1
|
Bruzek AK, Koller GM, Karuparti S, Varagur K, Dunbar A, Flanders TM, Mingo M, Sudanagunta K, Bligard KH, Odibo A, Vrecenak J, Mian A, Strahle JM. MRI analysis of neurodevelopmental anatomy in myelomeningocele: prenatal vs postnatal repair. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 64:362-373. [PMID: 38237046 DOI: 10.1002/uog.27586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/28/2023] [Accepted: 12/06/2023] [Indexed: 08/02/2024]
Abstract
OBJECTIVE Compared with postnatal repair, prenatal myelomeningocele (MMC) repair is associated with improved motor function and decreased need for cerebrospinal fluid (CSF) diversion. It is unknown how prenatal surgery alters neuroanatomical structures identifiable on magnetic resonance imaging (MRI). The purpose of this study was to use MRI to compare neurodevelopmental anatomy in patients undergoing fetal MMC repair compared with those undergoing postnatal repair. METHODS This was a retrospective review of neonates who underwent prenatal or postnatal MMC repair at our institution between 2016 and 2021. Imaging data, including prenatal ultrasound and pre- and postnatal MRI examinations, if available, were retrieved. We analyzed anatomical findings characteristically seen on MRI of the neuroaxis in patients with MMC and compared imaging findings between patients with prenatal vs postnatal MMC repair. RESULTS The study population included 61 patients who underwent surgical repair for MMC during the 6-year study period, of whom 25 underwent prenatal repair and 36 postnatal repair. CSF diversion was required in 24% of the prenatally repaired cohort vs 67% of the postnatally repaired cohort (P = 0.001). On postnatal MRI, a syrinx was present in 13% of the prenatally repaired cohort vs 42% in the postnatally repaired cohort (P = 0.02). Postnatal corpus callosal (CC) morphology was abnormal in 54% of the prenatally repaired cohort vs 53% of the postnatally repaired cohort (P = 0.92), while falx morphology was normal in 92% of the prenatally repaired cohort vs 34% of the postnatally repaired cohort (P < 0.001). On postnatal MRI, patients in the prenatally repaired cohort had a shorter tentorium-to-foramen-magnum distance compared with those in the postnatally repaired cohort (mean, 18.43 mm vs 22.42 mm; P = 0.01), a larger foramen magnum diameter (mean, 22.87 mm vs 18.94 mm; P < 0.001) and a smaller degree of hindbrain herniation (mean, 1.53 mm vs 8.72 mm; P < 0.001). The cerebral aqueduct was patent in 79% of the prenatally repaired cohort vs 100% of the postnatally repaired cohort on postnatal MRI (P = 0.008). Between the two cohorts, at postnatal MRI there was no significant difference in the presence of gray-matter heterotopia, presence of the septum pellucidum or size of the massa intermedia. CONCLUSIONS We report variations in developmental neuroanatomy in patients with MMC, including rates of CC dysgenesis, gray-matter heterotopia and additional cranial and spinal MRI findings. Compared to postnatal surgery, prenatal surgery is associated with changes to infratentorial anatomy, with minimal effect on supratentorial brain development. This information will be useful in counseling parents affected by fetal MMC and in understanding how prenatal repair of MMC affects brain development. © 2024 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- A K Bruzek
- Department of Neurosurgery, Washington University, St Louis, MO, USA
| | - G M Koller
- Department of Neurosurgery, Washington University, St Louis, MO, USA
| | - S Karuparti
- School of Medicine, University of Missouri, Columbia, MO, USA
| | - K Varagur
- Department of Neurosurgery, Washington University, St Louis, MO, USA
| | - A Dunbar
- Department of Neurosurgery, Washington University, St Louis, MO, USA
| | - T M Flanders
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - M Mingo
- Department of Radiology, Washington University, St Louis, MO, USA
| | - K Sudanagunta
- Department of Radiology, Washington University, St Louis, MO, USA
| | - K H Bligard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Ultrasound, Washington University, St Louis, MO, USA
| | - A Odibo
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Ultrasound, Washington University, St Louis, MO, USA
| | - J Vrecenak
- Department of Surgery, Washington University, St Louis, MO, USA
| | - A Mian
- Department of Radiology, Washington University, St Louis, MO, USA
| | - J M Strahle
- Department of Neurosurgery, Washington University, St Louis, MO, USA
| |
Collapse
