy
- Sheba Medical Center (T.H., Y.R.), Tel-Hashomer, Israel
| | - M Gafner
- From the Sackler School of Medicine (R.P., M.G., S.F., Y.R., A.M., E.K.), Tel Aviv University, Tel Aviv, Israel
- Department of Pediatrics B (M.G.), Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - S Fried
- From the Sackler School of Medicine (R.P., M.G., S.F., Y.R., A.M., E.K.), Tel Aviv University, Tel Aviv, Israel
| | - Y Revesz
- From the Sackler School of Medicine (R.P., M.G., S.F., Y.R., A.M., E.K.), Tel Aviv University, Tel Aviv, Israel
- Sheba Medical Center (T.H., Y.R.), Tel-Hashomer, Israel
| | - A Mayer
- From the Sackler School of Medicine (R.P., M.G., S.F., Y.R., A.M., E.K.), Tel Aviv University, Tel Aviv, Israel
- Department of Diagnostic Radiology (A.M.), Sheba Medical Center, Tel-Hashomer, Israel
| | - E Katorza
- From the Sackler School of Medicine (R.P., M.G., S.F., Y.R., A.M., E.K.), Tel Aviv University, Tel Aviv, Israel
- Department of Obstetrics and Gynecology (E.K.), Gertner Institute for Epidemiology
- Health Policy Research (E.K.)
| |
Collapse
|
11
|
Corroenne R, Arthuis C, Kasprian G, Mahallati H, Ville Y, Millischer Bellaiche AE, Henry C, Grevent D, Salomon LJ. Diffusion tensor imaging of fetal brain: principles, potential and limitations of promising technique. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:470-476. [PMID: 35561129 DOI: 10.1002/uog.24935] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Human brain development is a complex process that begins in the third week of gestation. During early development, the fetal brain undergoes dynamic morphological changes. These changes result from events such as neurogenesis, neuronal migration, synapse formation, axonal growth and myelination. Disruption of any of these processes is thought to be responsible for a wide array of different pathologies. Recent advances in magnetic resonance imaging, especially diffusion-weighted imaging and diffusion tensor imaging (DTI), have enabled characterization and evaluation of brain development in utero. In this review, aimed at practitioners involved in fetal medicine and high-risk pregnancies, we provide a comprehensive overview of fetal DTI studies focusing on characterization of early normal brain development as well as evaluation of brain pathology in utero. We also discuss the reliability and limitations of fetal brain DTI. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- R Corroenne
- Department of Obstetrics, Fetal Medicine and Surgery, Necker-Enfants Malades Hospital, APHP, Paris, France
- EA FETUS 7328 and LUMIERE Platform, University of Paris, Paris, France
| | - C Arthuis
- EA FETUS 7328 and LUMIERE Platform, University of Paris, Paris, France
- Department of Obstetrics, University Hospital of Nantes, Nantes, France
| | - G Kasprian
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - H Mahallati
- Department of Radiology, University of Calgary, Calgary, Canada
| | - Y Ville
- Department of Obstetrics, Fetal Medicine and Surgery, Necker-Enfants Malades Hospital, APHP, Paris, France
| | | | - C Henry
- EA FETUS 7328 and LUMIERE Platform, University of Paris, Paris, France
| | - D Grevent
- EA FETUS 7328 and LUMIERE Platform, University of Paris, Paris, France
- Department of Radiology, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - L J Salomon
- Department of Obstetrics, Fetal Medicine and Surgery, Necker-Enfants Malades Hospital, APHP, Paris, France
- EA FETUS 7328 and LUMIERE Platform, University of Paris, Paris, France
| |
Collapse
|
12
|
Aertsen M, Dymarkowski S, Vander Mijnsbrugge W, Cockmartin L, Demaerel P, De Catte L. Anatomical and diffusion-weighted imaging of brain abnormalities in third-trimester fetuses with cytomegalovirus infection. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:68-75. [PMID: 35018680 DOI: 10.1002/uog.24856] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES In this study of cytomegalovirus (CMV)-infected fetuses with first-trimester seroconversion, we aimed to evaluate the detection of brain abnormalities using magnetic resonance imaging (MRI) and neurosonography (NSG) in the third trimester, and compare the grading systems of the two modalities. We also evaluated the feasibility of routine use of diffusion-weighted imaging (DWI) fetal MRI and compared the regional apparent diffusion coefficient (ADC) values between CMV-infected fetuses and presumed normal, non-infected fetuses in the third trimester. METHODS This was a retrospective review of MRI and NSG scans in fetuses with confirmed first-trimester CMV infection performed between September 2015 and August 2019. Brain abnormalities were recorded and graded using fetal MRI and NSG grading systems to compare the two modalities. To investigate feasibility of DWI, a four-point rating scale (poor, suboptimal, good, excellent) was applied to assess the quality of the images. Quantitative assessment was performed by placing a freehand drawn region of interest in the white matter of the frontal, parietal, temporal and occipital lobes and the basal ganglia, pons and cerebellum to calculate ADC values. Regional ADC measurements were obtained similarly in a control group of fetuses with negative maternal CMV serology in the first trimester, normal brain findings on fetal MRI and normal genetic testing. RESULTS Fifty-three MRI examinations of 46 fetuses with confirmed first-trimester CMV infection were included. NSG detected 24 of 27 temporal cysts seen on MRI scans, with a sensitivity of 78% and an accuracy of 83%. NSG did not detect abnormal gyration visible on two (4%) MRI scans. Periventricular calcifications were detected on two MRI scans compared with 10 NSG scans. While lenticulostriate vasculopathy was detected on 11 (21%) NSG scans, no fetus demonstrated this finding on MRI. MRI grading correlated significantly with NSG grading of brain abnormalities (P < 0.0001). Eight (15%) of the DWI scans in the CMV cohort were excluded from further analysis because of insufficient quality. The ADC values of CMV-infected fetuses were significantly increased in the frontal (both sides, P < 0.0001), temporal (both sides, P < 0.0001), parietal (left side, P = 0.0378 and right side, P = 0.0014) and occipital (left side, P = 0.0002 and right side, P < 0.0001) lobes and decreased in the pons (P = 0.0085) when compared with non-infected fetuses. The ADC values in the basal ganglia and the cerebellum were not significantly different in CMV-infected fetuses compared with normal controls (all P > 0.05). Temporal and frontal ADC values were higher in CMV-infected fetuses with more severe brain abnormalities compared to fetuses with mild abnormalities. CONCLUSIONS Ultrasound and MRI are complementary during the third trimester in the assessment of brain abnormalities in CMV-infected fetuses, with a significant correlation between the grading systems of the two modalities. On DWI in the third trimester, the ADC values in several brain regions are abnormal in CMV-infected fetuses compared with normal controls. Furthermore, they seem to correlate in the temporal area and, to a lesser extent, frontal area with the severity of brain abnormalities associated with CMV infection. Larger prospective studies are needed for further investigation of the microscopic nature of diffusion abnormalities and correlation of different imaging findings with postnatal outcome. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- M Aertsen
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - S Dymarkowski
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | | | - L Cockmartin
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - P Demaerel
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - L De Catte
- Division Woman and Child, Fetal Medicine Unit, Clinical Department of Obstetrics and Gynecology, University Hospital Gasthuisberg, Leuven, Belgium
| |
Collapse
|
13
|
Chand K, Nano R, Wixey J, Patel J. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:372-382. [PMID: 35485440 PMCID: PMC9052430 DOI: 10.1093/stcltm/szac005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/12/2021] [Indexed: 11/25/2022] Open
Abstract
Fetal growth restriction (FGR) occurs when a fetus is unable to grow normally due to inadequate nutrient and oxygen supply from the placenta. Children born with FGR are at high risk of lifelong adverse neurodevelopmental outcomes, such as cerebral palsy, behavioral issues, and learning and attention difficulties. Unfortunately, there is no treatment to protect the FGR newborn from these adverse neurological outcomes. Chronic inflammation and vascular disruption are prevalent in the brains of FGR neonates and therefore targeted treatments may be key to neuroprotection. Tissue repair and regeneration via stem cell therapies have emerged as a potential clinical intervention for FGR babies at risk for neurological impairment and long-term disability. This review discusses the advancement of research into stem cell therapy for treating neurological diseases and how this may be extended for use in the FGR newborn. Leading preclinical studies using stem cell therapies in FGR animal models will be highlighted and the near-term steps that need to be taken for the development of future clinical trials.
