1
|
Wang F, Peng H, Lou G, Ren Y, Liao S. Prenatal ultrasound phenotype of fetuses with recurrent 1q21.1 deletion and duplication syndrome. Front Pediatr 2025; 12:1504122. [PMID: 39840309 PMCID: PMC11747787 DOI: 10.3389/fped.2024.1504122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/27/2024] [Indexed: 01/23/2025] Open
Abstract
Objective Our study aimed to collect fetuses with recurrent 1q21.1 deletion or duplication syndrome for systematic clinical phenotype analysis to further delineate the intrauterine phenotype features of the two reciprocal syndromes. Methods Prenatal samples, including amniotic fluid and chorionic villus samples, were obtained by amniocentesis and chorionic villus sampling at our center, respectively. In total, 43 fetuses were diagnosed with recurrent 1q21.1 deletion or duplication syndrome via array comparative genomic hybridization (array CGH) or copy number variation sequencing (CNV-seq). Prenatal clinical data, pregnancy outcomes, and individual conditions after birth were collected. Results In total, 20 fetuses were diagnosed with 1q21.1 deletion syndrome, and 11 had abnormal ultrasound findings. The most common ultrasound features were renal anomalies, musculoskeletal abnormalities, and increased NT. Other less common ultrasound findings encompassed neurologic abnormalities, cardiovascular defects, absence of the gallbladder, intrauterine growth retardation, and cervical cystic hygroma. On the other hand, 23 fetuses had reciprocal 1q21.1 duplication syndrome, 11 of which had abnormal ultrasound findings, mainly nasal bone abnormalities, cardiovascular defects, increased NT, and neurologic abnormalities. Conclusions Our case study suggested that the prenatal clinical phenotypes of the recurrent 1q21.1 deletion syndrome and reciprocal duplication syndrome fetuses were highly diverse with incomplete penetrance. Additionally, our findings should expand the intrauterine phenotype associated with the recurrent 1q21.1 region by a series of prenatal ultrasonic anomalies in this work that were described for the first time, which might broaden knowledge of the genotype and phenotype correlation.
Collapse
Affiliation(s)
- Fengyang Wang
- Henan Provincial Institute of Medical Genetics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Huijuan Peng
- Department of Ultrasonography, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Guiyu Lou
- Henan Provincial Institute of Medical Genetics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanxin Ren
- Henan Provincial Institute of Medical Genetics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Shixiu Liao
- Henan Provincial Institute of Medical Genetics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Huang C, Zhang L, Jiang Y, Zheng Q, Lei T, Du L, Xie H. Evaluation of normal and abnormal fetal renal microvascular flow characteristics of three-dimensional MV-flow imaging. Early Hum Dev 2024; 199:106149. [PMID: 39547115 DOI: 10.1016/j.earlhumdev.2024.106149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/08/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE To evaluate the applicability of three-dimensional MV-Flow imaging for prenatal renal diagnosis. METHOD This prospective study included normal and abnormal kidneys ranging from 20 to 40 weeks gestation between April and July 2023. All participants underwent conventional ultrasound and three-dimensional MV-Flow examinations. The renal volume and microvascular indexes were obtained by the three-dimensional MV-Flow. RESULTS A total of 207 normal kidneys from 154 fetuses and 67 abnormal kidneys from 53 fetuses, with conditions such as renal cystic diseases, hyperechoic kidney, large kidney, and small kidney were included. Normal renal volume, vascularization index, and vascularization-flow index increased slightly with gestational age (p < 0.001). No correlation was found between gestational age and flow index (p = 0.604). The microvascular indexes decreased in the fetal renal cystic disease group while renal volume increased. Higher vascularization index and vascularization-flow index were observed in the hyperechoic kidney group. The microvascular indexes of the large and small kidney groups were within the reference range for normal kidneys. Only the autosomal dominant polycystic kidney disease exhibited an absence of distinct subcapsular microvascular flow in the MV-Flow image, referred to as the "thick shell sign". CONCLUSION Fetal renal volume, vascularization index, and vascularization-flow index increase with gestational age. Quantitative evaluation using 3D MV-Flow imaging reveals varying renal volume and microvascular perfusion characteristics among different fetal renal abnormalities.
Collapse
Affiliation(s)
- Caixin Huang
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lihe Zhang
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuting Jiang
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiao Zheng
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Lei
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liu Du
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongning Xie
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Auwerx C, Kutalik Z, Reymond A. The pleiotropic spectrum of proximal 16p11.2 CNVs. Am J Hum Genet 2024; 111:2309-2346. [PMID: 39332410 PMCID: PMC11568765 DOI: 10.1016/j.ajhg.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/29/2024] Open
Abstract
Recurrent genomic rearrangements at 16p11.2 BP4-5 represent one of the most common causes of genomic disorders. Originally associated with increased risk for autism spectrum disorder, schizophrenia, and intellectual disability, as well as adiposity and head circumference, these CNVs have since been associated with a plethora of phenotypic alterations, albeit with high variability in expressivity and incomplete penetrance. Here, we comprehensively review the pleiotropy associated with 16p11.2 BP4-5 rearrangements to shine light on its full phenotypic spectrum. Illustrating this phenotypic heterogeneity, we expose many parallels between findings gathered from clinical versus population-based cohorts, which often point to the same physiological systems, and emphasize the role of the CNV beyond neuropsychiatric and anthropometric traits. Revealing the complex and variable clinical manifestations of this CNV is crucial for accurate diagnosis and personalized treatment strategies for carrier individuals. Furthermore, we discuss areas of research that will be key to identifying factors contributing to phenotypic heterogeneity and gaining mechanistic insights into the molecular pathways underlying observed associations, while demonstrating how diversity in affected individuals, cohorts, experimental models, and analytical approaches can catalyze discoveries.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Xue S, Liu Y, Wang L, Zhang L, Chang B, Ding G, Dai P. Clinical application of chromosome microarray analysis and karyotyping in prenatal diagnosis in Northwest China. Front Genet 2024; 15:1347942. [PMID: 39568677 PMCID: PMC11576268 DOI: 10.3389/fgene.2024.1347942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Karyotyping and chromosome microarray analysis (CMA) are the two main prenatal diagnostic techniques currently used for genetic testing. We aimed to evaluate the value of chromosomal karyotyping and CMA for different prenatal indications. Methods A total of 2084 amniocentesis samples from pregnant women who underwent prenatal diagnosis from 16 to 22 + 6 weeks of gestation between January 2021 and December 2022 were retrospectively collected. The pregnant women were classified according to different prenatal diagnostic indications and underwent CMA and karyotype analysis. Clinical data were collected, and the results of the CMA and karyotype analysis were statistically analyzed to compare the effects of the two diagnostic techniques. Results The total detection rate of abnormal chromosomes was significantly higher using CMA than karyotype analysis. The detection rate of abnormal chromosomes using CMA was significantly higher than that using karyotyping for ultrasound abnormalities, high-risk serologic screening, adverse pregnancy history, positive noninvasive prenatal test (NIPT) screening, and ultrasound abnormalities combined with adverse pregnancy history indications. Among the fetuses with inconsistent results between the two testing methods, 144 had an abnormal CMA but a normal karyotype, with the highest percentage of pregnant women with ultrasound abnormalities at 38.89% (56/144). CMA had the highest detection rate for structural abnormalities combined with soft-index abnormalities among all ultrasound abnormalities. The highest detection rate of copy number variants in the group of structural abnormalities in a single system was in the genitourinary system (3/29, 10.34%). Conclusion CMA can improve the detection rate of chromosomal abnormalities in patients with ultrasound abnormalities, high-risk serologic screening, adverse maternal history, positive NIPT screening, and ultrasound abnormalities combined with adverse maternal history and can increase the detection rate of chromosomal abnormalities in karyotypic normality by 6.91% (144/2,084), this result is higher than similar studies. However, karyotype analysis remains advantageous over CMA regarding balanced chromosomal rearrangement and detection of low-level chimeras, and the combination of the two methods is more helpful in improving the detection rate of prenatal chromosomal abnormalities.
