1
|
Haliloğlu G, Ravenscroft G. The evolving genetic landscape of neuromuscular fetal akinesias. J Neuromuscul Dis 2025:22143602251339357. [PMID: 40356365 DOI: 10.1177/22143602251339357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Fetal akinesia is a broad term used to describe absent (or reduced, fetal hypokinesia) fetal movements, and it can be detected as early as the first trimester. Depending on the developmental age of onset, anything that interferes or limits the normal in utero movement results in a range of deformations affecting multiple organs and organ systems. Arthrogryposis, also termed arthrogryposis multiplex congenita (AMC), is a definitive terminology for multiple congenital contractures, with two major subgroups; amyoplasia and distal arthrogryposis (DA). The spectrum includes fetal akinesia deformation sequence (FADS), lethal congenital contracture syndrome (LCCS), and multiple pterygium syndrome (MPS). Variants in more than >400 genes are known to cause AMC, and it is increasingly recognized that variants in genes encoding critical components (including ventral horn cell, peripheral nerve, neuromuscular junction, skeletal muscle) of the extended motor unit underlie ∼40% of presentations. With unbiased screening approaches, including sequencing of comprehensive disease gene panels, exomes and genomes, novel genes and phenotypic expansions associated with known human disease genes have been uncovered in the setting of fetal akinesia. Autosomal-recessive titinopathy is the most frequent genetic cause of AMC. Accurate genetic diagnosis is critical to genetic counseling and informing family planning. Around 50% remain undiagnosed following comprehensive prenatal, diagnostic or research screening. Comprehensive phenotyping and periodic reanalysis with appropriate genomic tools are valuable strategies when faced with initial inconclusive results. There are likely many novel causative genes still to identify, which will inform our understanding of the molecular pathways underlying early human development and in utero movement.
Collapse
Affiliation(s)
- Göknur Haliloğlu
- Division of Pediatric Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gianina Ravenscroft
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Thauvin-Robinet C, Garde A, Favier M, Delanne J, Racine C, Rousseau T, Nambot S, Bruel AL, Moutton S, Quelin C, Colson C, Brehin AC, Guerrot AM, Rooryck C, Putoux A, Blanchet P, Odent S, Schaefer E, Boute O, Goldenberg A, Guichet A, Abel C, Morel G, Fradin M, Isidor B, Vincent M, Francannet C, Vera G, Petit F, Nizon M, Wells C, Jeanne M, Deiller C, Ziegler A, Godin M, Saugier-Veber P, Cassinari K, Blanc P, Simon E, Binquet C, Duffourd Y, Safraou H, Denomme-Pichon AS, Vitobello A, Philippe C, Faivre L, Tran-Mau-Them F, Bourgon N. Reanalysis of unsolved prenatal exome sequencing for structural defects: diagnostic yield and contribution of postnatal/postmortem features. Eur J Hum Genet 2025; 33:675-682. [PMID: 40186013 PMCID: PMC12048470 DOI: 10.1038/s41431-025-01823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/19/2025] [Accepted: 02/18/2025] [Indexed: 04/07/2025] Open
Abstract
In 30-40% of fetuses with structural defects, the causal variant remains undiagnosed after karyotype, chromosomal microarray, and exome sequencing. This study presents the results of a reanalysis of unsolved prenatal ES (pES) cases and investigates how postnatal/postmortem phenotyping contributes to identifying relevant variants. pES data was prospectively reanalyzed for unsolved cases enrolled in the AnDDI-Prénatome cohort study. Postnatal/postmortem data were included with prenatal features using Human Phenotype Ontology terms up to 3 years after pES. The reanalysis involved updating bioinformatic processing and querying raw data using a GREP query. We reanalyzed 58/94 (62%) unsolved pES cases, including 8 variants of unknown significance. Data for clinical examination at birth was available for all live newborns, and postmortem examination was available in 12 terminated fetuses. Additional features were identified at birth in 27/58 cases (44%): 9 terminated fetuses, 2 stillbirths, and 16 live newborns. One diagnosis (SNAPC4) was obtained through a periodic query following recent associations with human disease, and without additional clinical data. Three additional VUS were identified through reanalysis with the addition of new clinical features, illustrating the limited contribution of updated postnatal/postmortem phenotyping in identifying relevant variants after negative pES. In conclusion, the benefit of prospective reanalysis of unsolved pES is limited, even over time. Postnatal genome sequencing may be a more appropriate option than reanalysis with postnatal/postmortem phenotyping to establish a causal diagnosis.
Collapse
Affiliation(s)
- Christel Thauvin-Robinet
- Centre de Génétique et Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs de l'Inter-région Est", CHU Dijon Bourgogne, Dijon, France
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, CHU Dijon Bourgogne, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université́ de Bourgogne, Dijon, France
| | - Aurore Garde
- Centre de Génétique et Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs de l'Inter-région Est", CHU Dijon Bourgogne, Dijon, France
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université́ de Bourgogne, Dijon, France
| | - Maud Favier
- Centre de Génétique et Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs de l'Inter-région Est", CHU Dijon Bourgogne, Dijon, France
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université́ de Bourgogne, Dijon, France
| | - Julian Delanne
- Centre de Génétique et Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs de l'Inter-région Est", CHU Dijon Bourgogne, Dijon, France
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université́ de Bourgogne, Dijon, France
| | - Caroline Racine
- Centre de Génétique et Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs de l'Inter-région Est", CHU Dijon Bourgogne, Dijon, France
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université́ de Bourgogne, Dijon, France
| | - Thierry Rousseau
- Service de Gynécologie Obstétrique Médecine Fœtale et Stérilité Conjugale, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| | - Sophie Nambot
- Centre de Génétique et Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs de l'Inter-région Est", CHU Dijon Bourgogne, Dijon, France
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université́ de Bourgogne, Dijon, France
| | - Ange-Line Bruel
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, CHU Dijon Bourgogne, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université́ de Bourgogne, Dijon, France
| | - Sébastien Moutton
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université́ de Bourgogne, Dijon, France
| | - Chloé Quelin
- Service de Génétique Clinique, Centre de Référence "Anomalies du Développement et Syndromes Malformatifs" de l'Inter-région Ouest, CHU Rennes Hôpital Sud, Rennes, France
| | - Cindy Colson
- Institut de Génétique et Développement de Rennes, Université de Rennes, UMR6290, ERL1305, Rennes, France
| | - Anne-Claire Brehin
- Clinique de Génétique Guy Fontaine et Centre de Référence Maladies Rares "Anomalies Du Développement et Syndromes Malformatifs" Nord-Ouest, CHU Lille, Lille, France
| | - Anne-Marie Guerrot
- Clinique de Génétique Guy Fontaine et Centre de Référence Maladies Rares "Anomalies Du Développement et Syndromes Malformatifs" Nord-Ouest, CHU Lille, Lille, France
| | - Caroline Rooryck
- Département de Génétique et Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs", CHU Rouen, Rouen, France
| | - Audrey Putoux
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Patricia Blanchet
- Service de Génétique, CHU de Lyon HCL - GH Est-Hôpital Femme Mère Enfant, Bron, France
| | - Sylvie Odent
- Service de Génétique Clinique, Centre de Référence "Anomalies du Développement et Syndromes Malformatifs" de l'Inter-région Ouest, CHU Rennes Hôpital Sud, Rennes, France
- Equipe Maladies Génétiques de L'Enfant et de L'Adulte, Département Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU de Montpellier, Montpellier, France
| | - Elise Schaefer
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace, Strasbourg, France
| | - Odile Boute
- Institut de Génétique et Développement de Rennes, Université de Rennes, UMR6290, ERL1305, Rennes, France
| | - Alice Goldenberg
- Clinique de Génétique Guy Fontaine et Centre de Référence Maladies Rares "Anomalies Du Développement et Syndromes Malformatifs" Nord-Ouest, CHU Lille, Lille, France
| | - Agnes Guichet
- Plateau de Biochimie et Médecine Moléculaire, CHU d'Angers, Angers, France
| | - Carine Abel
- Service de Génétique, CHU de Lyon HCL - GH Nord-Hôpital de La Croix Rousse, Lyon, France
| | - Godelieve Morel
- Service de Génétique Clinique, Centre de Référence "Anomalies du Développement et Syndromes Malformatifs" de l'Inter-région Ouest, CHU Rennes Hôpital Sud, Rennes, France
| | - Melanie Fradin
- Service de Génétique Clinique, Centre de Référence "Anomalies du Développement et Syndromes Malformatifs" de l'Inter-région Ouest, CHU Rennes Hôpital Sud, Rennes, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - Marie Vincent
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - Christine Francannet
- Service de Génétique Médicale, Pôle Femme et Enfant, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Gabriella Vera