Collapse
Affiliation(s)
- Kirat Chand
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Rachel Nano
- Cancer and Ageing Research Program, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Julie Wixey
- Julie Wixey, Faculty of Medicine, Royal Brisbane and Women’s Hospital, The University of Queensland Centre for Clinical Research, Herston 4029 QLD, Australia.
| | - Jatin Patel
- Corresponding authors: Jatin Patel, Translational Research Institute, Queensland University of Technology, 37 Kent Street, Woolloongabba 4102 QLD, Australia.
| |
Collapse
|
14
|
Placental features of fetal vascular malperfusion and infant neurodevelopmental outcomes at 2 years of age in severe fetal growth restriction. Am J Obstet Gynecol 2021; 225:413.e1-413.e11. [PMID: 33812813 DOI: 10.1016/j.ajog.2021.03.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Placental pathologic lesions suggesting maternal or fetal vascular malperfusion are common among pregnancies complicated by intrauterine growth restriction. Data on the relationship between pathologic placental lesions and subsequent infant neurodevelopmental outcomes are limited. OBJECTIVE This study aimed to assess the relationship between placental pathologic lesions and infant neurodevelopmental outcomes at 2 years of age in a cohort of pregnancies complicated by intrauterine growth restriction. STUDY DESIGN An observational cohort study included singleton intrauterine growth restriction pregnancies delivered at ≤34 weeks' gestation and with a birthweight of ≤1500 g at a single institution in the period between 2007 and 2016. Maternal and neonatal data were collected at discharge from the hospital. Infant neurodevelopmental assessment was performed every 3 months during the first year of life and every 6 months in the second year. Penalized logistic regression was used to test the association of maternal vascular malperfusion and fetal vascular malperfusion with infant outcomes adjusting for confounders. RESULTS Of the 249 pregnancies enrolled, neonatal mortality was 8.8% (22 of 249). Severe and overall maternal vascular malperfusion were 16.1% (40 of 249) and 31.7% (79 of 249), respectively. Severe maternal vascular malperfusion was associated with an increased risk of neonatal mortality (adjusted odds ratio, 3.3; 95% confidence interval, 1.2-9.5). Among the 198 survivors after a 2-year neurodevelopmental follow-up evaluation, the rate of major and minor neurodevelopmental sequelae was 57.1% (4 of 7) among severe fetal vascular malperfusion (adjusted odds ratio, 24.5; 95% confidence interval, 4.1-146), 44.8% (13 of 29) among overall fetal vascular malperfusion (adjusted odds ratio, 5.8; 95% confidence interval, 5.1-16.2), and 7.1% (12 of 169) in pregnancies without fetal vascular malperfusion. Infants born from pregnancies with fetal vascular malperfusion also had lower 2-year general quotient, personal-social, hearing and speech, and performance subscales scores than those without fetal vascular malperfusion. Finally, in the presence of fetal vascular malperfusion, the likelihood of a 2-year infant survival with normal neurodevelopmental outcomes was reduced by more than 70% (adjusted odds ratio, 0.29; 95% confidence interval, 0.14-0.63). Noticeably, 10 of the 20 subjects with a 2-year major neurodevelopmental impairment (3 of 4 with severe fetal vascular malperfusion) had little or no abnormal neurologic findings at discharge from neonatal intensive care unit. CONCLUSION In preterm intrauterine growth restriction, placental fetal vascular malperfusion is correlated with an increased risk of abnormal infant neurodevelopmental outcomes at 2 years of age even in the absence of brain lesions or neurologic abnormalities at discharge from the neonatal intensive care unit. In the case of a diagnosis of fetal vascular malperfusion, pediatricians and neurologists should be alerted to an increased risk of subsequent infant neurodevelopmental problems.
Collapse
|
15
|
Ren JY, Ji H, Zhu M, Dong SZ. DWI in Brains of Fetuses with Congenital Heart Disease: A Case-Control MR Imaging Study. AJNR Am J Neuroradiol 2021; 42:2040-2045. [PMID: 34475195 DOI: 10.3174/ajnr.a7267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/23/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Abnormal ADC values are seen in ischemic brain lesions such as acute or chronic hypoxia. We aimed to assess whether ADC values in the developing brain measured by in utero DWI were different in fetuses with congenital heart disease compared with healthy controls. MATERIALS AND METHODS In utero DWI was performed in 50 fetuses with congenital heart disease and 100 healthy controls at a similar gestational age. Pair-wise ADC values of the ROIs were manually delineated on each side of the frontal and periatrial WM and in the basal ganglia, thalamus, and cerebellar hemisphere, as well as a single measurement in the pons. RESULTS Fetuses with congenital heart disease had significantly lower ADC values in frontal and periatrial WM and the pons than controls (all P < .05) in the early stages of pregnancy. However, ADC values in the thalamus were higher for fetuses with congenital heart disease than for controls (gestational age, ≥26 weeks). For ADC values in the cerebellar hemisphere, there was no obvious significance between cases and controls (P = .07) in the late stages of pregnancy. Basal ganglia ADC values were consistently not significantly different between the 2 groups during the early and late stages of pregnancy (P = .47; .21). CONCLUSIONS Abnormal brain diffusivity can be detected using in utero DWI in fetuses with congenital heart disease. Abnormal ADC values found at a mean gestational age of 26 weeks suggest structural changes, which may provide an early indicator of the impact of congenital heart disease on the developing brain.
Collapse
Affiliation(s)
- J-Y Ren
- From the Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - H Ji
- From the Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - M Zhu
- From the Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - S-Z Dong
- From the Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| |
Collapse
|
16
|
Stampalija T, Ciardo C, Barbieri M, Risso FM, Travan L. Neurodevelopment of infant with late fetal growth restriction. Minerva Obstet Gynecol 2021; 73:482-489. [PMID: 33949822 DOI: 10.23736/s2724-606x.21.04807-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Late fetal growth restriction has increasingly gain interest. Differently from early fetal growth restriction, the severity of this condition and the impact on perinatal mortality and morbidity is less severe. Nevertheless, there is some evidence to suggest that fetuses exposed to growth restriction late in pregnancy are at increased risk of neurological dysfunction and behavioral impairment. The aim of our review was to discuss the available evidence on the neurodevelopmental outcome in fetuses exposed to growth restriction late in pregnancy. Cerebral blood flow redistribution, a Doppler hallmark of late fetal growth restriction, has been associated with this increased risk, although there are still some controversies. Currently, most of the available studies are heterogeneous and do not distinguish between early and late fetal growth restriction when evaluating the long-term outcome, thus, making the correlation between late fetal growth restriction and neurological dysfunction difficult to interpret. The available evidence suggests that fetuses exposed to late growth restriction are at increased risk of neurological dysfunction and behavioral impairment. The presence of the cerebral blood flow redistribution seems to be associated with adverse neurodevelopmental outcome, however, from the present literature the causality cannot be ascertained.