Collapse
Affiliation(s)
- ShuYuan Xue
- The College of Life Sciences, Northwest University, Xi'an City, Shanxi, China
- Prenatal Diagnosis Center, Urumqi Maternal and Child Healthcare Hospital, Ürümqi City, Xinjiang Uygur Autonomous Region, China
| | - YuTong Liu
- College of Public Health, Xinjiang Medical University, Ürümqi, Xinjiang Uygur Autonomous Region, China
| | - LiXia Wang
- Prenatal Diagnosis Center, Urumqi Maternal and Child Healthcare Hospital, Ürümqi City, Xinjiang Uygur Autonomous Region, China
| | - Le Zhang
- Prenatal Diagnosis Center, Urumqi Maternal and Child Healthcare Hospital, Ürümqi City, Xinjiang Uygur Autonomous Region, China
| | - Bozhen Chang
- Prenatal Diagnosis Center, Urumqi Maternal and Child Healthcare Hospital, Ürümqi City, Xinjiang Uygur Autonomous Region, China
| | - GuiFeng Ding
- Department of Obstetrics, Urumqi Maternal and Child Healthcare Hospital, Ürümqi City, Xinjiang Uygur Autonomous Region, China
| | - PengGao Dai
- The College of Life Sciences, Northwest University, Xi'an City, Shanxi, China
| |
Collapse
|
5
|
Li K, Wang H, Chau MHK, Dong Z, Cao Y, Zheng Y, Leung TY, Choy KW, Zhu Y. Contribution of Genomic Imbalance in Prenatal Congenital Anomalies of the Kidney and Urinary Tract: A Multi-Center Cohort Study. Prenat Diagn 2024; 44:1451-1461. [PMID: 39363241 DOI: 10.1002/pd.6674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024]
Abstract
OBJECTIVES To investigate the diagnostic utility of copy-number variant (CNV) detection by chromosomal microarray analysis (CMA) and genotype-phenotype associations in prenatal congenital anomalies of the kidney and urinary tract (CAKUT). METHODS This is a retrospective multi-center study of CNV analysis in 457 fetuses with ultrasound-detected CAKUT and normal karyotypes. Cohorts from published studies were included for further pooled analyses (N = 2746). A literature review of single-nucleotide variant (SNV) and small insertions and deletions (Indel) analysis by whole-exome sequencing was performed to investigate monogenic causes. RESULTS In our multi-center cohort, 5.3% (24/457) of fetuses had pathogenic CNVs (pCNV); 3.9% (14/359) and 10.2% (10/98) in isolated and non-isolated CAKUT, respectively. Fetuses with isolated hyperechogenic kidneys (HEK) had the highest incidence of having pCNVs. In the literature review, 6.6% (180/2746) of fetuses carried pCNVs; 6.1% and 7.5% in isolated and non-isolated CAKUT, respectively. SNV/Indel analysis provided at least 16.5% (63/381) additional diagnostic yield beyond CNV analysis; 12.8% and 23.8% in isolated and non-isolated CAKUT, respectively. CONCLUSION pCNVs comprise a significant proportion of genetic diagnostic findings in prenatal CAKUT, most commonly detected in fetuses with isolated HEK, MCDK, renal agenesis, and non-isolated CAKUT. Monogenic causes should be considered when karyotyping and CMA are nondiagnostic.
Collapse
Affiliation(s)
- Keying Li
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Huilin Wang
- Maternal-Fetal Medicine Institute, Bao'an Maternity and Child Health Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Matthew Hoi Kin Chau
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
| | - Zirui Dong
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Ye Cao
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yu Zheng
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
| | - Tak Yeung Leung
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
| | - Kwong Wai Choy
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
| | - Yuanfang Zhu
- Maternal-Fetal Medicine Institute, Bao'an Maternity and Child Health Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| |
Collapse
|
6
|
Huang R, Ma C, Chen H, Fu F, Han J, Liu L, Li L, Yan S, Lu J, Zhou H, Wang Y, Guo F, Jing X, Li F, Zhen L, Li D, Li R, Liao C. Prenatal diagnosis of 17q12 copy number variants in fetuses via chromosomal microarray analysis - A retrospective cohort study and literature review. Heliyon 2024; 10:e36558. [PMID: 39286125 PMCID: PMC11402952 DOI: 10.1016/j.heliyon.2024.e36558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Purpose 17q12 copy number variants (CNVs) have variable presentations and incomplete penetrance, challenging prenatal counseling and management. This study aims to investigate the intrauterine phenotype. Methods We included 48 fetuses diagnosed with 17q12 microdeletion or microduplication by chromosomal microarray analysis. Results For 17q12 deletion, renal anomalies were found in 35 fetuses (35/37, 94.6 %), with hyperechogenic kidneys (HEK, 28/37, 75.7 %) and multicystic dysplastic kidneys (17/37, 45.9 %) being the most common findings. Duodenal obstruction (DO) was most frequently combined in 17q12 duplication fetuses. In addition, cardiac abnormalities were the first reported prenatal phenotype in 17q12 duplication fetuses. Conclusion Our study shows that HEK and DO are the most predominant presentations of 17q12 deletion and duplication, respectively, and cardiac structural abnormalities may be associated with the latter. Although 17q12 CNVs have incomplete penetrance and variable expressivity and may be mainly involved in neurodevelopmental disorders, their short-term prognosis appears positive.