- Clinique de Génétique Guy Fontaine et Centre de Référence Maladies Rares "Anomalies Du Développement et Syndromes Malformatifs" Nord-Ouest, CHU Lille, Lille, France
| | - Florence Petit
- Institut de Génétique et Développement de Rennes, Université de Rennes, UMR6290, ERL1305, Rennes, France
| | - Mathilde Nizon
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - Constance Wells
- Service de Génétique, CHU de Lyon HCL - GH Est-Hôpital Femme Mère Enfant, Bron, France
| | | | - Caroline Deiller
- Service de Génétique, CHU de Lyon HCL - GH Est-Hôpital Femme Mère Enfant, Bron, France
| | - Alban Ziegler
- Plateau de Biochimie et Médecine Moléculaire, CHU d'Angers, Angers, France
| | - Manon Godin
- Service de Génétique, CHU Caen Clemenceau, EA 7450 Biotargen - Université de Caen, Caen, France
| | - Pascale Saugier-Veber
- Clinique de Génétique Guy Fontaine et Centre de Référence Maladies Rares "Anomalies Du Développement et Syndromes Malformatifs" Nord-Ouest, CHU Lille, Lille, France
| | - Kevin Cassinari
- Clinique de Génétique Guy Fontaine et Centre de Référence Maladies Rares "Anomalies Du Développement et Syndromes Malformatifs" Nord-Ouest, CHU Lille, Lille, France
| | - Pierre Blanc
- LBMMS SeqOIA - Laboratoire de biologie médicale multisites SeqOIA, Paris, France
| | - Emmanuel Simon
- Service de Gynécologie Obstétrique Médecine Fœtale et Stérilité Conjugale, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| | - Christine Binquet
- Centre D'Investigation Clinique CIC-EC Inserm CIC1432, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Yannis Duffourd
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, CHU Dijon Bourgogne, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université́ de Bourgogne, Dijon, France
| | - Hana Safraou
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, CHU Dijon Bourgogne, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université́ de Bourgogne, Dijon, France
| | - Anne-Sophie Denomme-Pichon
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, CHU Dijon Bourgogne, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université́ de Bourgogne, Dijon, France
| | - Antonio Vitobello
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, CHU Dijon Bourgogne, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université́ de Bourgogne, Dijon, France
| | - Christophe Philippe
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, CHU Dijon Bourgogne, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université́ de Bourgogne, Dijon, France
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs de l'Inter-région Est", CHU Dijon Bourgogne, Dijon, France
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, CHU Dijon Bourgogne, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université́ de Bourgogne, Dijon, France
| | - Frédéric Tran-Mau-Them
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, CHU Dijon Bourgogne, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université́ de Bourgogne, Dijon, France
| | - Nicolas Bourgon
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, CHU Dijon Bourgogne, Dijon, France.
- INSERM UMR 1231, Génétique des Anomalies du Développement, Université́ de Bourgogne, Dijon, France.
- Service d'Obstétrique Maternité́, Chirurgie Médecine et Imagerie Fœtale, Hôpital Necker Enfants Malades, AP-HP, Paris, France.
| |
Collapse
|
3
|
Arduç A, De Vries JIP, B Tan-Sindhunata M, Waisfisz Q, Pajkrt E, Linskens IH. Perinatal genetic diagnostic yield in a population of fetuses with the phenotype arthrogryposis multiplex congenita: a cohort study 2007-2021. Eur J Hum Genet 2025:10.1038/s41431-025-01848-3. [PMID: 40195522 DOI: 10.1038/s41431-025-01848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/02/2025] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
Arthrogryposis multiplex congenita (AMC) presents challenges for prenatal detection due to its heterogeneous etiology, onset, and phenotypical manifestations. This study aims to describe the genetic diagnostic yield in a population of fetuses with detailed phenotypic description over a 15-year period (2007-2021) at the Fetal Medicine Unit of Amsterdam UMC, the Netherlands. The fetal and neonatal phenotypes were classified into three clinical AMC Groups, with the exception that Groups 1 and 2 were combined in the prenatal classification. Group 1 involves limb involvement primarily, Group 2 includes musculoskeletal involvement plus other system anomalies, and Group 3 involves musculoskeletal involvement with central nervous system disability, lethality, fetal akinesia deformation sequence, and/or intellectual disability. The cohort consisted of 64 consecutive cases, 13 in Groups 1 + 2 and 51 in Group 3. Perinatal genetic testing occurred in all cases: prenatally in 56 of the 64 (88%), postnatally in 36 of the 64 (56%), and combined testing in 28 of the 64 cases (44%). The overall genetic diagnostic yield was 28% (18/64), and it increased over the 5-year period from 14% to 50%. Whole exome sequencing had the highest yield (41.7%). The yield per phenotype was 30.8% (4/13) for AMC Group 1 + 2 and 27.4% (14/51) for AMC Group 3. Detailed fetal phenotyping and perinatal genetic testing in all cases showed improved diagnostic yield over time, likely due to the introduction of Next-generation sequencing-based tests. The availability of stored DNA will be beneficial for future investigations since further improvements in genetic testing possibilities are expected.
Collapse
Affiliation(s)
- Arda Arduç
- Department of Obstetrics and Gynecology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands.
- Amsterdam UMC Expertise Center FADS and AMC, Amsterdam, UMC, the Netherlands.
| | - Johanna I P De Vries
- Department of Obstetrics and Gynecology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Amsterdam UMC Expertise Center FADS and AMC, Amsterdam, UMC, the Netherlands
| | - Maria B Tan-Sindhunata
- Amsterdam UMC Expertise Center FADS and AMC, Amsterdam, UMC, the Netherlands
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Quinten Waisfisz
- Amsterdam UMC Expertise Center FADS and AMC, Amsterdam, UMC, the Netherlands
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eva Pajkrt
- Department of Obstetrics and Gynecology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Amsterdam UMC Expertise Center FADS and AMC, Amsterdam, UMC, the Netherlands
| | - Ingeborg H Linskens
- Department of Obstetrics and Gynecology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Amsterdam UMC Expertise Center FADS and AMC, Amsterdam, UMC, the Netherlands
| |
Collapse
|
4
|
Wang Y, Lv Y, Yao J, Ding H, Li G, Li J, Chen L. Incremental yield of prenatal exome sequencing in fetuses with skeletal system abnormalities: A systematic review and meta-analysis. Acta Obstet Gynecol Scand 2025; 104:604-614. [PMID: 39611236 PMCID: PMC11919707 DOI: 10.1111/aogs.15025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/17/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024]
Abstract
INTRODUCTION Fetal skeletal abnormalities can be caused by various factors and genetic cause plays an important role. Prenatal exome sequencing (ES) has been shown to be a powerful approach for accurate prenatal molecular diagnoses. Diagnostic yield of ES in fetal skeletal abnormalities varies significantly across studies. This study aimed to perform a systematic review of the literature and meta-analysis to assess the incremental yield of ES in fetuses with different kinds of skeletal abnormalities and a negative result on chromosome microarray or karyotyping. MATERIAL AND METHODS The PubMed, Embase, Web of Science, and Cochrane Library databases were systematically searched up to November 26, 2022. Relevant data were collected from observational studies containing five or more cases of skeletal abnormalities who underwent ES. The incremental yield of ES was evaluated by single proportion analysis and 95% confidence interval (CI), both according to the article features and individual phenotypes. This study was registered on PROSPERO as CRD42022382800. RESULTS Twenty-six studies including 524 individuals met the inclusion criteria. The pooled incremental yield was 60.2% (95% CI, 53.4%-66.9%) for all fetuses with skeletal abnormalities. In subgroup analysis, the additional diagnostic yield was 83.9% (95% CI, 76.4%-90.4%) in isolated dysplasia cases (group I), 52.0% (95% CI, 32.9%-70.9%) in dysplasia with non-skeletal abnormalities cases (group II), 33.3% (95% CI, 19.3%-48.6%) in isolate dysostoses cases (group III), 47.8% (95 % CI, 35.8%-60.0%) in dysostoses with non-skeletal abnormalities cases (group IV), 83.0% (95% CI, 63.7%-97.1%) in combination of the two phenotypes without non-skeletal abnormalities cases (group V), 74.5% (95% CI, 54.9%-90.9%) in combination of the two phenotypes with non-skeletal abnormalities cases (group VI). The origin of the pathogenic variations differed among the groups. Most causative variants were de novo in groups I (97/133, 72.9%), V (14/23, 60.9%), and VI (15/26, 57.7%). Meanwhile, pathogenic variations in III (18/25, 72.0%) and IV (37/67, 55.2%) were more often inherited from a parent. CONCLUSIONS ES had a favorable incremental yield in fetuses with skeletal abnormalities. The common pathogenic variations and genetic patterns of skeletal abnormalities vary among different subtypes. Interpreting this difference is beneficial for personalized clinical consultation.