Collapse
Affiliation(s)
- Tamara Stampalija
- Unit of Fetal Medicine and Prenatal Diagnosis, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy - .,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy -
| | - Claudia Ciardo
- Unit of Fetal Medicine and Prenatal Diagnosis, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Moira Barbieri
- Unit of Fetal Medicine and Prenatal Diagnosis, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Francesco M Risso
- Division of Neonatology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Laura Travan
- Division of Neonatology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
17
|
Rubert N, Bardo DME, Vaughn J, Cornejo P, Goncalves LF. Data Quality Assessment for Super-Resolution Fetal Brain MR Imaging: A Retrospective 1.5 T Study. J Magn Reson Imaging 2021; 54:1349-1360. [PMID: 33949725 DOI: 10.1002/jmri.27665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Super-resolution is a promising technique to create isotropic image volumes from stacks of two-dimensional (2D) motion-corrupted images in fetal magnetic resonance imaging (MRI). PURPOSE To determine an acquisition quality metric and correlate that metric with radiologist perception of three-dimensional (3D) image quality. STUDY TYPE Retrospective. SUBJECTS Eighty-seven patients, mean gestational age 29 ± 6 weeks. FIELD STRENGTH/SEQUENCE 1.5 T/2D fast spin-echo. ASSESSMENT Four radiologists (L.G., D.M.E.B., P.C., and J.V.; 31, 21, 7, and 7 years' experience, respectively) graded reconstructions on a 0 to 4 scale for overall appearance and visibility of specific anatomy. During reconstruction, slices were labeled as inliers based on correlation between a simulated vs. actual acquisition. The fraction of brain voxels in inlier slicers vs. total brain voxels was measured for each acquisition. STATISTICAL TESTS Paired sample t test, Pearson's correlation, intra-class correlation. RESULTS The average brain mask inlier fraction for all acquisitions was 0.8. There was a statistically significant correlation (0.71) between overall reconstruction appearance and number of acquisitions with inlier fraction above 0.73. There was low correlation (0.21, P = 0.05) between the number of acquisitions used in the reconstruction and overall score when no data quality measure was considered. Similar results were found for ratings of specific anatomy. Statistically significant differences in overall perception of image quality were found when using three vs. four, four vs. five, and three vs. five high-quality acquisitions in the reconstruction. Five high-quality acquisitions were sufficient to yield an average radiologist rating of 3.59 out of 4.0 for overall image quality. DATA CONCLUSION Reconstruction quality can be reliably predicted using the brain mask inlier fraction. Real-time super-resolution protocols could exploit this to terminate acquisition when enough high-quality acquisitions have been collected. To achieve consistent 3D image quality it may be necessary to acquire more than five scans to compensate for severely motion-corrupted acquisitions. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: 1.
Collapse
Affiliation(s)
- Nicholas Rubert
- Department of Radiology, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - Dianna M E Bardo
- Department of Radiology, Phoenix Children's Hospital, Phoenix, Arizona, USA.,Departments of Radiology and Child Health, University of Arizona, Phoenix, Arizona, USA.,Department of Radiology, Mayo Clinic, Scottsdale, Arizona, USA.,Department of Radiology, Creighton University, Phoenix, Arizona, USA.,Department of Neuroradiology, Barrows Neurological Institute, Phoenix, Arizona, USA
| | - Jennifer Vaughn
- Department of Radiology, Phoenix Children's Hospital, Phoenix, Arizona, USA.,Departments of Radiology and Child Health, University of Arizona, Phoenix, Arizona, USA.,Department of Radiology, Creighton University, Phoenix, Arizona, USA.,Department of Neuroradiology, Barrows Neurological Institute, Phoenix, Arizona, USA
| | - Patricia Cornejo
- Department of Radiology, Phoenix Children's Hospital, Phoenix, Arizona, USA.,Departments of Radiology and Child Health, University of Arizona, Phoenix, Arizona, USA.,Department of Radiology, Mayo Clinic, Scottsdale, Arizona, USA.,Department of Radiology, Creighton University, Phoenix, Arizona, USA.,Department of Neuroradiology, Barrows Neurological Institute, Phoenix, Arizona, USA
| | - Luis F Goncalves
- Department of Radiology, Phoenix Children's Hospital, Phoenix, Arizona, USA.,Departments of Radiology and Child Health, University of Arizona, Phoenix, Arizona, USA
| |
Collapse
|
18
|
Clarke GD, Li J, Kuo AH, Moody AJ, Nathanielsz PW. Cardiac magnetic resonance imaging: insights into developmental programming and its consequences for aging. J Dev Orig Health Dis 2021; 12:203-219. [PMID: 33349289 PMCID: PMC7987688 DOI: 10.1017/s2040174420001233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVD) are important consequences of adverse perinatal conditions such as fetal hypoxia and maternal malnutrition. Cardiac magnetic resonance imaging (CMR) can produce a wealth of physiological information related to the development of the heart. This review outlines the current state of CMR technologies and describes the physiological biomarkers that can be measured. These phenotypes include impaired ventricular and atrial function, maladaptive ventricular remodeling, and the proliferation of myocardial steatosis and fibrosis. The discussion outlines the applications of CMR to understanding the developmental pathways leading to impaired cardiac function. The use of CMR, both in animal models of developmental programming and in human studies, is described. Specific examples are given in a baboon model of intrauterine growth restriction (IUGR). CMR offers great potential as a tool for understanding the sequence of dysfunctional adaptations of developmental origin that can affect the human cardiovascular system.
Collapse
Affiliation(s)
- G D Clarke
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - J Li
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - A H Kuo
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - A J Moody
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - P W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
19
|
Jouannic JM, Blondiaux E, Senat MV, Friszer S, Adamsbaum C, Rousseau J, Hornoy P, Letourneau A, de Laveaucoupet J, Lecarpentier E, Rosenblatt J, Quibel T, Mollot M, Ancel PY, Alison M, Goffinet F. Prognostic value of diffusion-weighted magnetic resonance imaging of brain in fetal growth restriction: results of prospective multicenter study. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2020; 56:893-900. [PMID: 31765031 DOI: 10.1002/uog.21926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To measure prospectively apparent diffusion coefficient (ADC) values between 28 and 32 weeks of gestation in different cerebral territories of fetuses with estimated fetal weight (EFW) ≤ 5th centile, and analyze their association with adverse perinatal outcome. METHODS This was a prospective study involving six tertiary-level perinatal centers. In the period 22 November 2016 to 11 September 2017, we included singleton, small-for-gestational-age (SGA) fetuses with EFW ≤ 5th percentile, between 28 and 32 weeks of gestation, regardless of the umbilical artery Doppler and maternal uterine artery Doppler findings. A fetal magnetic resonance imaging (MRI) examination with diffusion-weighted sequences (DWI) was performed within 14 days following inclusion and before 32 weeks. ADC values were calculated in the frontal and occipital white matter, basal ganglia and cerebellar hemispheres. An ultrasound examination was performed within 1 week prior to the MRI examination. The primary outcome was a composite measure of adverse perinatal outcome, defined as any of the following: perinatal death; admission to neonatal intensive care unit with mechanical ventilation > 48 h; necrotizing enterocolitis; Grade III-IV intraventricular hemorrhage; periventricular leukomalacia. A univariate comparison of median ADC values in all cerebral territories between fetuses with and those without adverse perinatal outcome was performed. The