Collapse
Affiliation(s)
- Ruibin Huang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Chunling Ma
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Huanyi Chen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Fang Fu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Jin Han
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Liyuan Liu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lushan Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Shujuan Yan
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Jianqin Lu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Hang Zhou
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - You Wang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Fei Guo
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Xiangyi Jing
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Fucheng Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Li Zhen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Dongzhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Ru Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| |
Collapse
|
7
|
Liu L, Lei T, Guo F, Ma C, Zhen L, Zhang L, Li D. Prenatal diagnosis of the recurrent 1q21.1 microdeletions in fetuses with ultrasound anomalies and review of the literature. Front Genet 2024; 15:1448341. [PMID: 39268082 PMCID: PMC11390663 DOI: 10.3389/fgene.2024.1448341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Objective The recurrent 1q21.1 microdeletion syndrome is an autosomal dominant disorder and is characterized by dysmorphic facial features, microcephaly, developmental delay, and congenital defects. However, most studies on the distal deletions in the 1q21.1 region were diagnosed postnatally. This study aimed to provide a better understanding of the ultrasound and molecular findings of fetuses with recurrent 1q21.1 microdeletions in prenatal diagnosis. Methods In this retrospective study, we reported 21 cases with the recurrent 1q21.1 microdeletion syndrome diagnosed at our prenatal diagnostic center from January 2016 to January 2023. The clinical data were reviewed for these cases, including the maternal demographics, indications for invasive testing, ultrasound findings, CMA results, and pregnancy outcomes. Results In the study, a total of 21 cases with recurrent 1q21.1 microdeletions were diagnosed prenatally by CMA. Fifteen cases were described with ultrasound indications, and the most common findings are as follows: increased nuchal translucency (NT) (26.7%), intrauterine growth retardation (IUGR) (26.7%), congenital heart defects (CHD) (20%), and congenital anomalies of the kidney and urinary tract (CAKUT) (13.3%). All the cases with the distal 1q21.1 deletions contain the common minimal region (located between BP3 and BP4) and eight OMIM genes. Parental studies to determine the inheritance of the deletion were performed for eight cases, and half of the cases were inherited from one of the parents. Pregnancy outcomes were available for nine cases; eight (88.9%) pregnancies were determined to be terminated and one (11.1%) was full-term delivery. Conclusion To our knowledge, this is the largest study to find that fetuses with recurrent 1q21.1 microdeletions were closely associated with increased NT, CHD, IUGR, and CAKUT. In addition, ours is the first study to report that cerebral ventriculomegaly might be associated with recurrent 1q21.1 microdeletions. More comprehensive studies are needed for a better understanding of the prenatal phenotype-genotype relationship of the recurrent 1q21.1 microdeletion syndrome in future.
Collapse
Affiliation(s)
- Lei Liu
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tingying Lei
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fei Guo
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chunling Ma
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Southern Medical University, Guangzhou, China
| | - Li Zhen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lina Zhang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dongzhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Chen X, Lan L, Wu H, Zeng M, Zheng Z, Zhong Q, Lai F, Hu Y. Chromosomal Microarray Analysis in Fetuses with Ultrasound Abnormalities. Int J Gen Med 2024; 17:3531-3540. [PMID: 39161407 PMCID: PMC11332413 DOI: 10.2147/ijgm.s472906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
Objective To explore and evaluate the value of chromosomal microarray analysis (CMA) in prenatal diagnosis of fetuses with ultrasound abnormalities. Methods A retrospective analysis was performed on 370 fetuses with ultrasound abnormalities received invasive prenatal diagnosis at Meizhou People's Hospital from October 2022 to December 2023. Fetal specimens were analyzed by CMA, and the detection rates of aneuploidy and pathogenic (P)/likely pathogenic (LP) copy number variations (CNVs) in ultrasound structural abnormalities (malformations of fetal anatomy) and non-structural abnormalities (abnormalities of fetal nonanatomical structure) were analyzed. Results There were 114 (30.8%) cases with isolated ultrasound structural abnormalities, 226 (61.1%) cases with isolated non-structural abnormalities (182 isolated ultrasound soft markers abnormalities, 30 isolated fetal growth restriction (FGR), and 8 isolated abnormalities of amniotic fluid volume), and 30 (8.1%) cases with both structural and non-structural abnormalities. The overall detection rate of aneuploidy and P/LP CNVs in isolated ultrasonic structural abnormalities was 5.3%, among which cardiovascular system abnormalities were the highest. In addition, the largest number of fetuses with non-structural abnormalities was nuchal translucency (NT) thickening (n = 81), followed by ventriculomegaly (n = 29), and nasal bone dysplasia (n = 24). The detection rate of chromosomal abnormalities of fetuses with abnormal ultrasound soft markers was 9.9%, and the detection rate in single abnormal ultrasound soft marker, and multiple ultrasound soft markers abnormalities was 9.7% (16/165) and 11.8% (2/17), respectively. Moreover, the detection rate of chromosomal abnormalities of fetuses with FGR and structural abnormalities combined with non-structural abnormalities was 6.7% (2/30), and 13.3% (4/30), respectively. Conclusion The incidence of chromosomal abnormalities (aneuploidy and P/LP CNVs) varies among different fetal ultrasound abnormalities.
Collapse
Affiliation(s)
- Xiaoqin Chen
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Department of Obstetrics, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Liubing Lan
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Department of Obstetrics, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Heming Wu
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Mei Zeng
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Department of Obstetrics, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Zhiyuan Zheng
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Qiuping Zhong
- Department of Obstetrics, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Fengdan Lai
- Department of Obstetrics, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Yonghe Hu
- Department of Obstetrics, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
9
|
Yue F, Hao M, Jiang D, Liu R, Zhang H. Prenatal phenotypes and pregnancy outcomes of fetuses with 16p11.2 microdeletion/microduplication. BMC Pregnancy Childbirth 2024; 24:494. [PMID: 39039444 PMCID: PMC11265082 DOI: 10.1186/s12884-024-06702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Chromosomal 16p11.2 deletions and duplications are genomic disorders which are characterized by neurobehavioral abnormalities, obesity, congenital abnormalities. However, the prenatal phenotypes associated with 16p11.2 copy number variations (CNVs) have not been well characterized. This study aimed to provide an elaborate summary of intrauterine phenotypic features for these genomic disorders. METHODS Twenty prenatal amniotic fluid samples diagnosed with 16p11.2 microdeletions/microduplications were obtained from pregnant women who opted for invasive prenatal testing. Karyotypic analysis and chromosomal microarray analysis (CMA) were performed in parallel. The pregnancy outcomes and health conditions of all cases after birth were followed up. Meanwhile, we made a pooled analysis of the prenatal phenotypes in the published cases carrying 16p11.2 CNVs. RESULTS 20 fetuses (20/20,884, 0.10%) with 16p11.2 CNVs were identified: five had 16p11.2 BP2-BP3 deletions, 10 had 16p11.2 BP4-BP5 deletions and five had 16p11.2 BP4-BP5 duplications. Abnormal ultrasound findings were recorded in ten fetuses with 16p11.2 deletions, with various degrees of intrauterine phenotypic features observed. No ultrasound abnormalities were observed in any of the 16p11.2 duplications cases during the pregnancy period. Eleven cases with 16p11.2 deletions terminated their pregnancies. For 16p11.2 duplications, four cases gave birth to healthy neonates except for one case that was lost to follow-up. CONCLUSIONS Diverse prenatal phenotypes, ranging from normal to abnormal, were observed in cases with 16p11.2 CNVs. For 16p11.2 BP4-BP5 deletions, abnormalities of the vertebral column or ribs and thickened nuchal translucency were the most common structural and non-structural abnormalities, respectively. 16p11.2 BP2-BP3 deletions might be closely associated with fetal growth restriction and single umbilical artery. No characteristic ultrasound findings for 16p11.2 duplications have been observed to date. Given the variable expressivity and incomplete penetrance of 16p11.2 CNVs, long-term follow-up after birth should be conducted for these cases.
Collapse
Affiliation(s)
- Fagui Yue
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, 130021, China
| | - Mengzhe Hao
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, 130021, China
| | - Dandan Jiang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, 130021, China
| | - Ruizhi Liu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, 130021, China
| | - Hongguo Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130021, China.