Collapse
Affiliation(s)
- Yan Wang
- Department of UltrasoundShengjing Hospital of China Medical UniversityShenyangChina
| | - Yuan Lv
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Jia Yao
- Department of UltrasoundShengjing Hospital of China Medical UniversityShenyangChina
| | - Hao Ding
- Department of UltrasoundShengjing Hospital of China Medical UniversityShenyangChina
| | - Gang Li
- Department of UltrasoundShengjing Hospital of China Medical UniversityShenyangChina
| | - Jianmin Li
- Department of UltrasoundShengjing Hospital of China Medical UniversityShenyangChina
| | - Lizhu Chen
- Department of UltrasoundShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing HospitalChina Medical UniversityShenyangChina
| |
Collapse
|
5
|
Dayman S, Graetz M, Hui L, Downie L. Insights and Experiences From the 'Gatekeepers': A Qualitative Study Exploring Clinician Perspectives on Providing Publicly Funded Prenatal Exome Sequencing. Aust N Z J Obstet Gynaecol 2025. [PMID: 40135965 DOI: 10.1111/ajo.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/13/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Genomics has improved etiological diagnosis for foetal structural anomalies. It is being increasingly utilised in prenatal investigation both in Australia and internationally. To date, literature reporting diagnostic yield according to indication has been available. There is limited literature around the challenges of implementation and other aspects of utility. AIMS We aimed to explore the experiences and perspectives of clinicians involved with the delivery of a state-wide public prenatal exome sequencing (pES) service in Australia. MATERIALS AND METHODS This qualitative study was developed using a pragmatism framework. A multidisciplinary cohort of clinicians across all tertiary foetal medicine units in Victoria was interviewed. Inductive content analysis was used to understand the experiences, impact, and utility of pES. RESULTS Eight clinician interviews were analysed. The impact of pES on clinicians included: increased pressure, higher emotional toll, and balancing the benefits with resource limitations. PES was most useful when it provided prognostic information. The clinicians felt that pES had the most utility for patients when the result informed their decision about whether or not to continue a pregnancy. Clinicians acknowledged their 'gatekeeper' role and valued a collaborative, multidisciplinary approach. The main perceived harm for patients was the anxiety associated with waiting times for results. CONCLUSIONS This study provides insights into the delivery of a publicly funded pES program. Our findings highlight the importance of the multidisciplinary team in the successful implementation of genomic technologies in reproductive health.
Collapse
Affiliation(s)
- Samantha Dayman
- Department of Obstetrics, Gynaecology, and Newborn Medicine, The University of Melbourne, Parkville, Australia
| | - Melissa Graetz
- Department of Obstetrics, Gynaecology, and Newborn Medicine, The University of Melbourne, Parkville, Australia
- Genetics in the Northeast, Mercy Hospital for Women, Heidelberg, Australia
| | - Lisa Hui
- Department of Obstetrics, Gynaecology, and Newborn Medicine, The University of Melbourne, Parkville, Australia
- Genetics in the Northeast, Mercy Hospital for Women, Heidelberg, Australia
- Reproductive Epidemiology, Murdoch Children's Research Institute, Parkville, Australia
| | - Lilian Downie
- Department of Obstetrics, Gynaecology, and Newborn Medicine, The University of Melbourne, Parkville, Australia
- Genetics in the Northeast, Mercy Hospital for Women, Heidelberg, Australia
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Parkville, Australia
| |
Collapse
|
6
|
Fortin O, Mulkey SB, Fraser JL. Advancing fetal diagnosis and prognostication using comprehensive prenatal phenotyping and genetic testing. Pediatr Res 2025; 97:1269-1279. [PMID: 38937640 DOI: 10.1038/s41390-024-03343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Prenatal diagnoses of congenital malformations have increased significantly in recent years with use of high-resolution prenatal imaging. Despite more precise radiological diagnoses, discussions with expectant parents remain challenging because congenital malformations are associated with a wide spectrum of outcomes. Comprehensive prenatal genetic testing has become an essential tool that improves the accuracy of prognostication. Testing strategies include chromosomal microarray, exome sequencing, and genome sequencing. The diagnostic yield varies depending on the specific malformations, severity of the abnormalities, and multi-organ involvement. The utility of prenatal genetic diagnosis includes increased diagnostic clarity for clinicians and families, informed pregnancy decision-making, neonatal care planning, and reproductive planning. Turnaround time for results of comprehensive genetic testing remains a barrier, especially for parents that are decision-making, although this has improved over time. Uncertainty inherent to many genetic testing results is a challenge. Appropriate genetic counseling is essential for parents to understand the diagnosis and prognosis and to make informed decisions. Recent research has investigated the yield of exome or genome sequencing in structurally normal fetuses, both with non-invasive screening methods and invasive diagnostic testing; the prenatal diagnostic community must evaluate and analyze the significant ethical considerations associated with this practice prior to generalizing its use. IMPACT: Reviews available genetic testing options during the prenatal period in detail. Discusses the impact of prenatal genetic testing on care using case-based examples. Consolidates the current literature on the yield of genetic testing for prenatal diagnosis of congenital malformations.
Collapse
Affiliation(s)
- Olivier Fortin
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA
| | - Sarah B Mulkey
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA
- Department of Neurology and Rehabilitation Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jamie L Fraser
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA.
- Rare Disease Institute, Children's National Hospital, Washington, DC, USA.
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA.
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
7
|
Hadjipanteli A, Theodosiou A, Papaevripidou I, Alexandrou A, Salameh N, Evangelidou P, Tomazou M, Mavrides A, Fasouliotis S, Anastasiou G, Stavroulis A, Agathokleous N, Agathokleous M, Tsangarides S, Kallikas I, Kakoullis K, Frakala S, Oxinou C, Marnerides A, Athanasiou E, Ourani S, Anastasiadou VC, Tanteles G, Kousoulidou L, Sismani C. Fetal genetic factors in pregnancy loss: Insights from a meta-analysis and effectiveness of whole exome sequencing. PLoS One 2025; 20:e0319052. [PMID: 39999070 PMCID: PMC11856309 DOI: 10.1371/journal.pone.0319052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Spontaneous pregnancy loss commonly occurs during the first trimester and can be caused by various factors including chromosomal abnormalities and submicroscopic aberrations. After the first trimester, the etiology of most pregnancy losses remains undetermined. This study aims to fill this gap by an in-depth investigation of the fetal genome and its effect on pregnancy outcome. Data from 1016 spontaneously aborted fetuses previously referred for genetic testing (2017-2023) were used for meta-analysis. Fetuses were categorized based on gestational age and genetic test result. Additionally, 35 second-third trimester fetuses, that were spontaneously aborted, terminated or died neonatally, with abnormal ultrasounds and unrevealing routine genetic testing were collected. Trio-based whole-exome sequencing was performed for identification of fetal variants that may have caused the pregnancy loss. The meta-analysis revealed that 822 of 1016 fetuses (80.91%) were aborted during the first trimester, with 569 of 822 (69.22%) successfully diagnosed using conventional genetic testing. The remaining 194 fetuses (19.09%) were aborted during the second-third trimester. Of the 194 second-third trimester aborted fetuses, 163 (84.02%) lacked genetic diagnosis using conventional testing (karyotype and array-CGH). Aneuploidies were the leading cause of spontaneous pregnancy loss in both first and second-third trimester fetuses followed by polyploidies. Thus, the meta-analysis demonstrated that undiagnosed second-third trimester pregnancy losses are more likely to benefit from further genetic investigation. Application of whole exome sequencing on second-third trimester pregnancy losses, revealed causative variants in 6 of 33 families (18.18%), in genes linked to Mendelian disorders associated with the phenotypes of interest. Pathogenic findings were identified in two additional families in heterozygosity in genes following autosomal recessive inheritance. Accurate identification of variants in such genes creates new genotype-in utero phenotype associations, with the prospect of new additions in preconception/prenatal diagnostic panels. This study highlights the importance of whole exome sequencing in resolving undiagnosed pregnancy losses.