association between ADC values and adverse perinatal outcome was then analyzed using multilevel logistic regression models to adjust for other common prognostic factors for growth-restricted fetuses. RESULTS MRI was performed in 64 patients, of whom five were excluded owing to fetal movement artifacts on DWI and two were excluded for termination of pregnancy with no link to fetal growth restriction (FGR). One intrauterine death occurred secondary to severe FGR. Among the 56 liveborn neonates, delivered at a mean ± SD gestational age of 33.6 ± 3.0 weeks, with a mean birth weight of 1441 ± 566 g, four neonatal deaths occurred. In addition, two neonates required prolonged mechanical ventilation, one of whom also developed necrotizing enterocolitis. Overall, therefore, seven out of 57 (12.3%) cases had an adverse perinatal outcome (95% CI, 3.8-20.8%). The ADC values in the frontal region were significantly lower in the group with adverse perinatal outcome vs those in the group with favorable outcome (mean values of both hemispheres, 1.68 vs 1.78 × 10-3 mm2 /s; P = 0.04). No significant difference in ADC values was observed between the two groups in any other cerebral territory. A cut-off value of 1.70 × 10-3 mm2 /s was associated with a sensitivity of 57% (95% CI, 18-90%), a specificity of 78% (95% CI, 63-88%), a positive predictive value of 27% (95% CI, 8-55%) and a negative predictive value of 93% (95% CI, 80-98%) for the prediction of adverse perinatal outcome. A mean frontal ADC value < 1.70 × 10-3 mm2 /s was not associated significantly with an increased risk of adverse perinatal outcome, either in the univariate analysis (P = 0.07), or when adjusting for gestational age at MRI and fetal sex (odds ratio (OR), 6.06 (95% CI, 0.9-37.1), P = 0.051) or for umbilical artery Doppler (OR, 6.08 (95% CI, 0.89-41.44)). CONCLUSION This first prospective, multicenter, cohort study using DWI in the setting of SGA found lower ADC values in the frontal white-matter territory in fetuses with, compared with those without, adverse perinatal outcome. To determine the prognostic value of these changes, further standardized evaluation of the neurodevelopment of children born with growth restriction is required. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- J M Jouannic
- Service de Médecine Foetale, Hôpital Armand Trousseau, Médecine Sorbonne Université, APHP, Paris, France
| | - E Blondiaux
- Service de Radiopédiatrie, Hôpital Armand Trousseau, Médecine Sorbonne Université, APHP, Paris, France
| | - M V Senat
- Service de Gynécologie-Obstétrique, Hôpital Bicêtre, Université Paris Sud, Le Kremlin-Bicêtre, France
| | - S Friszer
- Service de Médecine Foetale, Hôpital Armand Trousseau, Médecine Sorbonne Université, APHP, Paris, France
| | - C Adamsbaum
- Service de Radiopédiatrie, Hôpital Bicêtre, Université Paris Sud, Le Kremlin-Bicêtre, France
| | - J Rousseau
- Obstetrical, Perinatal, and Pediatric Epidemiology Team and Biostatistics Sorbonne Paris Cité Research Center (U1153), INSERM, Paris, France
- Université Paris Descartes, Paris, France
| | - P Hornoy
- Service de Radiologie, Hôpital Cochin, APHP, Paris, France
| | - A Letourneau
- Service de Gynécologie-Obstétrique, Hôpital Antoine Béclère, Université Paris Sud, APHP, Clamart, France
| | - J de Laveaucoupet
- Service de Radiologie, Hôpital Antoine Béclère, APHP, Clamart, France
| | - E Lecarpentier
- Maternité Port Royal, Hôpital Cochin, APHP, DHU Risques et Grossesse, Université Paris Descartes, Paris, France
| | - J Rosenblatt
- Service de Gynécologie-Obstétrique, Hôpital Robert Debré, APHP, Paris, France
| | - T Quibel
- Service de Gynécologie-Obstétrique, Centre Hospitalier Intercommunal, Poissy, France
| | - M Mollot
- Service de Radiologie, Centre Hospitalier Intercommunal, Poissy, France
| | - P Y Ancel
- Obstetrical, Perinatal, and Pediatric Epidemiology Team and Biostatistics Sorbonne Paris Cité Research Center (U1153), INSERM, Paris, France
| | - M Alison
- Service de Radiopédiatrie, Hôpital Robert Debré, APHP, Université Paris Diderot, Paris, France
| | - F Goffinet
- Obstetrical, Perinatal, and Pediatric Epidemiology Team and Biostatistics Sorbonne Paris Cité Research Center (U1153), INSERM, Paris, France
- Maternité Port Royal, Hôpital Cochin, APHP, DHU Risques et Grossesse, Université Paris Descartes, Paris, France
| |
Collapse
|
20
|
Apparent diffusion coefficient of different areas of brain in foetuses with intrauterine growth restriction. Pol J Radiol 2020; 85:e301-e308. [PMID: 32685065 PMCID: PMC7361370 DOI: 10.5114/pjr.2020.96950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/28/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose This study aimed to compare the apparent diffusion coefficient (ADC) values of different brain areas between two groups of intrauterine growth restricted (IUGR) foetuses and control cases. Material and methods A total of 38 foetuses with IUGR and 18 normal control foetuses with similar gestational age were compared using a 3T magnetic resonance scanner. IUGR cases included 23 foetuses with clinical severity signs (group A) and 15 foetuses without clinical severity signs (group B). ADC values were measured in different brain regions and compared among groups. Foetuses with structural brain abnormalities were excluded from the study. Results All foetuses had normal foetal structural brain anatomy. Head circumference (HC) < 5% was more common in IUGR group A compared to IUGR group B (56.5% vs. 13.3%, p < 0.0001). In comparison to the normal group, the ADC values in IUGR foetuses were significantly lower in cerebellar hemispheres (CH) (1.239 vs. 1.280.5 × 10-3 mm2/s, p = 0.045), thalami (1.205 vs. 1.285 × 10-3 mm2/s, p = 0.031) and caudate nucleus (CN) (1.319 vs. 1.394 × 10-3 mm2/s, p = 0.04). However, there were no significant differences in ADC values between IUGR subtypes. Among all brain regions, pons had the lowest ADC values. Conclusions ADC values of thalami, CN, and CH were significantly lower in IUGR than control foetuses, while there was no significant difference among IUGR groups. Further studies are needed to evaluate the prognostic value of ADC changes in IUGR foetuses.
Collapse
|
21
|
Schönberg N, Weisstanner C, Wiest R, Bonél HM, Piechowiak EI, Cullmann JL, Raio L, Pastore-Wapp M, Slavova N. The Influence of Various Cerebral and Extracerebral Pathologies on Apparent Diffusion Coefficient Values in the Fetal Brain. J Neuroimaging 2020; 30:477-485. [PMID: 32557916 PMCID: PMC7383773 DOI: 10.1111/jon.12727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/30/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The changing MRI signal accompanying brain maturation in fetal brains can be quantified on apparent diffusion coefficient (ADC) maps. Deviations from the natural course of ADC values may reflect structural pathology. The purpose of this study was to determine the influence of fetal pathologies on the ADC values in different regions of the fetal brain and their evolution with increasing gestational age. METHODS This was a retrospective study of 291 fetuses evaluated between the 14th and the 40th week of gestation using diffusion‐weighted imaging (DWI). Fetuses with normal MRI findings but sonographically suspected pathology or fetuses with abnormalities not affecting the brain were analyzed in the control group and compared to fetuses suffering from different pathologies like hydrocephalus/ventriculomegaly, brain malformations, infections, ischemia/hemorrhage, diaphragmatic hernias, and congenital heart disease. Pairwise ADC measurements in each side of the white matter (WM) of the frontal, parietal, and occipital lobes, in the basal ganglia and the cerebellum, as well as a single measurement in the pons were performed and were plotted against gestational age. RESULTS In the control group, brain maturation followed a defined gradient, resulting in lower ADC values in the most mature regions. Each disorder group experienced abnormal patterns of evolution of the ADC values over time deviating from the expected course. CONCLUSIONS The ADC values in different regions of the fetal brain and their evolution with increasing gestational age are influenced by pathologies compromising the cerebral maturation.