|
2
|
Backley S, Bergh EP, Garnett J, Li R, Maroufy V, Jain R, Fletcher S, Tsao K, Austin M, Johnson A, Papanna R. Fetal cardiovascular changes during open and fetoscopic in-utero spina bifida closure. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 64:193-202. [PMID: 38207160 DOI: 10.1002/uog.27579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/30/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE Fetoscopic closure of spina bifida using heated and humidified carbon dioxide gas (hhCO2) has been associated with lower maternal morbidity compared with open closure. Fetal cardiovascular changes during these surgical interventions are poorly defined. Our objective was to compare fetal bradycardia (defined as fetal heart rate (FHR) < 110 bpm for 10 min) and changes in umbilical artery (UA) Doppler parameters during open vs fetoscopic closure. METHODS This was a prospective cohort study of 22 open and 46 fetoscopic consecutive in-utero closures conducted between 2019 and 2023. Both cohorts had similar preoperative counseling and clinical management. FHR and UA Doppler velocimetry were obtained systematically during preoperative assessment, every 5 min during the intraoperative period, and during the postoperative assessment. FHR, UA pulsatility index (PI) and UA end-diastolic flow (EDF) were segmented into hourly periods during surgery, and the lowest values were averaged for analysis. Umbilical vein maximum velocity was measured in the fetoscopic cohort. At each timepoint at which FHR was recorded, maternal heart rate and systolic and diastolic blood pressure were measured. RESULTS Fetal bradycardia occurred in 4/22 (18.2%) cases of open closure and 21/46 (45.7%) cases of fetoscopic closure (P = 0.03). FHR decreased gradually in both cohorts after administration of general anesthesia and decreased further during surgery. FHR was significantly lower during hour 2 of surgery in the fetoscopic-repair cohort compared with the open-repair cohort. The change in FHR from baseline in the final stage of fetal surgery was significantly more pronounced in the fetoscopic-repair cohort compared with the open-repair cohort (mean, -32.4 (95% CI, -35.7 to -29.1) bpm vs -23.5 (95% CI, -28.1 to -18.8) bpm; P = 0.002). Abnormal UA-EDF (defined as absent or reversed EDF) occurred in 3/22 (13.6%) cases in the open-repair cohort and 23/46 (50.0%) cases in the fetoscopic-repair cohort (P = 0.004). There were no differences in UA-EDF or UA-PI between closure techniques at the individual stages of assessment. CONCLUSIONS We observed a decrease in FHR and abnormalities in UA Doppler parameters during both open and fetoscopic spina bifida closure. Fetal bradycardia was more prominent during fetoscopic closure following hhCO2 insufflation, but FHR recovered after cessation of hhCO2. Changes in FHR and UA Doppler parameters during in-utero spina bifida closure were transient, no cases required emergency delivery and no fetoscopic closure was converted to open closure. These observations should inform algorithms for the perioperative management of fetal bradycardia associated with in-utero spina bifida closure. © 2024 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- S Backley
- Division of Fetal Intervention, Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- The Fetal Center at Children's Memorial Hermann Hospital, Houston, TX, USA
| | - E P Bergh
- Division of Fetal Intervention, Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- The Fetal Center at Children's Memorial Hermann Hospital, Houston, TX, USA
| | - J Garnett
- Division of Fetal Intervention, Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- The Fetal Center at Children's Memorial Hermann Hospital, Houston, TX, USA
| | - R Li
- Department of Biostatistics and Data Science, UTHealth School of Public Health, Houston, TX, USA
| | - V Maroufy
- Department of Biostatistics and Data Science, UTHealth School of Public Health, Houston, TX, USA
| | - R Jain
- The Fetal Center at Children's Memorial Hermann Hospital, Houston, TX, USA
- Division of Pediatric Anesthesia, Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - S Fletcher
- The Fetal Center at Children's Memorial Hermann Hospital, Houston, TX, USA
- Division of Pediatric Neurosurgery, Department of Pediatric Surgery and Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - K Tsao
- The Fetal Center at Children's Memorial Hermann Hospital, Houston, TX, USA
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - M Austin