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, 130021, China.
| |
Collapse
|
10
|
Ma C, Huang R, Fu F, Zhou H, Wang Y, Yan S, Guo F, Chen H, Li L, Jing X, Li F, Han J, Li D, Li R, Liao C. Prenatal diagnosis and outcomes in fetuses with duplex kidney. Int J Gynaecol Obstet 2024; 166:353-359. [PMID: 38189110 DOI: 10.1002/ijgo.15344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE Duplex kidney is a relatively frequent form of urinary system abnormality. This study aimed to elucidate the value of chromosomal microarray analysis (CMA) and whole exome sequencing (WES) for duplex kidney and the perinatal outcomes of duplex kidney fetuses. METHODS This retrospective cohort study included 63 patients with duplex kidney diagnosed using antenatal ultrasound between August 2013 and January 2023. We reviewed the clinical characteristics, genetic test results, and pregnancy outcomes of the patients. RESULTS Among the 63 cases based on the inclusion criteria, the CMA detected seven (11.1%) clinically significant variants and nine variants of uncertain significance (VUS), and the pathogenic/likely pathogenic (P/LP) copy number variations (CNVs) in the recurrent region that were associated with prenatal duplex kidney included 17q12, 17p13.3, and 22q11.2. No significant disparity was observed in the CMA detection rate between the unilateral and bilateral groups, or between the isolated and non-isolated groups. WES identified three (50%) P/LP single-gene variants in six fetuses with duplex kidney. We detected the following pathogenic genes in the duplex kidney fetuses: KMT2D, SMPD4, and FANCI. Pregnancy termination in cases where clinically significant variants were detected by genetic testing was different in statistical significance from that in cases with negative results (9/10, 90.0% vs 8/48, 16.7%, P < 0.001). CONCLUSION This study elucidated the value of CMA and WES for fetal duplex kidney, proving that CMA and WES may be useful tools in prenatal diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Chunling Ma
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ruibin Huang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fang Fu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hang Zhou
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - You Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shujuan Yan
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fei Guo
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huanyi Chen
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lushan Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiangyi Jing
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fucheng Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jin Han
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dongzhi Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ru Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Can Liao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Duan H, Wang W, Zhang Y, Chen X, Jiang Z, Li J. Accuracy of expanded noninvasive prenatal testing for maternal copy number variations: A comparative study with CNV-seq of maternal lymphocyte DNA. Taiwan J Obstet Gynecol 2024; 63:536-539. [PMID: 39004482 DOI: 10.1016/j.tjog.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 07/16/2024] Open
Abstract
OBJECTIVE To evaluate the accuracy of expanded noninvasive prenatal testing (NIPT) for maternal copy number variations. MATERIALS AND METHODS Expanded NIPT was used to detect CNVs ≥2 Mb at a whole-genome scale. The threshold of maternal deletion was copy numbers (CN) ≤ 1.6, and the threshold of maternal duplication was CN ≥ 2.4. RESULTS Of the 5440 pregnant women with successful expanded NIPT results, 28 maternal CNVs ≥2 Mb were detected in 27 pregnant women. Except for five cases reported as test failure, 23 CNVs ≥2 Mb were confirmed among the remaining 22 pregnant women by CNV-seq of maternal lymphocyte DNA. The genomic location, copy numbers and fragment size of maternal CNVs reported by expanded NIPT were consistent with the results of CNV-seq of maternal lymphocyte DNA. CONCLUSIONS Maternal CNVs ≥2 Mb can be accurately evaluated according to the CN indicated by expanded NIPT results.
Collapse
Affiliation(s)
- Honglei Duan
- Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wanjun Wang
- Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ying Zhang
- Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xuemei Chen
- Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zihan Jiang
- Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jie Li
- Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
12
|
Zhang F, Gu Q, Song J, Zhao Y, Wang Z, Men S, Wang L. Prenatal diagnosis and family analysis of 17q12 microdeletion syndrome with fetal renal abnormalities. Front Genet 2024; 15:1401315. [PMID: 38957807 PMCID: PMC11217314 DOI: 10.3389/fgene.2024.1401315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
Purpose To analyze the prenatal diagnosis, parental verification, and pregnancy outcomes of three fetuses with 17ql2 microdeletion syndrome. Methods We retrospectively reviewed 46 singleton pregnancies with anomalies in the urinary system who underwent amniocentesis from Feb 2022 to October 2023 in the Prenatal Diagnosis Center of Lianyungang Maternal and Child Health Hospital. These fetuses were subjected to chromosomal microarray analysis (CMA) and/or trio whole-exome sequencing (Trio-WES). We specifically evaluated these cases' prenatal renal ultrasound findings and clinical characteristics of the affected parents. Results Three fetuses were diagnosed as 17q12 microdeletions, and the detection rate was 6.5% in fetuses with anomalies in the urinary system (3/46). The heterogeneous deletions range from 1.494 to 1.66 Mb encompassing the complete hepatocyte nuclear factor 1 homeobox B (HNF1B) gene. Fetuses with 17q12 deletion exhibited varied renal phenotypes. Moreover, the clinical phenotypes of the affected parents differed greatly in the two cases (case 2 and case 3) in which the deletion was inherited. For case 3, the mother manifested classic symptoms of 17q12 deletion syndrome as well as unreported characteristics, such as very high myopia. Conclusion Our findings demonstrate the necessity and significance of offering prenatal genetic testing when various renal anomalies are detected. In addition, our study broadens the phenotypic spectrum of 17q12 deletions. Most importantly, our findings may allow timely supportive genetic counseling and guidance for pregnancy in affected families, e.g., with the help of preimplantation genetic testing (PGT).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leilei Wang
- Department of Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang, China
| |
Collapse
|
13
|
Tran DC, Phan MN, Dao HTT, Nguyen HDL, Nguyen DA, Le QT, Hoang DTT, Tran NT, Thi Ha TM, Dinh TL, Nguyen CC, Thi Doan KP, Thi Luong LA, Vo TS, Nhat Trinh TH, Nguyen VT, Vo PAN, Nguyen YN, Dinh MA, Doan PL, Do TTT, Nguyen QTT, Truong DK, Nguyen HN, Phan MD, Tang HS, Giang H. The genetic landscape of chromosomal aberrations in 3776 Vietnamese fetuses with clinical anomalies during pregnancy. Per Med 2024; 21:79-87. [PMID: 38573622 DOI: 10.2217/pme-2023-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/23/2024] [Indexed: 04/05/2024]
Abstract
Background: Copy number variation sequencing (CNV-seq) is a powerful tool to discover structural genomic variation, but limitations associated with its retrospective study design and inadequate diversity of participants can be impractical for clinical application. Aim: This study aims to use CNV-seq to assess chromosomal aberrations in pregnant Vietnamese women. Materials & methods: A large-scale study was conducted on 3776 pregnant Vietnamese women with abnormal ultrasound findings. Results: Chromosomal aberrations were found in 448 (11.86%) women. Of these, 274 (7.26%) had chromosomal aneuploidies and 174 (4.61%) carried pathogenic/likely pathogenic CNVs. Correlations were established between chromosomal aberrations and various phenotypic markers. Conclusion: This comprehensive clinical study illuminates the pivotal role of CNV-seq in prenatal diagnosis for pregnancies featuring fetal ultrasound anomalies.