Collapse
Affiliation(s)
- Nadja Schönberg
- Department of Radiology and Nuclear Medicine, Winterthur Canton Hospital, Winterthur, Switzerland
| | - Christian Weisstanner
- Institute of Diagnostic and Interventional Neuroradiology, Bern University Hospital, Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, Bern University Hospital, Bern, Switzerland
| | - Harald M Bonél
- Department of Diagnostic, Interventional and Paediatric Radiology, Bern University Hospital, Bern, Switzerland
| | - Eike I Piechowiak
- Institute of Diagnostic and Interventional Neuroradiology, Bern University Hospital, Bern, Switzerland
| | - Jennifer L Cullmann
- Department of Diagnostic, Interventional and Paediatric Radiology, Bern University Hospital, Bern, Switzerland
| | - Luigi Raio
- Department of Obstetrics and Gynaecology, Bern University Hospital, Bern, Switzerland
| | - Manuela Pastore-Wapp
- Support Centre for Advanced Neuroimaging (SCAN), Institute of Diagnostic and Interventional Neuroradiology, Bern University Hospital, Bern, Switzerland
| | - Nedelina Slavova
- Institute of Diagnostic and Interventional Neuroradiology, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
22
|
McDowell AR, Shelmerdine SC, Lorio S, Norman W, Jones R, Carmichael DW, Arthurs OJ. Multiparametric mapping in post-mortem perinatal MRI: a feasibility study. Br J Radiol 2020; 93:20190952. [PMID: 32330074 DOI: 10.1259/bjr.20190952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To demonstrate feasibility of a 3 T multiparametric mapping (MPM) quantitative pipeline for perinatal post-mortem MR (PMMR) imaging. METHODS Whole body quantitative PMMR imaging was acquired in four cases, mean gestational age 34 weeks, range (29-38 weeks) on a 3 T Siemens Prisma scanner. A multicontrast protocol yielded proton density, T1 and magnetic transfer (MT) weighted multi-echo images obtained from variable flip angle (FA) 3D fast low angle single-shot (FLASH) acquisitions, radiofrequency transmit field map and one B0 field map alongside four MT weighted acquisitions with saturation pulses of 180, 220, 260 and 300 degrees were acquired, all at 1 mm isotropic resolution. RESULTS Whole body MPM was achievable in all four foetuses, with R1, R2*, PD and MT maps reconstructed from a single protocol. Multiparametric maps were of high quality and show good tissue contrast, especially the MT maps. CONCLUSION MPM is a feasible technique in a perinatal post-mortem setting, which may allow quantification of post-mortem change, prior to being evaluated in a clinical setting. ADVANCES IN KNOWLEDGE We have shown that the MPM sequence is feasible in PMMR imaging and shown the potential of MT imaging in this setting.
Collapse
Affiliation(s)
- Amy R McDowell
- UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Sara Lorio
- UCL Great Ormond Street Institute of Child Health, London, UK.,Wellcome EPSRC Centre for Medical EngineeringKCL, London, UK
| | - Wendy Norman
- UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR UCL GOS Institute of Child Health Biomedical Research Centre, London, UK
| | - Rod Jones
- UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR UCL GOS Institute of Child Health Biomedical Research Centre, London, UK
| | - David W Carmichael
- UCL Great Ormond Street Institute of Child Health, London, UK.,Wellcome EPSRC Centre for Medical EngineeringKCL, London, UK
| | - Owen J Arthurs
- RadiologyGreat Ormond Street Hospital NHS Foundation Trust, London, UK.,NIHR UCL GOS Institute of Child Health Biomedical Research Centre, London, UK
| |
Collapse
|
23
|
Sanz Cortes M, Torres P, Yepez M, Guimaraes C, Zarutskie A, Shetty A, Hsiao A, Pyarali M, Davila I, Espinoza J, Shamshirsaz AA, Nassr A, Whitehead W, Lee W, Belfort MA. Comparison of brain microstructure after prenatal spina bifida repair by either laparotomy-assisted fetoscopic or open approach. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2020; 55:87-95. [PMID: 31219638 DOI: 10.1002/uog.20373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To compare prenatal and postnatal brain microstructure between infants that underwent fetoscopic myelomeningocele (MMC) repair and those that had open-hysterotomy repair. METHODS This was a longitudinal retrospective cohort study of 57 fetuses that met the Management of Myelomeningocele Study (MOMS) trial criteria and underwent prenatal MMC repair, by a fetoscopic (n = 27) or open-hysterotomy (n = 30) approach, at 21.4-25.9 weeks' gestation. Fetoscopic repair was performed under CO2 insufflation, according to our protocol. Diffusion-weighted magnetic resonance imaging (MRI) was performed before surgery in 30 cases (14 fetoscopic and 16 open), at 6 weeks postsurgery in 48 cases (24 fetoscopic and 24 open) and within the first year after birth in 23 infants (five fetoscopic and 18 open). Apparent diffusion coefficient (ADC) values from the basal ganglia, frontal, occipital and parietal lobes, mesencephalon and genu as well as splenium of the corpus callosum were calculated. ADC values at each of the three timepoints (presurgery, 6 weeks postsurgery and postnatally) and the percentage change in the ADC values between the timepoints were compared between the fetoscopic-repair and open-repair groups. ADC values at 6 weeks after surgery in the two prenatally repaired groups were compared with those in a control group of eight healthy fetuses that underwent MRI at a similar gestational age (GA). Comparison of ADC values was performed using the Student's t-test for independent samples (or Mann-Whitney U-test if non-normally distributed) and multivariate general linear model analysis, adjusting for GA or age at MRI and mean ventricular width. RESULTS There were no differences in GA at surgery or GA/postnatal age at MRI between the groups. No significant differences were observed in ADC values in any of the brain areas assessed between the open-repair and fetoscopic-repair groups at 6 weeks after surgery and in the first year after birth. No differences were detected in the ADC values of the studied areas between the control and prenatally repaired groups, except for significantly increased ADC values in the genu of the corpus callosum in the open-hysterotomy and fetoscopic-repair groups. Additionally, there were no differences between the two prenatally repaired groups in the percentage change in ADC values at any of the time intervals analyzed. CONCLUSIONS Fetoscopic MMC repair has no detectable effect on brain microstructure when compared to babies repaired using an open-hysterotomy technique. CO2 insufflation of the uterine cavity during fetoscopy does not seem to have any isolated deleterious effects on fetal brain microstructure. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- M Sanz Cortes
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - P Torres
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - M Yepez
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - C Guimaraes
- Department of Radiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, USA
| | - A Zarutskie
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - A Shetty
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - A Hsiao
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - M Pyarali
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - I Davila
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - J Espinoza
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - A A Shamshirsaz
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - A Nassr
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - W Whitehead
- Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - W Lee
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - M A Belfort
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
24
|
Aertsen M, Diogo MC, Dymarkowski S, Deprest J, Prayer D. Fetal MRI for dummies: what the fetal medicine specialist should know about acquisitions and sequences. Prenat Diagn 2020; 40:6-17. [PMID: 31618472 DOI: 10.1002/pd.5579] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/26/2022]
Abstract
Fetal MRI is an increasingly used tool in the field of prenatal diagnosis. While US remains the first line screening tool, as an adjuvant imaging tool, MRI has been proven to increase diagnostic accuracy and change patient counseling. Further, there are instances when US may not be sufficient for diagnosis. As a multidisciplinary field, it is important that every person involved in the referral, diagnosis, counseling and treatment of the patients is familiar with the basic principles, indications and findings of fetal MRI. The purpose of the current paper is to equip radiologists and non-radiologists with basic MRI principles and essential topics in patient preparation and provide illustrative examples of when fetal MRI may be used. This aims to aid the referring clinician in better selecting and improve patient counseling prior to arrival in the radiology department and, ultimately, patient care.