- The Fetal Center at Children's Memorial Hermann Hospital, Houston, TX, USA
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - A Johnson
- Division of Fetal Intervention, Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- The Fetal Center at Children's Memorial Hermann Hospital, Houston, TX, USA
| | - R Papanna
- Division of Fetal Intervention, Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- The Fetal Center at Children's Memorial Hermann Hospital, Houston, TX, USA
| |
Collapse
|
3
|
Oliveira GHD, Acácio GL, Gonçalves RTR, Svetliza J, Callado GY, Dias CDM, Vaz-Oliani DCM, Chmait RH, Lapa DA. Prenatal repair of gastroschisis using partial carbon dioxide insufflation fetoscopy: lessons learned. EINSTEIN-SAO PAULO 2023; 21:eRC0543. [PMID: 37255063 DOI: 10.31744/einstein_journal/2023rc0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 06/01/2023] Open
Abstract
We report the long-term outcomes of a case of prenatal gastroschisis repair using a fully percutaneous fetoscopic approach with partial carbon dioxide insufflation. Surgery was performed as an experimental procedure before the scheduled elective birth. The fetal intestines were successfully returned to the abdominal cavity without any fetal or maternal complications. Ultrasonography performed 24 hours later revealed bowel peristalsis and no signs of fetal distress. After 48 hours, partial extrusion of the small bowel was observed, and the fetus was delivered. Gastroschisis repair was immediately performed upon delivery using the EXIT-like procedure as per our institutional protocol. The newborn did not require assisted mechanical ventilation, was discharged at 14 days of age and was then exclusively breastfed. At 3-year follow-up, the patient had no associated gastroschisis-related complications. This is the first case of prenatal repair of gastroschisis, which provides baseline knowledge for future researchers on the potential hurdles and management of prenatal repair.
Collapse
Affiliation(s)
| | | | | | - Javier Svetliza
- Hospital Interzonal General de Agudos Dr. José Penna, Bahía Blanca, Argentina
| | - Gustavo Yano Callado
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | | | - Ramen H Chmait
- Division of Maternal-Fetal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | | |
Collapse
|
4
|
Mufti N, Sacco A, Aertsen M, Ushakov F, Ourselin S, Thomson D, Deprest J, Melbourne A, David AL. What brain abnormalities can magnetic resonance imaging detect in foetal and early neonatal spina bifida: a systematic review. Neuroradiology 2022; 64:233-245. [PMID: 34792623 PMCID: PMC8789702 DOI: 10.1007/s00234-021-02853-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/03/2021] [Indexed: 12/02/2022]
Abstract
PURPOSE Open spina bifida (OSB) encompasses a wide spectrum of intracranial abnormalities. With foetal surgery as a new treatment option, robust intracranial imaging is important for comprehensive preoperative evaluation and prognostication. We aimed to determine the incidence of infratentorial and supratentorial findings detected by magnetic resonance imaging (MRI) alone and MRI compared to ultrasound. METHODS Two systematic reviews comparing MRI to ultrasound and MRI alone were conducted on MEDLINE, EMBASE, and Cochrane databases identifying studies of foetal OSB from 2000 to 2020. Intracranial imaging findings were analysed at ≤ 26 or > 26 weeks gestation and neonates (≤ 28 days). Data was independently extracted by two reviewers and meta-analysis was performed where possible. RESULTS Thirty-six studies reported brain abnormalities detected by MRI alone in patients who previously had an ultrasound. Callosal dysgenesis was identified in 4/29 cases (2 foetuses ≤ 26 weeks, 1 foetus under any gestation, and 1 neonate ≤ 28 days) (15.1%, CI:5.7-34.3%). Heterotopia was identified in 7/40 foetuses ≤ 26 weeks (19.8%, CI:7.7-42.2%), 9/36 foetuses > 26 weeks (25.3%, CI:13.7-41.9%), and 64/250 neonates ≤ 28 days (26.9%, CI:15.3-42.8%). Additional abnormalities included aberrant cortical folding and other Chiari II malformation findings such as lower cervicomedullary kink level, tectal beaking, and hypoplastic tentorium. Eight studies compared MRI directly to ultrasound, but due to reporting inconsistencies, it was not possible to meta-analyse. CONCLUSION MRI is able to detect anomalies hitherto underestimated in foetal OSB which may be important for case selection. In view of increasing prenatal OSB surgery, further studies are required to assess developmental consequences of these findings.