Collapse
Affiliation(s)
- Andrea Hadjipanteli
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, Nicosia, Cyprus
| | - Athina Theodosiou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, Nicosia, Cyprus
| | - Ioannis Papaevripidou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, Nicosia, Cyprus
| | - Angelos Alexandrou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, Nicosia, Cyprus
| | - Nicole Salameh
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, Nicosia, Cyprus
| | - Paola Evangelidou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, Nicosia, Cyprus
| | - Marios Tomazou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, Nicosia, Cyprus
| | | | | | | | | | | | | | | | | | | | | | - Christina Oxinou
- Christina Oxinou Histopathology/Cytology Laboratory, Nicosia, Cyprus
| | | | | | - Sofia Ourani
- Archbishop Makarios III Hospital, Nicosia, Cyprus
| | | | - George Tanteles
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, Nicosia, Cyprus
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Ludmila Kousoulidou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, Nicosia, Cyprus
| | - Carolina Sismani
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, Nicosia, Cyprus
| |
Collapse
|
8
|
Duyzend M, Sud M, D'Gama AM, Poorvu T, Estroff J, Wojcik MH. Going Back in Time: Prenatal Presentations of Postnatal Genetic Diagnoses Made in a Neonatal Intensive Care Unit. Prenat Diagn 2024. [PMID: 39638574 DOI: 10.1002/pd.6710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVES Prenatal genetic diagnosis can impact care across the perinatal continuum; however, prenatal suspicion for genetic disorders may be complicated by incomplete knowledge of fetal rare-disease phenotypes. Here, we describe the prenatal presentations of a cohort of infants with rare genetic conditions who were diagnosed postnatally in a neonatal intensive care unit (NICU), to characterize prenatal presenting features and evaluate why the diagnosis was not identified prenatally. METHODS Retrospective cohort study of infants born over a 7 year period (2017-2023) who were admitted to a Level IV NICU and received a postnatal genetic diagnosis prior to 1 year of age. We identified which of these infants had been imaged prenatally at our Maternal Fetal Care Center (MFCC) as an opportunity for prenatal genetic diagnosis. Clinical data were abstracted from the medical records. RESULTS 51 cases met the inclusion criteria. Nine of the 51 infants were not strongly suspected to have a genetic syndrome prenatally when seen at the MFCC, as evidenced by lack of prenatal genetic consultation and lack of documented suspicion for a genetic etiology. These cases largely had absent or uncertain prenatal phenotypes. In most cases (42/51, 82.4%), prenatal diagnostic testing was not pursued even if offered. Overall, postnatal diagnoses, of which there was one dual diagnosis, were made by karyotype/FISH (11/52, 21.1%), microarray (8/52, 15.4%), gene panel/targeted testing (17/52, 32.7%), or exome sequencing (16/52, 30.8%). CONCLUSIONS Our data illustrate the challenges in fetal phenotyping and support a broad approach to prenatal testing to facilitate early genetic diagnosis, which may meaningfully impact postnatal care.
Collapse
Affiliation(s)
- Michael Duyzend
- Maternal Fetal Care Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Malika Sud
- Maternal Fetal Care Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Alissa M D'Gama
- Maternal Fetal Care Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tabitha Poorvu
- Maternal Fetal Care Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Judy Estroff
- Maternal Fetal Care Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Monica H Wojcik
- Maternal Fetal Care Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Basel-Salmon L, Brabbing-Goldstein D. Fetal whole genome sequencing as a clinical diagnostic tool: Advantages, limitations and pitfalls. Best Pract Res Clin Obstet Gynaecol 2024; 97:102549. [PMID: 39259994 DOI: 10.1016/j.bpobgyn.2024.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Genome-wide sequencing, which includes exome sequencing and genome sequencing, has revolutionized the diagnostics of genetic disorders in both postnatal and prenatal settings. Compared to exome sequencing, genome sequencing enables the detection of many additional types of genomic variants, although this depends on the bioinformatics pipelines used. Variant classification might vary among laboratories. In the prenatal setting, variant classification may change if new fetal phenotypic features emerge as the pregnancy progresses. There is still a need to evaluate the incremental diagnostic yield of genome sequencing compared to exome sequencing in the prenatal setting. This article reviews the advantages and limitations of genome sequencing, with an emphasis on fetal diagnostics.
Collapse
Affiliation(s)
- Lina Basel-Salmon
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva 4941492, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Felsenstein Medical Research Center, Petach Tikva, 4920235, Israel.
| | - Dana Brabbing-Goldstein
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva 4941492, Israel; Ultrasound Unit, The Helen Schneider Women's Hospital, Rabin Medical Center - Beilinson Hospital, Petach Tikva 4941492, Israel
| |
Collapse
|
10
|
Brabbing-Goldstein D, Bazak L, Ruhrman-Shahar N, Lidzbarsky GA, Orenstein N, Lifshiz-Kalis M, Asia-Batzir N, Goldberg Y, Basel-Salmon L. Potentially Missed Diagnoses in Prenatal Versus Postnatal Exome Sequencing in the Lack of Informative Phenotype: Lessons Learned From a Postnatal Cohort. Prenat Diagn 2024; 44:1423-1434. [PMID: 39237446 DOI: 10.1002/pd.6659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/02/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVE To investigate how many novel pathogenic (P) and likely pathogenic (LP) nonprotein-truncating or noncanonical splicing variants would be classified as variants of unknown significance (VUS) if they were detected in fetuses without abnormalities. METHODS The study included 156 patients with neurodevelopmental disorders diagnosed through postnatal exome sequencing. Causative P/LP nonprotein-truncating and noncanonical splicing variants were retrospectively reclassified in cases without specific prenatal manifestations, disregarding postnatal symptoms. RESULTS Of the 156 patients, 72 had a nontruncating or noncanonical splicing variant. Six patients were excluded for having more than one possible causative variant. Twelve patients had prenatal malformations known to be associated with the diagnosed disorder; therefore, variant interpretation remained unchanged. In 33 of the 54 remaining cases, the variant had been previously reported as P/LP. Reclassification of the other 21 LP/P variants revealed that 16 would have been classified as VUS if detected prenatally. CONCLUSION In our cohort, ∼24% (16/66) of causative nonprotein-truncating/noncanonical splicing variants would have been classified as VUS if sequencing had been conducted during pregnancy. The potential for false-negative results, stemming from limitations in the phenotypic information available prenatally, should be discussed with prospective parents. The criteria for classifying and reporting variants in the prenatal setting may require adjustment.
Collapse
Affiliation(s)
- Dana Brabbing-Goldstein
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
- Ultrasound Unit, Helen Schneider Women's Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Lily Bazak
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Noa Ruhrman-Shahar
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Gabriel Arie Lidzbarsky
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Naama Orenstein
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Marina Lifshiz-Kalis
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Nurit Asia-Batzir
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Yael Goldberg
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lina Basel-Salmon
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Marchionni E, Guadagnolo D, Mastromoro G, Pizzuti A. Prenatal Genome-Wide Sequencing analysis (Exome or Genome) in detecting pathogenic Single Nucleotide Variants in fetal Central Nervous System Anomalies: systematic review and meta-analysis. Eur J Hum Genet 2024; 32:759-769. [PMID: 38486024 PMCID: PMC11219734 DOI: 10.1038/s41431-024-01590-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/04/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
Prenatal Exome (pES) or Genome (pGS) Sequencing analysis showed a significant incremental diagnostic yield over karyotype and chromosomal microarray analysis (CMA) in fetal structural anomalies. Optimized indications and detection rates in different fetal anomalies are still under investigation. The aim of this study was to assess the incremental diagnostic yield in prenatally diagnosed Central Nervous System (CNS) anomalies. A systematic review on antenatal CNS anomalies was performed according to PRISMA guidelines, including n = 12 paper, accounting for 428 fetuses. Results were pooled in a meta-analysis fitting a logistic random mixed-effect model. The effect of interest was the incremental diagnostic rate of pES over karyotype/CMA in detecting likely pathogenic/pathogenic Single Nucleotide Variants (SNVs). A further meta-analysis adding the available pGS studies (including diagnostic coding SNVs only) and submeta-analysis on three CNS subcategories were also performed. The pooled incremental diagnostic yield estimate of pES studies was 38% (95% C.I.: [29%;47%]) and 36% (95% C.I.: [28%;45%]) when including diagnostic SNVs of pGS studies. The point estimate of the effect resulted 22% (95% C.I.: [15%;31%]) in apparently isolated anomalies, 33% (95% C.I.: [22%;46%]) in CNS-only related anomalies (≥1) and 46% (95% C.I.: [38%;55%]) in non-isolated anomalies (either ≥ 2 anomalies in CNS, or CNS and extra-CNS). Meta-analysis showed a substantial diagnostic improvement in performing Prenatal Genome-Wide Sequencing analysis (Exome or Genome) over karyotype and CMA in CNS anomalies.