Collapse
Affiliation(s)
- Michael Aertsen
- Department of Imaging and Pathology, Clinical Department of Radiology, University Hospitals KU Leuven, Leuven, Belgium
| | - Mariana C Diogo
- Department of Image Guided Therapy, University Clinic for Neuroradiology and Musculoskeletal Radiology, Medical University of Vienna, Vienna, Austria
| | - Steven Dymarkowski
- Department of Imaging and Pathology, Clinical Department of Radiology, University Hospitals KU Leuven, Leuven, Belgium
| | - Jan Deprest
- Academic Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Institute for Women's Health, University College London, London, UK
| | - Daniela Prayer
- Department of Image Guided Therapy, University Clinic for Neuroradiology and Musculoskeletal Radiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Malhotra A, Sepehrizadeh T, Dhollander T, Wright D, Castillo-Melendez M, Sutherland AE, Pham Y, Ditchfield M, Polglase GR, de Veer M, Jenkin G, Pannek K, Shishegar R, Miller SL. Advanced MRI analysis to detect white matter brain injury in growth restricted newborn lambs. NEUROIMAGE-CLINICAL 2019; 24:101991. [PMID: 31473545 PMCID: PMC6728876 DOI: 10.1016/j.nicl.2019.101991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022]
Abstract
Background Fetal growth restriction (FGR) is a serious pregnancy complication associated with increased risk of adverse neurodevelopment and neuromorbidity. Current imaging techniques, including conventional magnetic resonance imaging (MRI), are not sensitive enough to detect subtle structural abnormalities in the FGR brain. We examined whether advanced MRI analysis techniques have the capacity to detect brain injury (particularly white matter injury) caused by chronic hypoxia-induced fetal growth restriction in newborn preterm lambs. Methods Surgery was undertaken in twin bearing pregnant ewes at 88–90 days gestation (term = 150 days) to induce FGR in one fetus. At 127 days gestation (~32 weeks human brain development), FGR and control (appropriate for gestational age, AGA) lambs were delivered by caesarean section, intubated and ventilated. Conventional and advanced brain imaging was conducted within the first two hours of life using a 3T MRI scanner. T1-weighted (T1w) and T2-weighted (T2w) structural imaging, magnetic resonance spectroscopy (MRS), and diffusion MRI (dMRI) data were acquired. Diffusion tensor imaging (DTI) modelling and analysis of dMRI data included the following regions of interest (ROIs): subcortical white matter, periventricular white matter, cerebellum, hippocampus, corpus callosum and thalamus. Fixel-based analysis of 3-tissue constrained spherical deconvolution (CSD) of the dMRI data was performed and compared between FGR and AGA lambs. Lambs were euthanised immediately after the scans and brain histology performed in the regions of interest to correlate with imaging. Results FGR and AGA lamb (body weight, mean (SD): 2.2(0.5) vs. 3.3(0.3) kg, p = .002) MRI brain scans were analysed. There were no statistically significant differences observed between the groups in conventional T1w, T2w or MRS brain data. Mean, axial and radial diffusivity, and fractional anisotropy indices obtained from DTI modelling also did not show any statistically significant differences between groups in the ROIs. Fixel-based analysis of 3-tissue CSD, however, did reveal a decrease in fibre cross-section (FC, p < .05) but not in fibre density (FD) or combined fibre density and cross-section (FDC) in FGR vs. AGA lamb brains. The specific tracts that showed a decrease in FC were in the regions of the periventricular white matter, hippocampus and cerebellar white matter, and were supported by histological evidence of white matter hypomyelination and disorganisation in corresponding FGR lamb brain regions. Conclusions The neuropathology associated with FGR in neonatal preterm lambs is subtle and imaging detection may require advanced MRI and tract-based analysis techniques. Fixel-based analysis of 3-tissue CSD demonstrates that the preterm neonatal FGR brain shows evidence of macrostructural (cross-sectional) deficits in white matter subsequent to altered antenatal development. These findings can inform analysis of similar brain pathology in neonatal infants. FGR brain injury can be subtle, and not easily detected on conventional imaging. Fixel-based analysis showed differences in fibre content of FGR lamb brain tracts. Histological stain confirmed myelination deficits in corresponding brain regions.
Collapse
Affiliation(s)
- Atul Malhotra
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia.
| | | | - Thijs Dhollander
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - David Wright
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Department of Neuroscience, Central Clinical School, Monash University, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | | | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Michael de Veer
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Kerstin Pannek
- Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia
| | - Rosita Shishegar
- Monash Biomedical Imaging, Monash University, Melbourne, Australia; The Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia; CSIRO Health and Biosecurity, Parkville, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| |
Collapse
|
26
|
Carlin A, Kadji C, Cannie MM, Resta S, Kang X, Jani JC. The use of magnetic resonance imaging in the prediction of birthweight. Prenat Diagn 2019; 40:125-135. [PMID: 31319434 DOI: 10.1002/pd.5530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/05/2019] [Accepted: 07/08/2019] [Indexed: 01/11/2023]
Abstract
Extremes of fetal growth can increase adverse pregnancy outcomes, and this is equally applicable to single and multiple gestations. Traditionally, these cases have been identified using simple two-dimensional ultrasound which is quite limited by its low precision. Magnetic resonance imaging (MRI) has now been used for many years in obstetrics, mainly as an adjunct to ultrasound for congenital abnormalities and increasingly as part of the post-mortem examination. However, MRI can also be used to accurately assess fetal weight as first demonstrated by Baker et al in 1994, using body volumes rather than standard biometric measurements. This publication was followed by several others, all of which confirmed the superiority of MRI; however, despite this initial promise, the technique has never been successfully integrated into clinical practice. In this review, we provide an overview of the literature, detail the various techniques and formulas currently available, discuss the applicability to specific high-risk groups and present our vision for the future of MRI within clinical obstetrics.
Collapse
Affiliation(s)
- Andrew Carlin
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Caroline Kadji
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Mieke M Cannie
- Department of Radiology, University Hospital Brugmann, Brussels, Belgium.,Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Serena Resta
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Xin Kang
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques C Jani
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
27
|
Apparent Diffusion Coefficient of the Placenta and Fetal Organs in Intrauterine Growth Restriction. J Comput Assist Tomogr 2019; 43:507-512. [PMID: 30762655 DOI: 10.1097/rct.0000000000000844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE This study aimed to assess apparent diffusion coefficient (ADC) of the placenta and fetal organs in intrauterine growth restriction (IUGR). MATERIALS AND METHODS A prospective study of 30 consecutive pregnant women (aged 21-38 years with mean age of 31.5 years and a mean gestational week of 35 ± 2.3) with IUGR and 15 age-matched pregnant women was conducted. All patients and controls underwent diffusion-weighted magnetic resonance imaging. The ADCs of the placenta and fetal brain, kidney, and lung were calculated and correlated with neonates needing intensive care unit (ICU) admission. RESULTS There was a significant difference in ADC of the placenta and fetal brain, lung, and kidney (P = 0.001, 0.001, 0.04, and 0.04, respectively) between the patients and the controls. The cutoff ADCs of the placenta and fetal brain, lung, and kidney used to detect IUGR were 1.45, 1.15, 1.80, and 1.40 × 10 mm/s, respectively, with areas under the curve (AUCs) of 0.865, 0.858, 0.812, and 0.650, respectively, and accuracy values of 75%, 72.5%, 72.5%, and 70%, respectively. Combined ADC of the placenta and fetal organs used to detect IUGR revealed an AUC of 1.00 and an accuracy of 100%. There was a significant difference in ADC of the placenta and fetal brain, lung, and kidney between neonates needing admission and those not needing ICU admission (P = 0.001, 0.001, 0.002, and 0.002, respectively). The cutoff ADCs of the placenta and fetal brain, lung, and kidney used to define neonates needing ICU were 1.35, 1.25, 1.95, and 1.15 × 10 mm/s with AUCs of 0.955, 0.880, 0.884, and 0.793, respectively, and accuracy values of 86.7%, 46.7%, 76.7%, and 70%, respectively. Combined placental and fetal brain ADC used to define neonates needing ICU revealed an AUC of 0.968 and an accuracy of 93.3%. CONCLUSION Combined ADC of the placenta and fetal organs can detect IUGR, and combined ADC of the placenta and fetal brain can define fetuses needing ICU.