Collapse
Affiliation(s)
- Nada Mufti
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- School of Biomedical Engineering and Imaging Sciences (BMEIS), King's College London, London, UK
| | - Adalina Sacco
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- Fetal Medicine Unit, University College London Hospital NHS Foundation Trust, London, UK
| | - Michael Aertsen
- Department of Radiology, University Hospitals Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Fred Ushakov
- Fetal Medicine Unit, University College London Hospital NHS Foundation Trust, London, UK
| | - Sebastian Ourselin
- School of Biomedical Engineering and Imaging Sciences (BMEIS), King's College London, London, UK
| | - Dominic Thomson
- Paediatric Neurosurgery Department, Great Ormond Street Hospital for Children, London, UK
| | - Jan Deprest
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- Department of Obstetrics and Gynaecology, University Hospitals Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences (BMEIS), King's College London, London, UK
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- Department of Obstetrics and Gynaecology, University Hospitals Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Miller JL, Groves ML, Ahn ES, Berman DJ, Murphy JD, Rosner MK, Wolfson D, Jelin EB, Korth SA, Keiser AM, Laurie M, Millard SE, Tekes A, Baschat AA. Implementation Process and Evolution of a Laparotomy-Assisted 2-Port Fetoscopic Spina Bifida Closure Program. Fetal Diagn Ther 2021; 48:603-610. [PMID: 34518445 DOI: 10.1159/000518507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/12/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Prenatal closure of open spina bifida via open fetal surgery improves neurologic outcomes for infants in selected pregnancies. Fetoscopic techniques that are minimally invasive to the uterus aim to provide equivalent fetal benefits while minimizing maternal morbidities, but the optimal technique is undetermined. We describe the development, evolution, and feasibility of the laparotomy-assisted 2-port fetoscopic technique for prenatal closure of fetal spina bifida in a newly established program. METHODS We conducted a retrospective cohort study of women consented for laparotomy-assisted fetoscopic closure of isolated fetal spina bifida. Inclusion and exclusion criteria followed the Management of Myelomeningocele Study (MOMS). Team preparation involved observation at the originating center, protocol development, ancillary staff training, and surgical rehearsal using patient-matched models through simulation prior to program implementation. The primary outcome was the ability to complete the repair fetoscopically. Secondary maternal and fetal outcomes to assess performance of the technique were collected prospectively. RESULTS Of 57 women screened, 19 (33%) consented for laparotomy-assisted 2-port fetoscopy between February 2017 and December 2019. Fetoscopic closure was completed in 84% (16/19) cases. Over time, the technique was modified from a single- to a multilayer closure. In utero hindbrain herniation improved in 86% (12/14) of undelivered patients at 6 weeks postoperatively. Spontaneous rupture of membranes occurred in 31% (5/16) of fetoscopic cases. For completed cases, median gestational age at birth was 37 (range 27-39.6) weeks and 50% (8/16) of women delivered at term. Vaginal birth was achieved in 56% (9/16) of patients. One newborn had a cerebrospinal fluid leak that required postnatal surgical repair. CONCLUSION Implementation of a laparotomy-assisted 2-port fetoscopic spina bifida closure program through rigorous preparation and multispecialty team training may accelerate the learning curve and demonstrates favorable obstetric and perinatal outcomes.
Collapse
Affiliation(s)
- Jena L Miller
- The Johns Hopkins Center for Fetal Therapy, Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mari L Groves
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Edward S Ahn
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - David J Berman
- Division of Obstetric, Gynecologic and Fetal Anesthesiology, Department of Anesthesia and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jamie D Murphy
- Division of Obstetric, Gynecologic and Fetal Anesthesiology, Department of Anesthesia and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mara K Rosner
- The Johns Hopkins Center for Fetal Therapy, Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Denise Wolfson
- The Johns Hopkins Center for Fetal Therapy, Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Eric B Jelin
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah A Korth
- Keelty Center for Spina Bifida and Related Conditions, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Amaris M Keiser