Collapse
Affiliation(s)
- Enrica Marchionni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| | - Daniele Guadagnolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Gioia Mastromoro
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Reilly K, Sonner S, McCay N, Rolnik DL, Casey F, Seale AN, Watson CJ, Kan A, Lai THT, Chung BHY, Diderich KEM, Srebniak MI, Dempsey E, Drury S, Giordano J, Wapner R, Kilby MD, Chitty LS, Mone F. The incremental yield of prenatal exome sequencing over chromosome microarray for congenital heart abnormalities: A systematic review and meta-analysis. Prenat Diagn 2024; 44:821-831. [PMID: 38708840 DOI: 10.1002/pd.6581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVES To determine the incremental yield of prenatal exome sequencing (PES) over standard testing in fetuses with an isolated congenital heart abnormality (CHA), CHA associated with extra-cardiac malformations (ECMs) and CHA dependent upon anatomical subclassification. METHODS A systematic review of the literature was performed using MEDLINE, EMBASE, Web of Science and grey literature January 2010-February 2023. Studies were selected if they included greater than 20 cases of prenatally diagnosed CHA when standard testing (QF-PCR/chromosome microarray/karyotype) was negative. Pooled incremental yield was determined. PROSPERO CRD 42022364747. RESULTS Overall, 21 studies, incorporating 1957 cases were included. The incremental yield of PES (causative pathogenic and likely pathogenic variants) over standard testing was 17.4% (95% CI, 13.5%-21.6%), 9.3% (95% CI, 6.6%-12.3%) and 35.9% (95% CI, 21.0%-52.3%) for all CHAs, isolated CHAs and CHAs associated with ECMs. The subgroup with the greatest yield was complex lesions/heterotaxy; 35.2% (95% CI 9.7%-65.3%). The most common syndrome was Kabuki syndrome (31/256, 12.1%) and most pathogenic variants occurred de novo and in autosomal dominant (monoallelic) disease causing genes (114/224, 50.9%). CONCLUSION The likelihood of a monogenic aetiology in fetuses with multi-system CHAs is high. Clinicians must consider the clinical utility of offering PES in selected isolated cardiac lesions.
Collapse
Affiliation(s)
- K Reilly
- Centre for Public Health, Queens University Belfast, Belfast, UK
| | - S Sonner
- Centre for Public Health, Queens University Belfast, Belfast, UK
| | - N McCay
- Department of Paediatric Cardiology, Royal Belfast Hospital for Sick Children, Belfast, UK
| | - D L Rolnik
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - F Casey
- Department of Paediatric Cardiology, Royal Belfast Hospital for Sick Children, Belfast, UK
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - A N Seale
- Department of Paediatric Cardiology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
| | - C J Watson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - A Kan
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Hong Kong, China
| | - T H T Lai
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Hong Kong, China
| | - B H Y Chung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - K E M Diderich
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - M I Srebniak
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - E Dempsey
- South West Thames Regional Genetics Service, London, UK
- School of Biological and Molecular Sciences, St George's University of London, London, UK
| | - S Drury
- Congenica Ltd, Biodata Innovation Centre, Wellcome Trust Genome Campus, Hinxton, UK
| | - J Giordano
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Columbia University Medical Center, New York, New York, USA
| | - R Wapner
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Columbia University Medical Center, New York, New York, USA
| | - M D Kilby
- Fetal Medicine Center, Birmingham Women's & Children's Foundation Trust, Birmingham, UK
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Medical Genomics Research Group, Illumina, Cambridge, UK
| | - L S Chitty
- Great Ormond Street NHS Foundation Trust, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - F Mone
- Centre for Public Health, Queens University Belfast, Belfast, UK
| |
Collapse
|
13
|
Makhamreh MM, Shivashankar K, Araji S, Critchlow E, O'Brien BM, Wodoslawsky S, Berger SI, Al-Kouatly HB. RASopathies are the most common set of monogenic syndromes identified by exome sequencing for nonimmune hydrops fetalis: A systematic review and meta-analysis. Am J Med Genet A 2024; 194:e63494. [PMID: 38156365 DOI: 10.1002/ajmg.a.63494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
RASopathies are a group of malformation syndromes known to lead to nonimmune hydrops fetalis (NIHF) in severe presentations. Pathogenic variants can be de novo or parentally inherited. Despite being a known frequent presentation, the fraction of monogenic NIHF cases due to RASopathies is limited in the literature. Also, the specific parental contribution of RASopathies to NIHF is not well described. Our objective was to review pooled exome sequencing (ES) diagnostic yield of RASopathies for NIHF and to determine the parental contribution of RASopathy to NIHF. We performed a systematic review of prenatal ES studies from January 1, 2000 to August 1, 2022. Thirty-six studies met inclusion criteria. Cases with RASopathy gene variants were reviewed. NIHF cases were further classified as isolated or non-isolated. Thirty-six ES studies including 46 pregnancies with NIHF and a diagnosed RASopathy were reviewed. Forty-four diagnostic variants and 2 variants of uncertain significance in 12 RASopathy genes were identified. Expanding on what was previously published, a total of 506 NIHF cases were extracted with 191 cases yielding a positive diagnosis by ES. The overall rate of RASopathy diagnosis in clinically diagnosed NIHF cases was 9% (44/506). The rate of RASopathy diagnosis among NIHF cases with positive genetic diagnosis by ES was 23% (44/191). Of the 46 cases identified, 13 (28%) variants were parentally inherited; specifically, 5/13 (38%) maternal, 3/13 (23%) paternal, 2/13 (15%) biparental, and 3/13 (23%) unspecified. Majority of NIHF cases 29/46 (63%) were isolated. Among NIHF cases with positive ES diagnoses, RASopathy diagnostic yield by ES was 23%. NIHF secondary to RASopathies was parentally inherited in 28% of cases. Most cases of NIHF due to RASopathy were isolated, with no prenatal detection of associated anomalies.
Collapse
Affiliation(s)
- Mona M Makhamreh
- Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, New York, USA
| | - Kavya Shivashankar
- Department of Obstetrics and Gynecology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Sarah Araji
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Mississippi, Jackson, Mississippi, USA
| | - Elizabeth Critchlow
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Barbara M O'Brien
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sascha Wodoslawsky
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Seth I Berger
- Center for Genetic Medicine Research and Rare Disease Institute, Children's National Medical Center, Washington, DC, USA
| | - Huda B Al-Kouatly
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Blayney GV, Laffan E, Jacob PA, Baptiste CD, Gabriel H, Sparks TN, Yaron Y, Norton ME, Diderich K, Wang Y, Chong K, Chitayat D, Saini N, Aggarwal S, Pauta M, Borrell A, Gilmore K, Chandler NJ, Allen S, Vora N, Noor A, Monaghan C, Kilby MD, Wapner RJ, Chitty LS, Mone F. Monogenic conditions and central nervous system anomalies: A prospective study, systematic review and meta-analysis. Prenat Diagn 2024; 44:422-431. [PMID: 38054560 PMCID: PMC11044826 DOI: 10.1002/pd.6466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023]
Abstract
OBJECTIVES Determine the incremental diagnostic yield of prenatal exome sequencing (pES) over chromosome microarray (CMA) or G-banding karyotype in fetuses with central nervous system (CNS) abnormalities. METHODS Data were collected via electronic searches from January 2010 to April 2022 in MEDLINE, Cochrane, Web of Science and EMBASE. The NHS England prenatal exome cohort was also included. Incremental yield was calculated as a pooled value using a random-effects model. RESULTS Thirty studies were included (n = 1583 cases). The incremental yield with pES for any CNS anomaly was 32% [95%CI 27%-36%; I2 = 72%]. Subgroup analysis revealed apparent incremental yields in; (a) isolated CNS anomalies; 27% [95%CI 19%-34%; I2 = 74%]; (b) single CNS anomaly; 16% [95% CI 10%-23%; I2 = 41%]; (c) more than one CNS anomaly; 31% [95% Cl 21%-40%; I2 = 56%]; and (d) the anatomical subtype with the most optimal yield was Type 1 malformation of cortical development, related to abnormal cell proliferation or apoptosis, incorporating microcephalies, megalencephalies and dysplasia; 40% (22%-57%; I2 = 68%). The commonest syndromes in isolated cases were Lissencephaly 3 and X-linked hydrocephalus. CONCLUSIONS Prenatal exome sequencing provides a high incremental diagnostic yield in fetuses with CNS abnormalities with optimal yields in cases with multiple CNS anomalies, particularly those affecting the midline, posterior fossa and cortex.