Collapse
|
28
|
Yuan X, Yue C, Yu M, Chen P, Du P, Shao CH, Cheng SC, Bian RJ, Wang SY, Wang W, Cui GB. Fetal brain development at 25-39 weeks gestational age: A preliminary study using intravoxel incoherent motion diffusion-weighted imaging. J Magn Reson Imaging 2019; 50:899-909. [PMID: 30677192 DOI: 10.1002/jmri.26667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The fetal brain developmental changes of water diffusivity and perfusion has not been extensively explored. PURPOSE/HYPOTHESIS To evaluate the fetal brain developmental changes of water diffusivity and perfusion using intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI). STUDY TYPE Prospective. POPULATION Seventy-nine normal singleton fetuses were scanned without sedation of healthy pregnant women. FIELD STRENGTH/SEQUENCE 5 T MRI/T1 /2 -weighted image and IVIM-DWI. ASSESSMENT Pure diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) values were calculated in the frontal (FWM), temporal (TWM), parietal (PWM), and occipital white matter (OWM) as well as cerebellar hemisphere (CH), basal ganglia region (BGR), thalamus (TH), and pons using an IVIM model. STATISTICAL TESTS One-way analysis of variable (ANOVA) followed by Bonferroni post-hoc multiple comparison was employed to reveal the difference of IVIM parameters among the investigated brain regions. The linear and the nonlinear polynomial regression analyses were utilized to reveal the correlation between gestational age (GA) and IVIM parameters. RESULTS There were significant differences in both D (F(7,623) = 96.64, P = 0.000) and f values (F(7,623) = 2.361, P = 0.0219), but not D* values among the varied brain regions. D values from TWM (r2 = 0.1402, P = 0.0002), PWM (r2 = 0.2245, P = 0.0002), OWM (r2 = 0.2519, P = 0.0002), CH (r2 = 0.2245, P = 0.0002), BGR (r2 = 0.3393, P = 0.0001), TH (r2 = 0.1259, P = 0.0001), and D* value from pons (r2 = 0.2206, P = 0.0002) were significantly correlated with GA using linear regression analysis. Quadratic regression analysis led to results similar to those using the linear regression model. DATA CONCLUSION IVIM-DWI parameters may indicate fetal brain developmental alterations but the conclusion is far from reached due to the not as high-powered correlation between IVIM parameters and GA. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019;50:899-909.
Collapse
Affiliation(s)
- Xiao Yuan
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Shaanxi, China
| | - Cui Yue
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Shaanxi, China
| | - Mei Yu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Shaanxi, China
| | - Ping Chen
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Shaanxi, China
| | - Pang Du
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Shaanxi, China
| | - Chang-Hua Shao
- Student Brigade, Fourth Military Medical University (Air Force Medical University), Shaanxi, China
| | - Si-Chao Cheng
- Student Brigade, Fourth Military Medical University (Air Force Medical University), Shaanxi, China
| | - Ren-Jie Bian
- Student Brigade, Fourth Military Medical University (Air Force Medical University), Shaanxi, China
| | | | - Wen Wang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Shaanxi, China
| | - Guang-Bin Cui
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Shaanxi, China
| |
Collapse
|
29
|
Korostyshevskaya AM, Prihod'ko IY, Savelov AA, Yarnykh VL. Direct comparison between apparent diffusion coefficient and macromolecular proton fraction as quantitative biomarkers of the human fetal brain maturation. J Magn Reson Imaging 2019; 50:52-61. [PMID: 30635965 DOI: 10.1002/jmri.26635] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Apparent diffusion coefficient (ADC) is known as a quantitative biomarker of prenatal brain maturation. Fast macromolecular proton fraction (MPF) mapping is an emerging method for quantitative assessment of myelination that was recently adapted to fetal MRI. PURPOSE To compare the capability of ADC and MPF to quantify the normal fetal brain development. STUDY TYPE Prospective. POPULATION Forty-two human fetuses in utero (gestational age [GA] = 27.7 ± 6.0, range 20-38 weeks). FIELD STRENGTH/SEQUENCE 1.5 T; diffusion-weighted single-shot echo-planar spin-echo with five b-values for ADC mapping; spoiled multishot echo-planar gradient-echo with T1 , proton density, and magnetization transfer contrast weightings for single-point MPF mapping. ASSESSMENT Two operators measured ADC and MPF in the medulla, pons, cerebellum, thalamus, and frontal, occipital, and temporal cerebral white matter (WM). STATISTICAL TESTS Mixed repeated-measures analysis of variance (ANOVA) with the factors of pregnancy trimester and brain structure; Pearson correlation coefficient (r); Hotelling-Williams test to compare strengths of correlations. RESULTS From the 2nd to 3rd trimester, ADC significantly decreased in the thalamus and cerebellum (P < 0.005). MPF significantly increased in the medulla, pons, thalamus, and cerebellum (P < 0.005). Cerebral WM had significantly higher ADC and lower MPF compared with the medulla and pons in both trimesters. MPF (r range 0.83, 0.89, P < 0.001) and ADC (r range -0.43, -0.75, P ≤ 0.004) significantly correlated with GA and each other (r range -0.32, -0.60, P ≤ 0.04) in the medulla, pons, thalamus, and cerebellum. No significant correlations or distinctions between regions and trimesters were observed for cerebral WM (P range 0.1-0.75). Correlations with GA were significantly stronger for MPF compared with ADC in the medulla, pons, and cerebellum (Hotelling-Williams test, P < 0.003) and similar in the thalamus. Structure-averaged MPF and ADC values strongly correlated (r = 0.95, P < 0.001). DATA CONCLUSION MPF and ADC demonstrated qualitatively similar but quantitatively different spatiotemporal patterns. MPF appeared more sensitive to changes in the brain structures with prenatal onset of myelination. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019;50:52-61.
Collapse
Affiliation(s)
- Alexandra M Korostyshevskaya
- Institute "International Tomography Center" of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Irina Yu Prihod'ko
- Institute "International Tomography Center" of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Andrey A Savelov
- Institute "International Tomography Center" of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Vasily L Yarnykh
- University of Washington, Department of Radiology, Seattle, Washington, USA.,Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russian Federation
| |
Collapse
|
30
|
Malhotra A, Allison BJ, Castillo-Melendez M, Jenkin G, Polglase GR, Miller SL. Neonatal Morbidities of Fetal Growth Restriction: Pathophysiology and Impact. Front Endocrinol (Lausanne) 2019; 10:55. [PMID: 30792696 PMCID: PMC6374308 DOI: 10.3389/fendo.2019.00055] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/22/2019] [Indexed: 12/11/2022] Open
Abstract
Being born small lays the foundation for short-term and long-term implications for life. Intrauterine or fetal growth restriction describes the pregnancy complication of pathological reduced fetal growth, leading to significant perinatal mortality and morbidity, and subsequent long-term deficits. Placental insufficiency is the principal cause of FGR, which in turn underlies a chronic undersupply of oxygen and nutrients to the fetus. The neonatal morbidities associated with FGR depend on the timing of onset of placental dysfunction and growth restriction, its severity, and the gestation at birth of the infant. In this review, we explore the pathophysiological mechanisms involved in the development of major neonatal morbidities in FGR, and their impact on the health of the infant. Fetal cardiovascular adaptation and altered organ development during gestation are principal contributors to postnatal consequences of FGR. Clinical presentation, diagnostic tools and management strategies of neonatal morbidities are presented. We also present information on the current status of targeted therapies. A better understanding of neonatal morbidities associated with FGR will enable early neonatal detection, monitoring and management of potential adverse outcomes in the newborn period and beyond.