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Melissa Laurie
- The Johns Hopkins Center for Fetal Therapy, Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah E Millard
- The Johns Hopkins Center for Fetal Therapy, Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aylin Tekes
- Division of Pediatric Radiology and Pediatric Neuroradiology, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ahmet A Baschat
- The Johns Hopkins Center for Fetal Therapy, Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Two-port, exteriorized uterus, fetoscopic meningomyelocele closure has fewer adverse neonatal outcomes than open hysterotomy closure. Am J Obstet Gynecol 2021; 225:327.e1-327.e9. [PMID: 33957114 DOI: 10.1016/j.ajog.2021.04.252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND In utero closure of meningomyelocele using an open hysterotomy approach is associated with preterm delivery and adverse neonatal outcomes. OBJECTIVE This study compared the neonatal outcomes in in utero meningomyelocele closure using a 2-port, exteriorized uterus, fetoscopic approach vs the conventional open hysterotomy approach. STUDY DESIGN This retrospective cohort study included all consecutive patients who underwent in utero meningomyelocele closure using open hysterotomy (n=44) or a 2-port, exteriorized uterus, fetoscopic approach (n=46) at a single institution between 2012 and 2020. The 2-port, exteriorized uterus, fetoscopic closure was composed of the following 3 layers: a bovine collagen patch, a myofascial layer, and a skin. The frequency of respiratory distress syndrome and a composite of other adverse neonatal outcomes, including retinopathy of prematurity, periventricular leukomalacia, and perinatal death, were compared between the study groups. Regression analyses were performed to determine any association between the fetoscopic closure and adverse neonatal outcomes, adjusted for several confounders, including gestational age of <37 weeks at delivery. RESULTS The fetoscopic closure was associated with a lower rate of respiratory distress syndrome than the open hysterotomy closure (11.5% [5 of 45] vs 29.5% [13 of 44]; P=.037). The proportion of neonates with a composite of other adverse neonatal outcomes in the fetoscopic group was half of that observed patients in the open hysterotomy group; however, this difference did not reach statistical significance (4.3% [2 of 46] vs 9.1% [4 of 44]; P=.429). Here, regression analysis has demonstrated that fetoscopic meningomyelocele closure was associated with a lower risk of respiratory distress syndrome (adjusted odds ratio, 0.23; 95% confidence interval, 0.06-0.84; P=.026) than open hysterotomy closure. CONCLUSION In utero meningomyelocele closure using a 2-port, exteriorized uterus, fetoscopic approach was associated with a lower risk of respiratory distress syndrome than the conventional open hysterotomy meningomyelocele closure.
Collapse
|
7
|
Jakab A, Payette K, Mazzone L, Schauer S, Muller CO, Kottke R, Ochsenbein-Kölble N, Tuura R, Moehrlen U, Meuli M. Emerging magnetic resonance imaging techniques in open spina bifida in utero. Eur Radiol Exp 2021; 5:23. [PMID: 34136989 PMCID: PMC8209133 DOI: 10.1186/s41747-021-00219-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Magnetic resonance imaging (MRI) has become an essential diagnostic modality for congenital disorders of the central nervous system. Recent advancements have transformed foetal MRI into a clinically feasible tool, and in an effort to find predictors of clinical outcomes in spinal dysraphism, foetal MRI began to unveil its potential. The purpose of our review is to introduce MRI techniques to experts with diverse backgrounds, who are involved in the management of spina bifida. We introduce advanced foetal MRI postprocessing potentially improving the diagnostic work-up. Importantly, we discuss how postprocessing can lead to a more efficient utilisation of foetal or neonatal MRI data to depict relevant anatomical characteristics. We provide a critical perspective on how structural, diffusion and metabolic MRI are utilised in an endeavour to shed light on the correlates of impaired development. We found that the literature is consistent about the value of MRI in providing morphological cues about hydrocephalus development, hindbrain herniation or outcomes related to shunting and motor functioning. MRI techniques, such as foetal diffusion MRI or diffusion tractography, are still far from clinical use; however, postnatal studies using these methods revealed findings that may reflect early neural correlates of upstream neuronal damage in spinal dysraphism.
Collapse
Affiliation(s)
- Andras Jakab
- Center for MR-Research, University Children's Hospital Zürich, Zürich, Switzerland. .,Neuroscience Center Zürich, University of Zürich, Zürich, Switzerland.