Collapse
Affiliation(s)
- Gillian V. Blayney
- Fetal Medicine Department, Royal Jubilee Maternity Service, Belfast Health and Social Care Trust, Belfast, UK
| | - Eoghan Laffan
- Department of Radiology, Children’ Health Ireland at Crumlin, Dublin, Ireland
| | | | | | | | - Teresa N. Sparks
- Department of Obstetrics, Gynaecology & Reproductive Sciences, University of California San Francisco, San Francisco, California, USA
| | - Yuval Yaron
- Prenatal Genetic Diagnosis Unit, Genetic Institute, Tel Aviv Sourasky Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mary E. Norton
- Department of Obstetrics, Gynaecology & Reproductive Sciences, University of California San Francisco, San Francisco, California, USA
| | - Karin Diderich
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Yiming Wang
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Karen Chong
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics & Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics & Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Neelam Saini
- Department of Medical Genetics, Nizam’s Institute of Medical Sciences, Hyderabad, India
| | - Shagun Aggarwal
- Department of Medical Genetics, Nizam’s Institute of Medical Sciences, Hyderabad, India
| | - Montse Pauta
- Insitut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), BCNatal, Barcelona, Spain
| | - Antoni Borrell
- Insitut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), BCNatal, Barcelona, Spain
| | - Kelly Gilmore
- Department of Obstetrics and Gynaecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Stephanie Allen
- West Midlands Regional Genetics Laboratory, South and Central Genomic Laboratory Hub, Birmingham, UK
| | - Neeta Vora
- Department of Obstetrics and Gynaecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Abdul Noor
- Division of Diagnostic Medical Genetics, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Caitriona Monaghan
- Fetal Medicine Department, Royal Jubilee Maternity Service, Belfast Health and Social Care Trust, Belfast, UK
| | - Mark D. Kilby
- Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK
- Fetal Medicine Centre, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | | | - Lyn S. Chitty
- North Thames Genomic Laboratory Hub, NHS Foundation Trust, London, UK
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Fionnuala Mone
- Centre for Public Health, Queen’s University Belfast, Belfast, UK
| |
Collapse
|
15
|
Duyzend MH, Cacheiro P, Jacobsen JO, Giordano J, Brand H, Wapner RJ, Talkowski ME, Robinson PN, Smedley D. Improving prenatal diagnosis through standards and aggregation. Prenat Diagn 2024; 44:454-464. [PMID: 38242839 PMCID: PMC11006584 DOI: 10.1002/pd.6522] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024]
Abstract
Advances in sequencing and imaging technologies enable enhanced assessment in the prenatal space, with a goal to diagnose and predict the natural history of disease, to direct targeted therapies, and to implement clinical management, including transfer of care, election of supportive care, and selection of surgical interventions. The current lack of standardization and aggregation stymies variant interpretation and gene discovery, which hinders the provision of prenatal precision medicine, leaving clinicians and patients without an accurate diagnosis. With large amounts of data generated, it is imperative to establish standards for data collection, processing, and aggregation. Aggregated and homogeneously processed genetic and phenotypic data permits dissection of the genomic architecture of prenatal presentations of disease and provides a dataset on which data analysis algorithms can be tuned to the prenatal space. Here we discuss the importance of generating aggregate data sets and how the prenatal space is driving the development of interoperable standards and phenotype-driven tools.
Collapse
Affiliation(s)
- Michael H. Duyzend
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Pilar Cacheiro
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Julius O.B. Jacobsen
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jessica Giordano
- Department of Obstetrics & Gynecology, Columbia University Medical Center, New York, NY, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Ronald J. Wapner
- Department of Obstetrics & Gynecology, Columbia University Medical Center, New York, NY, USA
| | - Michael E. Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
- Program in Bioinformatics and Integrative Genomics, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Peter N. Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT 06032, USA
| | - Damian Smedley
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
16
|
Sonner S, Reilly K, Woolf AS, Chandler N, Kilby MD, Maher ER, Flanagan C, McKnight AJ, Mone F. When should we offer antenatal sequencing for urinary tract malformations? A systematic review, cohort study and meta-analysis. Prenat Diagn 2024; 44:187-195. [PMID: 38056891 DOI: 10.1002/pd.6479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Determine the incremental yield of prenatal exome sequencing (PES) over chromosome microarray (CMA) and/or karyotype for urinary tract malformations (UTMs). METHOD A prospective cohort study encompassing data from the English Genomic Medicine Service North Thames Laboratory Hub for fetuses with bilateral echogenic kidneys (BEKs) was combined with data from a systematic review. MEDLINE, EMBASE, Web of Science, MedRxiv and GreyLit were searched from 01/2010-02/2023 for studies reporting on the yield of PES over CMA or karyotype in fetuses with UTMs. Pooled incremental yield was determined using a random effects model. PROSPERO CRD42023364544. RESULTS Fourteen studies (410 cases) were included. The incremental yield for multisystem UTMs, any isolated UTMs, and BEKs was 31% [95% CI, 18%-46%; I2 = 78%], 16% [95% CI, 6%-26%; I2 = 80%] and 51% [95% CI, 27%-75%; I2 = 34%]. The most common clinical diseases and syndromes identified, based on the variant genes detected, were Bardet-Biedl syndrome (BBS genes), dominant and recessive polycystic kidney diseases (PKD1, PKD2 and PKHD1) and renal cysts and diabetes syndrome (HNF1B). CONCLUSION There was a notable incremental genetic diagnostic yield when PES was applied to multisystem UTMs and BEKs. There was a modest incremental yield when this technique was used for UTMs other than BEKs.
Collapse
Affiliation(s)
- Sarah Sonner
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Kelly Reilly
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Natalie Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Mark D Kilby
- Fetal Medicine Centre, Birmingham Women's & Children's Foundation Trust, Birmingham, UK
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Medical Genomics Research Group, Illumina, Cambridge, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Cheryl Flanagan
- Institute of Pathology, Belfast Health and Social Care Trust, Belfast, UK
| | | | - Fionnuala Mone
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
17
|
Hadjipanteli A, Theodosiou A, Papaevripidou I, Evangelidou P, Alexandrou A, Salameh N, Kallikas I, Kakoullis K, Frakala S, Oxinou C, Marnerides A, Kousoulidou L, Anastasiadou VC, Sismani C. Sodium Channel Gene Variants in Fetuses with Abnormal Sonographic Findings: Expanding the Prenatal Phenotypic Spectrum of Sodium Channelopathies. Genes (Basel) 2024; 15:119. [PMID: 38255008 PMCID: PMC10815715 DOI: 10.3390/genes15010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Voltage-gated sodium channels (VGSCs) are responsible for the initiation and propagation of action potentials in the brain and muscle. Pathogenic variants in genes encoding VGSCs have been associated with severe disorders including epileptic encephalopathies and congenital myopathies. In this study, we identified pathogenic variants in genes encoding the α subunit of VGSCs in the fetuses of two unrelated families with the use of trio-based whole exome sequencing, as part of a larger cohort study. Sanger sequencing was performed for variant confirmation as well as parental phasing. The fetus of the first family carried a known de novo heterozygous missense variant in the SCN2A gene (NM_001040143.2:c.751G>A p.(Val251Ile)) and presented intrauterine growth retardation, hand clenching and ventriculomegaly. Neonatally, the proband also exhibited refractory epilepsy, spasms and MRI abnormalities. The fetus of the second family was a compound heterozygote for two parentally inherited novel missense variants in the SCN4A gene (NM_000334.4:c.4340T>C, p.(Phe1447Ser), NM_000334.4:c.3798G>C, p.(Glu1266Asp)) and presented a severe prenatal phenotype including talipes, fetal hypokinesia, hypoplastic lungs, polyhydramnios, ear abnormalities and others. Both probands died soon after birth. In a subsequent pregnancy of the latter family, the fetus was also a compound heterozygote for the same parentally inherited variants. This pregnancy was terminated due to multiple ultrasound abnormalities similar to the first pregnancy. Our results suggest a potentially crucial role of the VGSC gene family in fetal development and early lethality.