Collapse
Affiliation(s)
- Atul Malhotra
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- *Correspondence: Atul Malhotra
| | - Beth J. Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Graeme R. Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
31
|
McDowell AR, Shelmerdine SC, Carmichael DW, Arthurs OJ. High resolution isotropic diffusion imaging in post-mortem neonates: a feasibility study. Br J Radiol 2018; 91:20180319. [PMID: 30004808 DOI: 10.1259/bjr.20180319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE: To investigate the potential of advanced diffusion weighted imaging (DWI) in post-mortem MRI (PMMR) at 3T. METHODS: We acquired PMMR brain and body imaging in 12 neonates, mean gestational age 33.4 weeks (range 29-37 weeks) at 3T and 1.5T. Head and body diffusion imaging at 1.5T consisted of bipolar diffusion encoding and single-shot spin-echo echo-planar imaging (SE-EPI) for acquisition (echo time (TE) 96 ms; repetition time (TR) 2700 ms; voxel size 1.8 x 1.8 mm in-plane with slice thickness 5 mm; b-values of 500 and 1000 s/mm2 applied in three orthogonal directions; total acquisition time 2:12). A whole-body 3T diffusion imaging protocol using monopolar diffusion encoding and simultaneous multislice EPI acquisition with gradients applied in 12 uniformly distributed directions was obtained (TE 53.4 ms; TR 5600 ms; 1.8 mm isotropic; multiband factor 2; b-values of 250, 750, 1250 and 1750 s/mm2; acquisition time 2:09 for a single b-value). RESULTS: There was significant improvement in image quality in multiband, multislice diffusion PMMR protocol. On visual assessment of image quality, 1.5T DWI scored poorly (mean 2.4 SD ± 0.47), and all 3T b-values individually scored significantly higher (p < 0.001) apart from b = 250 s/mm2 which was not significantly different. CONCLUSION: Recent advances in diffusion sequences and hardware utilising higher field strengths and gradient performance allows whole-body diffusion PMMR imaging at high resolution with improved image quality compared to the current clinical approach. ADVANCES IN KNOWLEDGE: We have demonstrated feasibility of a multislice, multiband quantitative diffusion imaging sequence in the perinatal post-mortem setting. This will allow more detailed and quantitative clinical PMMR investigations using diffusion MRI in the future.
Collapse
Affiliation(s)
- Amy R McDowell
- 1 UCL Great Ormond Street Institute of Child Health , London , UK
| | - Susan C Shelmerdine
- 2 Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust , London , UK
| | - David W Carmichael
- 1 UCL Great Ormond Street Institute of Child Health , London , UK.,3 Wellcome EPSRC Centre for Medical Engineering, King's College London, St Thomas' Hospital , London , UK
| | - Owen J Arthurs
- 2 Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust , London , UK
| |
Collapse
|
32
|
Georgieff MK, Tran PV, Carlson ES. Atypical fetal development: Fetal alcohol syndrome, nutritional deprivation, teratogens, and risk for neurodevelopmental disorders and psychopathology. Dev Psychopathol 2018; 30:1063-1086. [PMID: 30068419 PMCID: PMC6074054 DOI: 10.1017/s0954579418000500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that the fetal environment plays an important role in brain development and sets the brain on a trajectory across the life span. An abnormal fetal environment results when factors that should be present during a critical period of development are absent or when factors that should not be in the developing brain are present. While these factors may acutely disrupt brain function, the real cost to society resides in the long-term effects, which include important mental health issues. We review the effects of three factors, fetal alcohol exposure, teratogen exposure, and nutrient deficiencies, on the developing brain and the consequent risk for developmental psychopathology. Each is reviewed with respect to the evidence found in epidemiological and clinical studies in humans as well as preclinical molecular and cellular studies that explicate mechanisms of action.
Collapse
Affiliation(s)
| | - Phu V Tran
- University of Minnesota School of Medicine
| | | |
Collapse
|
33
|
Kingdom JC, Audette MC, Hobson SR, Windrim RC, Morgen E. A placenta clinic approach to the diagnosis and management of fetal growth restriction. Am J Obstet Gynecol 2018; 218:S803-S817. [PMID: 29254754 DOI: 10.1016/j.ajog.2017.11.575] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
Abstract
Effective detection and management of fetal growth restriction is relevant to all obstetric care providers. Models of best practice to care for these patients and their families continue to evolve. Since much of the disease burden in fetal growth restriction originates in the placenta, the concept of a multidisciplinary placenta clinic program, managed primarily within a maternal-fetal medicine division, has gained popularity. In this context, fetal growth restriction is merely one of many placenta-related disorders that can benefit from an interdisciplinary approach, incorporating expertise from specialist perinatal ultrasound and magnetic resonance imaging, reproductive genetics, neonatal pediatrics, internal medicine subspecialties, perinatal pathology, and nursing. The accurate diagnosis and prognosis for women with fetal growth restriction is established by comprehensive clinical review and detailed sonographic evaluation of the fetus, combined with uterine artery Doppler and morphologic assessment of the placenta. Diagnostic accuracy for placenta-mediated fetal growth restriction may be enhanced by quantification of maternal serum biomarkers including placenta growth factor alone or combined with soluble fms-like tyrosine kinase-1. Uterine artery Doppler is typically abnormal in most instances of early-onset fetal growth restriction and is associated with coexistent preeclampsia and underlying maternal vascular malperfusion pathology of the placenta. By contrast, rare but potentially more serious underlying placental diagnoses, such as massive perivillous fibrinoid deposition, chronic histiocytic intervillositis, or fetal thrombotic vasculopathy, may be associated with normal uterine artery Doppler waveforms. Despite minor variations in placental size, shape, and cord insertion, placental function remains, largely normal in the general population. Consequently, morphologic assessment of the placenta is not currently incorporated into current screening programs for placental complications. However, placental ultrasound can be diagnostic in the context of fetal growth restriction, for example in Breus' mole and triploidy, which in turn may enhance diagnosis and management. Several examples are illustrated in our figures and supplementary videos. Recent advances in the ability of multiparameter screening and intervention programs to reduce the risk of severe preeclampsia will likely increase efforts to deliver similar improvements for women at risk of fetal growth restriction. Placental pathology is important because the underlying pathologies associated with fetal growth restriction have a wide range of recurrence risks. Rare conditions such as massive perivillous fibrinoid deposition or chronic histolytic intervillositis may recur in >50% of subsequent pregnancies. Postpartum care in a placenta-focused program can provide effective counseling for modifiable maternal risk factors, and can assist in planning future pregnancy care based on the pathologic basis of fetal growth restriction.
Collapse
|
34
|
Jung S, Boie G, Doerr HG, Trollmann R. Oxygen-sensitive regulation and neuroprotective effects of growth hormone-dependent growth factors during early postnatal development. Am J Physiol Regul Integr Comp Physiol 2017; 312:R539-R548. [DOI: 10.1152/ajpregu.00477.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 12/14/2022]
Abstract
Perinatal hypoxia severely disrupts metabolic and somatotrophic development, as well as cerebral maturational programs. Hypoxia-inducible transcription factors (HIFs) represent the most important endogenous adaptive mechanisms to hypoxia, activating a broad spectrum of growth factors that contribute to cell survival and energy homeostasis. To analyze effects of systemic hypoxia and growth hormone (GH) therapy (rhGH) on HIF-dependent growth factors during early postnatal development, we compared protein (using ELISA) and mRNA (using quantitative RT PCR) levels of growth factors in plasma and brain between normoxic and hypoxic mice (8% O2, 6 h; postnatal day 7, P7) at P14. Exposure to hypoxia led to reduced body weight ( P < 0.001) and length ( P < 0.04) compared with controls and was associated with significantly reduced plasma levels of mouse GH ( P < 0.01) and IGF-1 ( P < 0.01). RhGH abrogated these hypoxia-induced changes of the GH/IGF-1 axis associated with normalization of weight and length gain until P14 compared with controls. In addition, rhGH treatment increased cerebral IGF-1, IGF-2, IGFBP-2, and erythropoietin mRNA levels, resulting in significantly reduced apoptotic cell death in the hypoxic, developing mouse brain. These data indicate that rhGH may functionally restore hypoxia-induced systemic dysregulation of the GH/IGF-1 axis and induce upregulation of neuroprotective, HIF-dependent growth factors in the hypoxic developing brain.
Collapse
Affiliation(s)
- Susan Jung
- Division of Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; and
| | - Gudrun Boie
- Division of Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; and
| | - Helmuth-Guenther Doerr
- Division of Pediatric Endocrinology, Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Regina Trollmann
- Division of Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; and
| |
Collapse
|