| | - Kelly Payette
- Center for MR-Research, University Children's Hospital Zürich, Zürich, Switzerland.,Neuroscience Center Zürich, University of Zürich, Zürich, Switzerland
| | - Luca Mazzone
- Department of Pediatric Surgery, University Children's Hospital Zurich, Zürich, Switzerland.,The Zurich Center for Fetal Diagnosis and Therapy, Zürich, Switzerland
| | - Sonja Schauer
- Department of Pediatric Surgery, University Children's Hospital Zurich, Zürich, Switzerland
| | | | - Raimund Kottke
- Department of Diagnostic Imaging, University Children's Hospital Zurich, Zurich, Switzerland
| | | | - Ruth Tuura
- Center for MR-Research, University Children's Hospital Zürich, Zürich, Switzerland
| | - Ueli Moehrlen
- Department of Pediatric Surgery, University Children's Hospital Zurich, Zürich, Switzerland.,The Zurich Center for Fetal Diagnosis and Therapy, Zürich, Switzerland.,University of Zurich, Zürich, Switzerland
| | - Martin Meuli
- Department of Pediatric Surgery, University Children's Hospital Zurich, Zürich, Switzerland.,The Zurich Center for Fetal Diagnosis and Therapy, Zürich, Switzerland.,University of Zurich, Zürich, Switzerland
| |
Collapse
|
8
|
Verweij EJ, de Vries MC, Oldekamp EJ, Eggink AJ, Oepkes D, Slaghekke F, Spoor JKH, Deprest JA, Miller JL, Baschat AA, DeKoninck PLJ. Fetoscopic myelomeningocoele closure: Is the scientific evidence enough to challenge the gold standard for prenatal surgery? Prenat Diagn 2021; 41:949-956. [PMID: 33778976 PMCID: PMC8360048 DOI: 10.1002/pd.5940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022]
Abstract
Since the completion of the Management of Myelomeningocoele Study, maternal-fetal surgery for spina bifida has become a valid option for expecting parents. More recently, multiple groups are exploring a minimally invasive approach and recent outcomes have addressed many of the initial concerns with this approach. Based on a previously published framework, we attempt to delineate the developmental stage of the surgical techniques. Furthermore, we discuss the barriers of performing randomized controlled trials comparing two surgical interventions and suggest that data collection through registries is an alternative method to gather high-grade evidence.
Collapse
Affiliation(s)
- E Joanne Verweij
- Department of Obstetrics and Gynecology, Division of Obstetrics and Fetal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martine C de Vries
- Department of Medical Ethics & Health Law, Leiden University Medical Center, Leiden, The Netherlands
| | - Esther J Oldekamp
- Department of Medical Ethics & Health Law, Leiden University Medical Center, Leiden, The Netherlands
| | - Alex J Eggink
- Department of Obstetrics and Gynecology, Division of Obstetrics and Fetal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dick Oepkes
- Department of Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Femke Slaghekke
- Department of Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jochem K H Spoor
- Department of Neurosurgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan A Deprest
- Academic Department of Development and Regeneration, Biomedical Sciences, KU Leuven, Leuven, Belgium.,Department of Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Jena L Miller
- Johns Hopkins Center for Fetal Therapy, Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ahmet A Baschat
- Johns Hopkins Center for Fetal Therapy, Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Philip L J DeKoninck
- Department of Obstetrics and Gynecology, Division of Obstetrics and Fetal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Amberg BJ, DeKoninck PLJ, Kashyap AJ, Skinner SM, Rodgers KA, McGillick EV, Deprest JA, Hooper SB, Crossley KJ, Hodges RJ. Placental gas exchange during amniotic carbon dioxide insufflation in sheep. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 57:305-313. [PMID: 31765050 DOI: 10.1002/uog.21933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Insufflation of the amniotic cavity with carbon dioxide (CO2 ) is used clinically to improve visibility during complex fetoscopic surgery. Insufflation with heated, humidified CO2 has recently been shown to reduce fetal hypercapnia and acidosis in sheep, compared with use of cold and dry CO2 , but the underlying mechanisms are unclear. The aim of this study was to investigate whether differences in placental CO2 and oxygen (O2 ) exchange during insufflation with heated and humidified vs cold and dry CO2 could explain these findings. METHODS Thirteen fetal lambs at 105 days of gestation (term, 146 days) were exteriorized partially, via a midline laparotomy and hysterotomy, and instrumented with an umbilical artery catheter, an umbilical vein catheter and a common umbilical vein flow probe. Arterial and venous catheters and flow probes were also inserted into the maternal uterine circulation. Six ewes were insufflated with cold, dry CO2 (22°C; 0-5% humidity) and seven with heated, humidified CO2 (40°C; 95-100% humidity) at 15 mmHg for 180 min. Blood-flow recordings and paired arterial and venous blood gases were sampled from uterine and umbilical vessels. Rates of placental CO2 and O2 exchange were calculated. RESULTS After 180 min of insufflation, fetal survival was 33% (2/6) using cold, dry CO2 and 71% (5/7) using heated, humidified CO2 . By 120 min, fetuses insufflated with heated, humidified CO2 had lower arterial CO2 levels and higher arterial pH compared to those insufflated with cold, dry gas. Insufflation decreased significantly placental gas exchange in both groups, as measured by rates of both (i) fetal CO2 clearance and O2 uptake and (ii) maternal O2 delivery and CO2 uptake from the fetal compartment. CONCLUSIONS Lower arterial CO2 and higher pH levels in fetuses insufflated with heated and humidified, compared to cold and dry, CO2 could not be explained by differences in placental gas exchange. Instead, heated and humidified insufflation appeared to reduce fetal CO2 absorption from the uterus, supporting its use in preference to cold, dry CO2 . © 2019 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- B J Amberg