Collapse
Affiliation(s)
- Andrea Hadjipanteli
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | - Athina Theodosiou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | - Ioannis Papaevripidou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | - Paola Evangelidou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | - Angelos Alexandrou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | - Nicole Salameh
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | | | | | | | - Christina Oxinou
- Christina Oxinou Histopathology/Cytology Laboratory, 1065 Nicosia, Cyprus
| | | | - Ludmila Kousoulidou
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| | | | - Carolina Sismani
- The Cyprus Institute of Neurology and Genetics, Cytogenetics and Genomics, 2371 Nicosia, Cyprus; (A.H.)
| |
Collapse
|
18
|
Brewer CJ, Makhamreh MM, Shivashankar K, McLaren R, Toro M, Berger SI, Al-Kouatly HB. PIEZO1 is the most common monogenic etiology of non-immune hydrops fetalis detected by prenatal exome sequencing. Prenat Diagn 2023; 43:1556-1566. [PMID: 37902181 DOI: 10.1002/pd.6451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023]
Abstract
OBJECTIVE To clarify the relevance of PIEZO1 variants detected by prenatal exome in the context of non-immune hydrops fetalis (NIHF). METHODS A systematic review of prenatal exome studies from 1/1/2000-8/1/2022 was performed. Thirty-six studies met the inclusion criteria. PIEZO1 variants were categorized by disease mode (dominant (AD) versus recessive (AR)) and classified by the American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS Twenty-two pregnancies with 35 distinct PIEZO1 variants were included. We deemed PIEZO1 variants to be "likely diagnostic" in 12/22 pregnancies, "possibly diagnostic" in 7/22, and "unlikely diagnostic" in 3/22. In total, 19 of 191 NIHF cases diagnosed by prenatal exome were attributed to PIEZO1. Among likely diagnosed cases, the disease mode was AR in eight and AD in four. PIEZO1 variants causing AR NIHF were characterized by loss of function and isolated NIHF phenotype. PIEZO1 variants causing AD NIHF were characterized by gain of function in red blood cells, scarcity in databases, and sporadic inheritance. Missense variants associated with NIHF were clustered in three domains: transmembrane helical unit 4 (THU4), THU5, and the Cap. CONCLUSION PIEZO1 variants were reported in 10% of NIHF cases diagnosed by prenatal exome, making PIEZO1 the most common single gene reported in NIHF.
Collapse
Affiliation(s)
- Casey J Brewer
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mona M Makhamreh
- Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, New York, USA
| | - Kavya Shivashankar
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Rodney McLaren
- Division of Maternal-Fetal Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mariella Toro
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Seth I Berger
- Center for Genetic Medicine Research/Rare Disease Institute, Children's National Medical Center, Washington, District of Columbia, USA
| | - Huda B Al-Kouatly
- Division of Maternal-Fetal Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Drexler KA, Talati AN, Gilmore KL, Veazey RV, Powell BC, Weck KE, Davis EE, Vora NL. Association of deep phenotyping with diagnostic yield of prenatal exome sequencing for fetal brain abnormalities. Genet Med 2023; 25:100915. [PMID: 37326029 PMCID: PMC10580430 DOI: 10.1016/j.gim.2023.100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE To evaluate whether deep prenatal phenotyping of fetal brain abnormalities (FBAs) increases diagnostic yield of trio-exome sequencing (ES) compared with standard phenotyping. METHODS Retrospective exploratory analysis of a multicenter prenatal ES study. Participants were eligible if an FBA was diagnosed and subsequently found to have a normal microarray. Deep phenotyping was defined as phenotype based on targeted ultrasound plus prenatal/postnatal magnetic resonance imaging, autopsy, and/or known phenotypes of other affected family members. Standard phenotyping was based on targeted ultrasound alone. FBAs were categorized by major brain findings on prenatal ultrasound. Cases with positive ES results were compared with those that have negative results by available phenotyping, as well as diagnosed FBAs. RESULTS A total of 76 trios with FBAs were identified, of which 25 (33%) cases had positive ES results and 51 (67%) had negative results. Individual modalities of deep phenotyping were not associated with diagnostic ES results. The most common FBAs identified were posterior fossa anomalies and midline defects. Neural tube defects were significantly associated with receipt of a negative ES result (0% vs 22%, P = .01). CONCLUSION Deep phenotyping was not associated with increased diagnostic yield of ES for FBA in this small cohort. Neural tube defects were associated with negative ES results.
Collapse
Affiliation(s)
- Kathleen A Drexler
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Asha N Talati
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kelly L Gilmore
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rachel V Veazey
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Bradford C Powell
- Department of Pediatrics, Division of Genetics and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Karen E Weck
- Department of Genetics, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Erica E Davis
- Department of Pediatrics, Department of Cell and Developmental Biology, Feinberg School of Medicine, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL
| | - Neeta L Vora
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
20
|
Filges I, Jünemann S, Viehweger E, Tercanli S. Fetal arthrogryposis-what do we tell the prospective parents? Prenat Diagn 2023; 43:798-805. [PMID: 36588183 DOI: 10.1002/pd.6299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/11/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Arthrogryposis, also termed arthrogryposis multiplex congenita, is a descriptive term for conditions with multiple congenital contractures (MCC). The etiology is extremely heterogeneous. More than 400 specific disorders have been identified so far, which may lead to or are associated with MCC and/or fetal hypo- and akinesia as a clinical sign. With improved sensitivity of prenatal ultrasound and expanding prenatal diagnostic options, clinicians are tasked with providing early detection in order to counsel the prospective parents regarding further prenatal diagnostic as well as management options. We summarize the most important knowledge to raise awareness for early detection in pregnancy. We review essential points for counseling when MCC is detected in order to provide answers to common questions, which, however, cannot replace interdisciplinary expert opinion in the individual case.
Collapse
Affiliation(s)
- Isabel Filges
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stephanie Jünemann
- Pediatric Neurology and Developmental Medicine, University Children's Hospital Basel UKBB and University of Basel, Basel, Switzerland
| | - Elke Viehweger
- Pediatric Orthopedics, Neuro-Orthopedics and Movement Analysis Center, University Children's Hospital Basel UKBB and University of Basel, Basel, Switzerland
| | - Sevgi Tercanli
- Center for Prenatal Ultrasound, Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
21
|
Poljak B, Agarwal U, Alfirevic Z, Allen S, Canham N, Higgs J, Kaelin Agten A, Khalil A, Roberts D, Mone F, Navaratnam K. Prenatal exome sequencing and impact on perinatal outcome: cohort study. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 61:339-345. [PMID: 36508432 DOI: 10.1002/uog.26141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVES First, to determine the uptake of prenatal exome sequencing (pES) and the diagnostic yield of pathogenic (causative) variants in a UK tertiary fetal medicine unit following the introduction of the NHS England Rapid Exome Sequencing Service for fetal anomalies testing (R21 pathway). Second, to identify how the decision to proceed with pES and identification of a causative variant affect perinatal outcomes, specifically late termination of pregnancy (TOP) at or beyond 22 weeks' gestation. METHODS This was a retrospective cohort study of anomalous fetuses referred to the Liverpool Women's Hospital Fetal Medicine Unit between 1 March 2021 and 28 February 2022. pES was performed as part of the R21 pathway. Trio exome sequencing was performed using an Illumina next-generation sequencing platform assessing coding and splice regions of a panel of 974 prenatally relevant genes and 231 expert reviewed genes. Data on demographics, phenotype, pES result and perinatal outcome were extracted and compared. Descriptive statistics and the χ-square or Fisher's exact test were performed using IBM SPSS version 28.0.1.0. RESULTS In total, 72 cases were identified and two-thirds of eligible women (n = 48) consented to trio pES. pES was not feasible in one case owing to a low DNA yield and, therefore, was performed in 47 cases. In one-third of cases (n = 24), pES was not proposed or agreed. In 58.3% (14/24) of these cases, this was because invasive testing was declined and, in 41.7% (10/24) of cases, women opted for testing and underwent chromosomal microarray analysis only. The diagnostic yield of pES was 23.4% (11/47). There was no overall difference in the proportion of women who decided to have late TOP in the group in which pES was agreed compared with the group in which pES was not proposed or agreed (25.0% (12/48) vs 25.0% (6/24); P = 1.0). However, the decision to have late TOP was significantly more frequent when a causative variant was detected compared with when pES was uninformative (63.6% (7/11) vs 13.9% (5/36); P < 0.0009). The median turnaround time for results was longer in cases in which a causative variant was identified than in those in which pES was uninformative (22 days (interquartile range (IQR), 19-34) days vs 14 days (IQR, 10-15 days); P < 0.0001). CONCLUSIONS This study demonstrates the potential impact of identification of a causative variant by pES on decision to have late TOP. As the R21 pathway continues to evolve, we urge clinicians and policymakers to consider introducing earlier screening for anomalies, developing robust guidance for late TOP and ensuring optimized support for couples. © 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- B Poljak
- Fetal Medicine Unit, Liverpool Women's Hospital NHS Foundation Trust, Liverpool, UK
| | - U Agarwal
- Fetal Medicine Unit, Liverpool Women's Hospital NHS Foundation Trust, Liverpool, UK
| | - Z Alfirevic
- Fetal Medicine Unit, Liverpool Women's Hospital NHS Foundation Trust, Liverpool, UK
- Harris-Wellbeing Research Centre, University of Liverpool, Liverpool, UK
| | - S Allen
- West Midlands Regional Genetics Laboratory and Clinical Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - N Canham
- Clinical Genetics Department, Liverpool Women's Hospital NHS Foundation Trust, Liverpool, UK
| | - J Higgs
- Clinical Genetics Department, Liverpool Women's Hospital NHS Foundation Trust, Liverpool, UK
| | - A Kaelin Agten
- Fetal Medicine Unit, Liverpool Women's Hospital NHS Foundation Trust, Liverpool, UK
| | - A Khalil
- Fetal Medicine Unit, St George's University Hospitals NHS Foundation Trust, University of London, London, UK
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - D Roberts
- Fetal Medicine Unit, Liverpool Women's Hospital NHS Foundation Trust, Liverpool, UK
| | - F Mone
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - K Navaratnam
- Fetal Medicine Unit, Liverpool Women's Hospital NHS Foundation Trust, Liverpool, UK
- Harris-Wellbeing Research Centre, University of Liverpool, Liverpool, UK
| |
Collapse
|
22
|
Vora NL, Norton ME. Prenatal exome and genome sequencing for fetal structural abnormalities. Am J Obstet Gynecol 2023; 228:140-149. [PMID: 36027950 PMCID: PMC9877148 DOI: 10.1016/j.ajog.2022.08.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 01/28/2023]
Abstract
As prenatal exome sequencing becomes integrated into clinical care, it is critical that providers caring for women with fetal anomalies recognize not only the benefits, but also the challenges and considerations related to this technology. This overview of prenatal sequencing includes information about indications for sequencing, methods, diagnostic yield, clinical utility, variant interpretation, ethical considerations and dilemmas, practical considerations (ie, turnaround time and cost), pre- and posttest counseling points, and psychological impact of testing on families.