Collapse
Affiliation(s)
- Danh-Cuong Tran
- National Hospital of Obstetrics & Gynecology, Ha Noi, Vietnam
| | - Minh Ngoc Phan
- Gene Solutions, Ho Chi Minh, Vietnam
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
| | - Hong-Thuy Thi Dao
- Gene Solutions, Ho Chi Minh, Vietnam
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
| | - Hong-Dang Luu Nguyen
- Gene Solutions, Ho Chi Minh, Vietnam
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
| | | | | | | | - Nhat Thang Tran
- University Medical Center, Ho Chi Minh, Vietnam
- University of Medicine & Pharmacy at Ho Chi Minh City, Vietnam
| | | | | | | | | | | | | | | | | | - Phuong-Anh Ngoc Vo
- Gene Solutions, Ho Chi Minh, Vietnam
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
| | - Yen-Nhi Nguyen
- Gene Solutions, Ho Chi Minh, Vietnam
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
| | - My-An Dinh
- Gene Solutions, Ho Chi Minh, Vietnam
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
| | - Phuoc-Loc Doan
- Gene Solutions, Ho Chi Minh, Vietnam
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
| | | | | | | | - Hoai-Nghia Nguyen
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
- University of Medicine & Pharmacy at Ho Chi Minh City, Vietnam
| | - Minh-Duy Phan
- Gene Solutions, Ho Chi Minh, Vietnam
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
| | - Hung-Sang Tang
- Gene Solutions, Ho Chi Minh, Vietnam
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
| | - Hoa Giang
- Gene Solutions, Ho Chi Minh, Vietnam
- Medical Genetics Institutes, Ho Chi Minh, Vietnam
| |
Collapse
|
14
|
Song T, Xu Y, Li Y, Zheng J, Guo F, Jin X, Li J, Zhang J, Yang H. Clinical Experience of Prenatal Chromosomal Microarray Analysis in 6159 Ultrasonically Abnormal Fetuses. Reprod Sci 2024; 31:1089-1107. [PMID: 38012523 DOI: 10.1007/s43032-023-01399-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023]
Abstract
A single-center retrospective study of G-band karyotyping and chromosomal microarray analysis (CMA) for the invasive prenatal diagnosis of 6159 fetuses with ultrasound abnormalities was conducted. This study aimed to investigate the incidence rates of chromosomal abnormalities and pregnancy outcomes and postpartum clinical manifestations by long-term follow-up and to explore the correlation between different types of prenatal ultrasound abnormalities and pathogenic chromosomal abnormalities. The overall incidence of pathogenic chromosomal aberrations in fetuses with ultrasound abnormalities was 7.58% (467/6159), which comprised 41.7% (195/467) with chromosome number abnormalities, 57.6% (269/467) with pathogenic copy-number variations (pCNVs), and 0.64% (3/467) with uniparental disomy (UPD). In addition, 1.72% (106/6159) with likely pathogenic copy-number variations (lpCNVs) and 3.04% (187/6159) with variants of unknown significance (VOUS) were detected by CMA. Ultrasound abnormalities were categorized into structural anomalies and soft marker anomalies. The incidence rate of pathogenic and likely pathogenic chromosomal abnormalities was significantly higher among fetuses with structural anomalies than soft markers (11.13% vs 7.59%, p < 0.01). We retrospectively analyzed the prenatal genetic outcomes for a large cohort of fetuses with different types of ultrasound abnormalities. The present study showed that the chromosomal abnormality rate and clinical outcomes of fetuses with different types of ultrasound abnormalities varied greatly. Our data have important implications for prenatal genetic counseling for fetuses with different types of ultrasound abnormalities.
Collapse
Affiliation(s)
- Tingting Song
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Yu Li
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jiao Zheng
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Fenfen Guo
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xin Jin
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jia Li
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Jianfang Zhang
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Hong Yang
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
15
|
Huang Q, Zhang Y, Jing X, Li F, Qin J, Li F, Li D, Li R, Liao C. Association of prenatal thoracic ultrasound abnormalities with copy number variants at a single Chinese tertiary center. Int J Gynaecol Obstet 2024; 164:770-777. [PMID: 37565521 DOI: 10.1002/ijgo.15040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVE To systematically evaluate the association of prenatal thoracic ultrasound abnormalities with copy number variants (CNVs). METHODS Chromosomal microarray (CMA) data and clinical characteristics from fetuses with thoracic ultrasound abnormalities were retrieved and analyzed. RESULTS Thoracic ultrasound findings were mainly isolated except for fetal pleural effusion (FPE) and pulmonary hypoplasia. The diagnostic yield of CMA for thoracic anomaly was 9.66%, and FPE (17/68, 25%), pulmonary hypoplasia (1/8, 12.5%), and congenital diaphragmatic hernia (CDH) (6/79, 7.59%) indicated relatively high pathogenic/likely pathogenic (P/LP) CNV findings. The detection rate for P/LP CNVs was obviously increased in non-isolated thoracic anomalies (27.91% vs. 1.96%, P < 0.0001), non-isolated FPE (37.78% vs. 0%, P = 0.0007) and non-isolated congenital pulmonary airway malformation (CPAM) (27.27% vs. 0%, P < 0.0001), and significantly different among thoracic anomalies. Additionally, the rate of termination of pregnancy in cases with non-isolated thoracic anomalies (58.49% vs. 12.34%, P < 0.0001) and P/LP CNVs (85.71% vs. 24.15%, P < 0.0001) was obviously increased. CONCLUSION The present study expanded phenotype spectrums for particular recurrent CNVs. FPE, CDH, and pulmonary hypoplasia indicated relatively high P/LP CNV findings among common thoracic ultrasound abnormalities, CPAM associated with other ultrasound abnormalities increased the incidence of diagnostic CNVs, while bronchopulmonary sequestration might not be associated with positive CNVs. The present data recommended CMA application for cases with prenatal thoracic ultrasound abnormalities, especially non-isolated FPE, non-isolated CPAM, CDH, and pulmonary hypoplasia.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yongling Zhang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiangyi Jing
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fucheng Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiachun Qin
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fatao Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dongzhi Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ru Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Can Liao
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Hertenstein CB, Miller KA, Estroff JA, Blakemore KJ. Fetal hyperechoic kidneys: Diagnostic considerations and genetic testing strategies. Prenat Diagn 2024; 44:222-236. [PMID: 38279830 DOI: 10.1002/pd.6517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/29/2024]
Abstract
Isolated bilateral hyperechoic kidneys (HEK) on prenatal ultrasound presents diagnostic, prognostic, and counseling challenges. Prognosis ranges from normal outcome to lethal postnatally. Presence/absence of extra-renal malformations, gestational age at presentation, amniotic fluid volume, and renal size may distinguish underlying etiologies and thereby prognosis, as prognosis is highly dependent upon underlying etiology. An underlying genetic diagnosis, clearly impactful, is determined in only 55%-60% of cases. We conducted a literature review of chromosomal (aneuploidies, copy number variants [CNVs]) single genes and other etiologies of fetal bilateral HEK, summarized how this information informs prognosis and recurrence risk, and critically assessed laboratory testing strategies. The most commonly identified etiologies are autosomal recessive and autosomal dominant polycystic kidney disease and microdeletions at 17q12 involving HNF1b. With rapid gene discovery, alongside advances in prenatal imaging and fetal phenotyping, the growing list of single gene diagnoses includes ciliopathies, overgrowth syndromes, and renal tubular dysgenesis. At present, microarray and gene panels or whole exome sequencing (WES) are first line tests employed for diagnostic evaluation. Whole genome sequencing (WGS), with the ability to detect both single nucleotide variants (SNVs) and CNVs, would be expected to provide the highest diagnostic yield.