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - P L J DeKoninck
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - A J Kashyap
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - S M Skinner
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - K A Rodgers
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - E V McGillick
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - J A Deprest
- Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - S B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - K J Crossley
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - R J Hodges
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Diehl D, Belke F, Kohl T, Axt-Fliedner R, Degenhardt J, Khaleeva A, Oehmke F, Faas D, Ehrhardt H, Kolodziej M, Uhl E, Windhorst AC, Neubauer BA. Fully percutaneous fetoscopic repair of myelomeningocele: 30-month follow-up data. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 57:113-118. [PMID: 32510722 DOI: 10.1002/uog.22116] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/27/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE This observational study reports on the postnatal mortality and 30-month outcome of children who underwent fully percutaneous fetoscopic repair of myelomeningocele (MMC) at a single center in Giessen, Germany. METHODS Between October 2010 and August 2014, a total of 72 patients underwent fully percutaneous fetoscopic MMC closure at 21 + 0 to 29 + 1 (mean, 23 + 5) weeks' gestation. Of these, 52 (72%) participated in this study; however, 30-month mortality data are available for all 72 children. Children were examined at four timepoints: shortly after birth and at 3 months, 12 months and 30 months of corrected age. The patients underwent age-specific standardized neurological examinations and assessment of leg movements and ambulation at all timepoints. Cognitive and motor development were assessed using the Bayley Scales of Infant Development, second edition (BSID-II), at 30 months. RESULTS All 72 children survived the intrauterine procedure, however, four (5.6%) infants died postnatally (including two of the 52 comprising the study cohort). Of the 52 patients included in the study, 11.5% were delivered before the 30th week of gestation (mean, 33 + 1 weeks) and, of the survivors, 48.1% had ventriculoperitoneal shunt placement. Of the 50 infants that were alive at 30 months, independent ambulation, without orthosis, was feasible for 46%. At 30 months of follow-up, 46% of children presented with a functional level that was at least two segments better than the anatomical level of the lesion. At 30 months, 70% of the children presented with BSID-II psychomotor development index score of ≥ 70 and 80% with BSID-II mental development index score of ≥ 70. CONCLUSION Intrauterine repair of MMC by percutaneous fetoscopy shows largely similar outcomes to those reported for open repair, with respect to mortality, prematurity, shunt-placement rates, motor and mental development and free ambulation. © 2020 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- D Diehl
- Department of Pediatric Neurology, University Hospital Giessen-Marburg, Giessen, Germany
| | - F Belke
- Department of Pediatric Neurology, University Hospital Giessen-Marburg, Giessen, Germany
| | - T Kohl
- Department of Gynecology and Obstetrics, Justus-Liebig-University Giessen, Giessen, Germany
- German Center for Fetal Surgery & Minimally Invasive Therapy (DZFT), University of Mannheim (UMM), Mannheim, Germany
| | - R Axt-Fliedner
- Department of Gynecology and Obstetrics, Justus-Liebig-University Giessen, Giessen, Germany
| | - J Degenhardt
- Department of Gynecology and Obstetrics, Justus-Liebig-University Giessen, Giessen, Germany
| | - A Khaleeva
- Department of Gynecology and Obstetrics, Justus-Liebig-University Giessen, Giessen, Germany
| | - F Oehmke
- Department of Gynecology and Obstetrics, Justus-Liebig-University Giessen, Giessen, Germany
| | - D Faas
- Department of Pediatrics and Neonatology, Justus-Liebig-University Giessen, Giessen, Germany
| | - H Ehrhardt
- Department of Pediatrics and Neonatology, Justus-Liebig-University Giessen, Giessen, Germany
| | - M Kolodziej
- Department of Neurosurgery, Justus-Liebig-University Giessen, Giessen, Germany
| | - E Uhl
- Department of Neurosurgery, Justus-Liebig-University Giessen, Giessen, Germany
| | - A C Windhorst
- Institute of Medical Informatics, Justus-Liebig-University Giessen, Giessen, Germany
| | - B A Neubauer
- Department of Pediatric Neurology, University Hospital Giessen-Marburg, Giessen, Germany
| |
Collapse
|
11
|
Imaging of open spinal dysraphisms in the era of prenatal surgery. Pediatr Radiol 2020; 50:1988-1998. [PMID: 33252764 DOI: 10.1007/s00247-020-04734-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/15/2020] [Accepted: 05/20/2020] [Indexed: 01/24/2023]
Abstract
Over the last decade fetal surgery to repair open spinal dysraphisms has become an acceptable and in some cases desirable alternative to the traditional method of postnatal closure. Fetal MRI is an essential part of the workup in these patients, not only to select the appropriate candidates for fetal surgery but also to guide prenatal counseling and perinatal management. In this article we review current surgical techniques for prenatal repair, relevant imaging findings in the era of fetal surgery, and expected imaging findings of the brain and spine in the fetal and postnatal periods.