Collapse
Affiliation(s)
- Christine B Hertenstein
- Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Kristen A Miller
- Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Judy A Estroff
- Section of Fetal-Neonatal Imaging, Department of Radiology, Maternal Fetal Care Center, Boston Children's Hospital, Boston, MA, USA
| | - Karin J Blakemore
- Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
17
|
Huang R, Fu F, Guo F, Zhou H, Yu Q, Yan S, Liu L, Lu J, Ma C, Wang Y, Chen H, Wang D, Zhang Y, Jing X, Li F, Han J, Li D, Li R, Liao C. Prenatal diagnosis of polycystic renal diseases: diagnostic yield, novel disease-causing variants, and genotype-phenotype correlations. Am J Obstet Gynecol MFM 2024; 6:101228. [PMID: 37984685 DOI: 10.1016/j.ajogmf.2023.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Polycystic renal disease is a frequent congenital anomaly of the kidneys, but research using chromosomal microarray analysis and exome sequencing in fetuses with polycystic renal disease remains sparse, with most studies focusing on the multisystem or genitourinary system. OBJECTIVE This study aimed to assess the detection rate of detectable genetic causes of fetal polycystic renal disease at different levels, novel disease-causing variants, and genotype-phenotype correlations. STUDY DESIGN This study included 220 fetal polycystic renal disease cases from January 2014 to June 2022. Cases were divided into the following 3 groups: isolated multicystic dysplastic kidneys, nonisolated multicystic dysplastic kidneys, and suspected polycystic kidney disease group. We reviewed data on maternal demographics, ultrasonographic results, chromosomal microarray analysis/exome sequencing results, and pregnancy outcomes. RESULTS In our cohort, chromosomal microarray analysis identified 19 (8.6%) fetuses carrying chromosomal abnormalities, and the most common copy number variation was 17q12 microdeletion (7/220; 3.2%). Furthermore, 94 families chose to perform trio-exome sequencing testing, and 21 fetuses (22.3%) were found to harbor pathogenic/likely pathogenic variants. There was a significant difference in the live birth rate among the 3 groups (91/130 vs 46/80 vs 1/10; P<.001). Among 138 live birth cases, 106 (78.5%) underwent postnatal ultrasound review, of which 95 (89.6%) had a consistent prenatal-postnatal ultrasound diagnosis. CONCLUSION For both isolated and nonisolated polycystic renal disease, our data showed high detection efficiency with both testing tools. The detection of novel pathogenic variants expands the known disease spectrum of polycystic renal disease-associated genes while enriching our understanding of the genotype-phenotype correlation. Therefore, we consider it feasible to perform chromosomal microarray analysis+exome sequencing testing in fetal polycystic renal disease. Moreover, prenatal-postnatal ultrasound concordance was greater, the live birth rate was higher, and prognosis was better when known genetic disorders were excluded, indicating that genetic testing results significantly influenced pregnancy decisions.
Collapse
Affiliation(s)
- Ruibin Huang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China (Mr Huang, Dr Fu, Mr Guo, Mr Zhou, Ms Yu, Dr Yan, Ms Liu, Dr Lu, Ms Ma, Ms Y Wang, Ms Chen, Dr D Wang, Ms Zhang, Ms Jing, Dr F Li, Dr Han, Dr D Li, Dr R Li, and Ms Liao)
| | - Fang Fu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China (Mr Huang, Dr Fu, Mr Guo, Mr Zhou, Ms Yu, Dr Yan, Ms Liu, Dr Lu, Ms Ma, Ms Y Wang, Ms Chen, Dr D Wang, Ms Zhang, Ms Jing, Dr F Li, Dr Han, Dr D Li, Dr R Li, and Ms Liao)
| | - Fei Guo
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China (Mr Huang, Dr Fu, Mr Guo, Mr Zhou, Ms Yu, Dr Yan, Ms Liu, Dr Lu, Ms Ma, Ms Y Wang, Ms Chen, Dr D Wang, Ms Zhang, Ms Jing, Dr F Li, Dr Han, Dr D Li, Dr R Li, and Ms Liao)
| | - Hang Zhou
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China (Mr Huang, Dr Fu, Mr Guo, Mr Zhou, Ms Yu, Dr Yan, Ms Liu, Dr Lu, Ms Ma, Ms Y Wang, Ms Chen, Dr D Wang, Ms Zhang, Ms Jing, Dr F Li, Dr Han, Dr D Li, Dr R Li, and Ms Liao)
| | - Qiuxia Yu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China (Mr Huang, Dr Fu, Mr Guo, Mr Zhou, Ms Yu, Dr Yan, Ms Liu, Dr Lu, Ms Ma, Ms Y Wang, Ms Chen, Dr D Wang, Ms Zhang, Ms Jing, Dr F Li, Dr Han, Dr D Li, Dr R Li, and Ms Liao)
| | - Shujuan Yan
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China (Mr Huang, Dr Fu, Mr Guo, Mr Zhou, Ms Yu, Dr Yan, Ms Liu, Dr Lu, Ms Ma, Ms Y Wang, Ms Chen, Dr D Wang, Ms Zhang, Ms Jing, Dr F Li, Dr Han, Dr D Li, Dr R Li, and Ms Liao)
| | - Liyuan Liu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China (Mr Huang, Dr Fu, Mr Guo, Mr Zhou, Ms Yu, Dr Yan, Ms Liu, Dr Lu, Ms Ma, Ms Y Wang, Ms Chen, Dr D Wang, Ms Zhang, Ms Jing, Dr F Li, Dr Han, Dr D Li, Dr R Li, and Ms Liao); The First Clinical Medical College, Southern Medical University, Guangzhou, China (Ms Liu and Ms Ma)
| | - Jianqin Lu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China (Mr Huang, Dr Fu, Mr Guo, Mr Zhou, Ms Yu, Dr Yan, Ms Liu, Dr Lu, Ms Ma, Ms Y Wang, Ms Chen, Dr D Wang, Ms Zhang, Ms Jing, Dr F Li, Dr Han, Dr D Li, Dr R Li, and Ms Liao)
| | - Chunling Ma
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China (Mr Huang, Dr Fu, Mr Guo, Mr Zhou, Ms Yu, Dr Yan, Ms Liu, Dr Lu, Ms Ma, Ms Y Wang, Ms Chen, Dr D Wang, Ms Zhang, Ms Jing, Dr F Li, Dr Han, Dr D Li, Dr R Li, and Ms Liao); The First Clinical Medical College, Southern Medical University, Guangzhou, China (Ms Liu and Ms Ma)
| | - You Wang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China (Mr Huang, Dr Fu, Mr Guo, Mr Zhou, Ms Yu, Dr Yan, Ms Liu, Dr Lu, Ms Ma, Ms Y Wang, Ms Chen, Dr D Wang, Ms Zhang, Ms Jing, Dr F Li, Dr Han, Dr D Li, Dr R Li, and Ms Liao)
| | - Huanyi Chen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China (Mr Huang, Dr Fu, Mr Guo, Mr Zhou, Ms Yu, Dr Yan, Ms Liu, Dr Lu, Ms Ma, Ms Y Wang, Ms Chen, Dr D Wang, Ms Zhang, Ms Jing, Dr F Li, Dr Han, Dr D Li, Dr R Li, and Ms Liao)
| | - Dan Wang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China (Mr Huang, Dr Fu, Mr Guo, Mr Zhou, Ms Yu, Dr Yan, Ms Liu, Dr Lu, Ms Ma, Ms Y Wang, Ms Chen, Dr D Wang, Ms Zhang, Ms Jing, Dr F Li, Dr Han, Dr D Li, Dr R Li, and Ms Liao)
| | - Yongling Zhang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China (Mr Huang, Dr Fu, Mr Guo, Mr Zhou, Ms Yu, Dr Yan, Ms Liu, Dr Lu, Ms Ma, Ms Y Wang, Ms Chen, Dr D Wang, Ms Zhang, Ms Jing, Dr F Li, Dr Han, Dr D Li, Dr R Li, and Ms Liao)
| | - Xiangyi Jing
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China (Mr Huang, Dr Fu, Mr Guo, Mr Zhou, Ms Yu, Dr Yan, Ms Liu, Dr Lu, Ms Ma, Ms Y Wang, Ms Chen, Dr D Wang, Ms Zhang, Ms Jing, Dr F Li, Dr Han, Dr D Li, Dr R Li, and Ms Liao)
| | - Fucheng Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China (Mr Huang, Dr Fu, Mr Guo, Mr Zhou, Ms Yu, Dr Yan, Ms Liu, Dr Lu, Ms Ma, Ms Y Wang, Ms Chen, Dr D Wang, Ms Zhang, Ms Jing, Dr F Li, Dr Han, Dr D Li, Dr R Li, and Ms Liao)
| | - Jin Han
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China (Mr Huang, Dr Fu, Mr Guo, Mr Zhou, Ms Yu, Dr Yan, Ms Liu, Dr Lu, Ms Ma, Ms Y Wang, Ms Chen, Dr D Wang, Ms Zhang, Ms Jing, Dr F Li, Dr Han, Dr D Li, Dr R Li, and Ms Liao)
| | - Dongzhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China (Mr Huang, Dr Fu, Mr Guo, Mr Zhou, Ms Yu, Dr Yan, Ms Liu, Dr Lu, Ms Ma, Ms Y Wang, Ms Chen, Dr D Wang, Ms Zhang, Ms Jing, Dr F Li, Dr Han, Dr D Li, Dr R Li, and Ms Liao)
| | - Ru Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China (Mr Huang, Dr Fu, Mr Guo, Mr Zhou, Ms Yu, Dr Yan, Ms Liu, Dr Lu, Ms Ma, Ms Y Wang, Ms Chen, Dr D Wang, Ms Zhang, Ms Jing, Dr F Li, Dr Han, Dr D Li, Dr R Li, and Ms Liao)
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China (Mr Huang, Dr Fu, Mr Guo, Mr Zhou, Ms Yu, Dr Yan, Ms Liu, Dr Lu, Ms Ma, Ms Y Wang, Ms Chen, Dr D Wang, Ms Zhang, Ms Jing, Dr F Li, Dr Han, Dr D Li, Dr R Li, and Ms Liao).
| |
Collapse
|
18
|
Yue F, Yang X, Jiang Y, Li S, Liu R, Zhang H. Prenatal phenotypes and pregnancy outcomes of fetuses with recurrent 1q21.1 microdeletions and microduplications. Front Med (Lausanne) 2023; 10:1207891. [PMID: 37692779 PMCID: PMC10484100 DOI: 10.3389/fmed.2023.1207891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/19/2023] [Indexed: 09/12/2023] Open
Abstract
Objective Chromosomal 1q21.1 deletions and duplications are genomic disorders that are usually diagnosed postnatally. However, the genotype-phenotype correlations of 1q21.1 copy number variants (CNVs) during the prenatal period are still not clear. This study aimed to provide a systematic summary of prenatal phenotypes for such genomic disorders. Methods In total, 26 prenatal amniotic fluid samples diagnosed with 1q21.1 microdeletions/microduplications were obtained from pregnant women who opted for invasive prenatal testing. Karyotypic analysis and chromosomal microarray analysis (CMA) were performed for all cases simultaneously. The pregnancy outcomes and health conditions after birth in all cases were followed up. Meanwhile, prenatal cases with 1q21.1 microdeletions or microduplications in the literature were retrospectively collected. Results In total, 11 pregnancies (11/8,252, 0.13%) with 1q21.1 microdeletions and 15 (15/8,252, 0.18%) with 1q21.1 microduplications were identified. Among these 1q21.1 CNVs, 4 cases covered the thrombocytopenia-absent radius (TAR) region, 16 cases covered the 1q21.1 recurrent microdeletion/microduplication region, and 6 cases covered all regions mentioned above. The prenatal abnormal ultrasound findings were recorded in four participants with 1q21.1 deletions and seven participants with 1q21.1 duplications. Finally, three cases with 1q21.1 deletions and five with 1q21.1 duplications terminated their pregnancies. Conclusion In the prenatal setting, 1q21.1 microdeletions were associated with increased nuchal translucency (NT), anomalies of the urinary system, and cardiovascular abnormalities, while 1q21.1 microduplications were correlated with cardiovascular malformations, nasal bone dysplasia, and increased NT. In addition, cerebral ventriculomegaly might be correlated with 1q21.1 microduplications. Considering the variable expressivity and incomplete penetrance of 1q21.1 CNVs, long-term follow-up after birth should be carried out in these cases.