Collapse
|
12
|
Mangano FT, Stevenson CB, Nagaraj U, Conley A, Yuan W. Abnormal anisotropic diffusion properties in pediatric myelomeningocele patients treated with fetal surgery: an initial DTI study. Childs Nerv Syst 2020; 36:827-833. [PMID: 31399765 DOI: 10.1007/s00381-019-04339-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/01/2019] [Indexed: 01/13/2023]
Abstract
PURPOSE To investigate white matter microstructural abnormality based on diffusion tensor imaging (DTI) in pediatric patients with fetal repair for myelomeningocele (MMC). METHODS This was a retrospective analysis of DTI data from 8 pediatric patients with prenatal MMC repair (age range 1.64-33.70 months; sex 3F/5M) and 8 age-matched controls (age 2.24-31.20 months; sex 5F/2M). All participants were scanned on 1.5T GE Signa MR scanner (GE Healthcare, Milwaukee, WI) with the same sequence specifications. Two DTI measures, including fractional anisotropy (FA) and mean diffusivity (MD), were calculated from the genu of corpus callosum (gCC) and the posterior limb of internal capsule (PLIC). DTI values and fronto-occipital horn ratio (FOHR) were tested for group difference based on two-tailed paired t test. RESULTS The ventricle size based on FOHR in patients with prenatal MMC repair was significantly larger than that in the age-matched control group (p < 0.001). Statistically significant group difference in DTI (lower FA and higher MD in patient group) was found in gCC (p = 0.007 and 0.003, respectively). A trend level increase in MD was also found (p = 0.065) in PLIC in patients when compared with the age-matched controls. CONCLUSION Our data showed white matter abnormality based on DTI in pediatric patient with fetal repair for MMC. The sensitivity of DTI in detecting white matter abnormality, as shown in the present study, may help to serve as an imaging biomarker for assessing hydrocephalus and improve and optimize decision making for the treatment of hydrocephalus in this patient population.
Collapse
Affiliation(s)
- Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Charles B Stevenson
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Usha Nagaraj
- University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adam Conley
- Specialty Pediatric Center, Children's Hospital & Medical Center, Omaha, NE, USA
| | - Weihong Yuan
- University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Pediatric Neuroimaging Research Consortium, Division of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 5033, Cincinnati, OH, 45229, USA.
| |
Collapse
|
13
|
Chitty LS, Hui L, Ghidini A, Levy B, Deprest J, Van Mieghem T, Bianchi DW. In case you missed it: The Prenatal Diagnosis editors bring you the most significant advances of 2019. Prenat Diagn 2020; 40:287-293. [PMID: 31875323 DOI: 10.1002/pd.5632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022]
Affiliation(s)
- L S Chitty
- London North Genomic Laboratory, Great Ormond Street NHS Foundation Trust, and Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - L Hui
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - A Ghidini
- Antenatal Testing Centre, Inova Alexandria Hospital, Alexandria, VA
| | - B Levy
- Departments of Pathology and Cell Biology, Columbia University, New York, NY
| | - J Deprest
- Departments of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - T Van Mieghem
- Department of Obstetrics and Gynaecology, Mount Sinai Hospital and University of Toronto, Toronto, Ontario, Canada
| | - D W Bianchi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|