Collapse
Affiliation(s)
- Fagui Yue
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Xiao Yang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Yuting Jiang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Shibo Li
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ruizhi Liu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Hongguo Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| |
Collapse
|
19
|
Yang W, Zu S, Jin Q, Liu Y, Wang C, Shen H, Wang R, Zhang H, Liu M. Fetal hyperechoic kidney cohort study and a meta-analysis. Front Genet 2023; 14:1237912. [PMID: 37662847 PMCID: PMC10469696 DOI: 10.3389/fgene.2023.1237912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Objective: To investigate the positive rate of chromosomal and monogenic etiologies and pregnancy outcomes in fetuses with hyperechoic kidney, and to provide more information for genetic counseling and prognosis evaluation. Methods: We performed a retrospective analysis of 25 cases of hyperechoic kidney diagnosed prenatal in the Second Affiliated Hospital of Harbin Medical University and Harbin Red Cross Central Hospital (January 2017-December 2022). Furthermore, we conducted a meta-analysis of a series of hyperechoic kidneys (HEK) in the literature to assess the incidence of chromosomal and monogenic etiologies, mortality, and pooled odds ratio (OR) estimates of the association between the incidence of these outcomes and other associated ultrasound abnormalities. Results: 25 fetuses of HEK were enrolled in the cohort study, including 14 with isolated hyperechoic kidney (IHK) and 11 with non-isolated hyperechoic kidney (NIHK). Chromosomal aneuploidies were detected in 4 of 20 patients (20%). The detection rate of pathogenic or suspected pathogenic copy number variations (CNVs) was 29% (4/14) for IHK and 37% (4/11) for NIHK. Whole exome sequencing (WES) was performed in 5 fetuses, and pathogenic genes were detected in all of them. The rate of termination of pregnancy was 56% in HEK. 21 studies including 1,178 fetuses were included in the meta-analysis. No case of abnormal chromosome karyotype or (intrauterine death)IUD was reported in fetuses with IHK. In contrast, the positive rate of karyotype in NIHK was 22% and that in HEK was 20%, with the ORs of 0.28 (95% CI 0.16-0.51) and 0.25, (95% CI 0.14-0.44), respectively. The positive rate of (chromosome microarray analysis) CMA in IHK was 59% and that in NIHK was 32%, with the ORs of 1.46 (95% CI 1.33-1.62) and 0.48 (95% CI, 0.28-0.85), respectively. The positive rate of monogenic etiologies in IHK was 31%, with the OR of 0.80 (95% CI 0.25-2.63). In IHK, the termination rate was 21% and neonatal mortality was 13%, with the ORs of 0.26 (95% CI, 0.17-0.40), 1.72 (95% CI, 1.59-1.86), and that in NIHK was 63%, 0.15 (95% CI, 0.10-0.24); 11%, 0.12 (95% CI, 0.06-0.26), respectively. The intrauterine mortality in NIHK group was 2%, with the OR of 0.02 (95% CI, 0.01-0.05). HNF1B variant has the highest incidence (26%) in IHK. Conclusion: The positive rate of karyotype was 20% in HEK and 22% in NIHK. The positive rate of CMA was 32% in NIHK and 59% in IHK. The positive rate of IHK monogenic etiologies was 31%. HNF1B gene variation is the most common cause of IHK. The overall fetal mortality rate of NIHK is significantly higher than that of IHK. The amount of amniotic fluid, kidney size and the degree of corticomedullary differentiation have a great impact on the prognosis, these indicators should be taken into consideration to guide clinical consultation and decision-making.
Collapse
Affiliation(s)
- Wei Yang
- Department of Obstetrics and Gynecology, The Second Affliliated Hospital of Harbin Medical University, Harbin, China
- Department of Prenatal Diagnosis, Harbin Red Cross Central Hospital, Harbin, China
| | - Shujing Zu
- Department of Prenatal Diagnosis, Harbin Red Cross Central Hospital, Harbin, China
| | - Qiu Jin
- Department of Obstetrics and Gynecology, The Second Affliliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Liu
- Department of Obstetrics and Gynecology, The Second Affliliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Wang
- Department of Obstetrics and Gynecology, The Second Affliliated Hospital of Harbin Medical University, Harbin, China
| | - Huimin Shen
- Department of Obstetrics and Gynecology, The Second Affliliated Hospital of Harbin Medical University, Harbin, China
| | - Ruijing Wang
- Department of Obstetrics and Gynecology, The Second Affliliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Zhang
- Department of Prenatal Diagnosis, Harbin Red Cross Central Hospital, Harbin, China
| | - Meimei Liu
- Department of Obstetrics and Gynecology, The Second Affliliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
Postnatal Outcomes of Fetuses with Prenatal Diagnosis of 6-9.9 mm Pyelectasis. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020407. [PMID: 36832536 PMCID: PMC9955995 DOI: 10.3390/children10020407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/23/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Pyelectasis, also known as renal pelvic dilatation or hydronephrosis, is frequently found on fetal ultrasound. This study correlated prenatally-detected, moderate pyelectasis with postnatal outcomes. This retrospective, observational study was conducted at a tertiary medical center in Israel. The study group consisted of 54 fetuses with prenatal diagnosis of pyelectasis on ultrasound scan during the second trimester, defined as anteroposterior renal pelvic diameter (APRPD) 6-9.9 mm. Long-term postnatal outcomes and renal-related sequelae were obtained using medical records and telephone-based questionnaires. The control group included 98 cases with APRPD < 6 mm. Results indicate that fetal pyelectasis 6-9.9 mm was more frequent among males (68.5%) than females (51%, p = 0.034). We did not find significant correlations between 6-9.9 mm pyelectasis and other anomalies or chromosomal/genetic disorders. Pyelectasis resolved during the pregnancy in 15/54 (27.8%) cases. There was no change in 17/54 (31.5%) and 22/54 (40.7%) progressed to hydronephrosis Among the study group, 25/54 (46.3%) were diagnosed with neonatal hydronephrosis. There were more cases of renal reflux or renal obstruction in the study group compared to the control group 8/54 (14.8%) vs. 1/98 (1.0%), respectively; p = 0.002. In conclusion, most cases of 6-9.9 mm pyelectasis remained stable or resolved spontaneously during pregnancy. There was a higher rate of postnatal renal reflux and renal obstruction in this group; however, most did not require surgical intervention.
Collapse
|
21
|
Mastromoro G, Guadagnolo D, Khaleghi Hashemian N, Marchionni E, Traversa A, Pizzuti A. Molecular Approaches in Fetal Malformations, Dynamic Anomalies and Soft Markers: Diagnostic Rates and Challenges-Systematic Review of the Literature and Meta-Analysis. Diagnostics (Basel) 2022; 12:575. [PMID: 35328129 PMCID: PMC8947110 DOI: 10.3390/diagnostics12030575] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Fetal malformations occur in 2-3% of pregnancies. They require invasive procedures for cytogenetics and molecular testing. "Structural anomalies" include non-transient anatomic alterations. "Soft markers" are often transient minor ultrasound findings. Anomalies not fitting these definitions are categorized as "dynamic". This meta-analysis aims to evaluate the diagnostic yield and the rates of variants of uncertain significance (VUSs) in fetuses undergoing molecular testing (chromosomal microarray (CMA), exome sequencing (ES), genome sequencing (WGS)) due to ultrasound findings. The CMA diagnostic yield was 2.15% in single soft markers (vs. 0.79% baseline risk), 3.44% in multiple soft markers, 3.66% in single structural anomalies and 8.57% in multiple structural anomalies. Rates for specific subcategories vary significantly. ES showed a diagnostic rate of 19.47%, reaching 27.47% in multiple structural anomalies. WGS data did not allow meta-analysis. In fetal structural anomalies, CMA is a first-tier test, but should be integrated with karyotype and parental segregations. In this class of fetuses, ES presents a very high incremental yield, with a significant VUSs burden, so we encourage its use in selected cases. Soft markers present heterogeneous CMA results from each other, some of them with risks comparable to structural anomalies, and would benefit from molecular analysis. The diagnostic rate of multiple soft markers poses a solid indication to CMA.
Collapse
Affiliation(s)
- Gioia Mastromoro
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (D.G.); (N.K.H.); (E.M.); (A.T.); (A.P.)
| | | | | | | | | | | |
Collapse
|