Collapse
Affiliation(s)
- Neeta L Vora
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Mary E Norton
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
23
|
Lin XM, Li DZ. Prenatal genetic evaluation of fetuses with structural anomaly: is it time to shift from microarray to exome sequencing as a first-tier test? ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 61:119-120. [PMID: 36594735 DOI: 10.1002/uog.26120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/24/2022] [Indexed: 05/27/2023]
Affiliation(s)
- X-M Lin
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - D-Z Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Next Generation Sequencing after Invasive Prenatal Testing in Fetuses with Congenital Malformations: Prenatal or Neonatal Investigation. Genes (Basel) 2022; 13:genes13091517. [PMID: 36140685 PMCID: PMC9498826 DOI: 10.3390/genes13091517] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 11/24/2022] Open
Abstract
Congenital malformations diagnosed by ultrasound screening complicate 3–5% of pregnancies and many of these have an underlying genetic cause. Approximately 40% of prenatally diagnosed fetal malformations are associated with aneuploidy or copy number variants, detected by conventional karyotyping, QF-PCR and microarray techniques, however monogenic disorders are not diagnosed by these tests. Next generation sequencing as a secondary prenatal genetic test offers additional diagnostic yield for congenital abnormalities deemed to be potentially associated with an underlying genetic aetiology, as demonstrated by two large cohorts: the ‘Prenatal assessment of genomes and exomes’ (PAGE) study and ‘Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study’ performed at Columbia University in the US. These were large and prospective studies but relatively ‘unselected’ congenital malformations, with little Clinical Genetics input to the pre-test selection process. This review focuses on the incremental yield of next generation sequencing in single system congenital malformations, using evidence from the PAGE, Columbia and subsequent cohorts, with particularly high yields in those fetuses with cardiac and neurological anomalies, large nuchal translucency and non-immune fetal hydrops (of unknown aetiology). The total additional yield gained by exome sequencing in congenital heart disease was 12.7%, for neurological malformations 13.8%, 13.1% in increased nuchal translucency and 29% in non-immune fetal hydrops. This demonstrates significant incremental yield with exome sequencing in single-system anomalies and supports next generation sequencing as a secondary genetic test in routine clinical care of fetuses with congenital abnormalities.
Collapse
|
25
|
Li LS, Li DZ. Ongoing reanalysis of prenatal exome sequencing data leads to higher diagnostic yield. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 59:833-834. [PMID: 35642914 DOI: 10.1002/uog.24923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/20/2022] [Indexed: 05/27/2023]
Affiliation(s)
| | - D-Z Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Dhombres F, Morgan P, Chaudhari BP, Filges I, Sparks TN, Lapunzina P, Roscioli T, Agarwal U, Aggarwal S, Beneteau C, Cacheiro P, Carmody LC, Collardeau‐Frachon S, Dempsey EA, Dufke A, Duyzend MH, el Ghosh M, Giordano JL, Glad R, Grinfelde I, Iliescu DG, Ladewig MS, Munoz‐Torres MC, Pollazzon M, Radio FC, Rodo C, Silva RG, Smedley D, Sundaramurthi JC, Toro S, Valenzuela I, Vasilevsky NA, Wapner RJ, Zemet R, Haendel MA, Robinson PN. Prenatal phenotyping: A community effort to enhance the Human Phenotype Ontology. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:231-242. [PMID: 35872606 PMCID: PMC9588534 DOI: 10.1002/ajmg.c.31989] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/01/2022] [Indexed: 01/07/2023]
Abstract
Technological advances in both genome sequencing and prenatal imaging are increasing our ability to accurately recognize and diagnose Mendelian conditions prenatally. Phenotype-driven early genetic diagnosis of fetal genetic disease can help to strategize treatment options and clinical preventive measures during the perinatal period, to plan in utero therapies, and to inform parental decision-making. Fetal phenotypes of genetic diseases are often unique and at present are not well understood; more comprehensive knowledge about prenatal phenotypes and computational resources have an enormous potential to improve diagnostics and translational research. The Human Phenotype Ontology (HPO) has been widely used to support diagnostics and translational research in human genetics. To better support prenatal usage, the HPO consortium conducted a series of workshops with a group of domain experts in a variety of medical specialties, diagnostic techniques, as well as diseases and phenotypes related to prenatal medicine, including perinatal pathology, musculoskeletal anomalies, neurology, medical genetics, hydrops fetalis, craniofacial malformations, cardiology, neonatal-perinatal medicine, fetal medicine, placental pathology, prenatal imaging, and bioinformatics. We expanded the representation of prenatal phenotypes in HPO by adding 95 new phenotype terms under the Abnormality of prenatal development or birth (HP:0001197) grouping term, and revised definitions, synonyms, and disease annotations for most of the 152 terms that existed before the beginning of this effort. The expansion of prenatal phenotypes in HPO will support phenotype-driven prenatal exome and genome sequencing for precision genetic diagnostics of rare diseases to support prenatal care.
Collapse
Affiliation(s)
- Ferdinand Dhombres
- Sorbonne University, GRC26, INSERM, Limics, Armand Trousseau Hospital, Fetal Medicine Department, APHPParisFrance
| | - Patricia Morgan
- American College of Medical Genetics and Genomics, Newborn Screening Translational Research NetworkBethesdaMarylandUSA
| | - Bimal P. Chaudhari
- Institute for Genomic MedicineNationwide Children's HospitalColumbusOhioUSA
| | - Isabel Filges
- University Hospital Basel and University of Basel, Medical GeneticsBaselSwitzerland
| | - Teresa N. Sparks
- Department of Obstetrics, Gynecology, & Reproductive SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Pablo Lapunzina
- CIBERER and Hospital Universitario La Paz, INGEMM‐Institute of Medical and Molecular GeneticsMadridSpain
| | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), University of New South WalesSydneyNew South WalesAustralia
| | - Umber Agarwal
- Department of Maternal and Fetal MedicineLiverpool Women's NHS Foundation TrustLiverpoolUK
| | - Shagun Aggarwal
- Department of Medical GeneticsNizam's Institute of Medical SciencesHyderabadTelanganaIndia
| | - Claire Beneteau
- Service de Génétique Médicale, UF 9321 de Fœtopathologie et Génétique, CHU de NantesNantesFrance
| | - Pilar Cacheiro
- William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Leigh C. Carmody
- Department of Genomic MedicineThe Jackson LaboratoryFarmingtonConnecticutUSA
| | | | - Esther A. Dempsey
- St George's University of London, Molecular and Clinical Sciences Research InstituteLondonUK
| | - Andreas Dufke
- University of Tübingen, Institute of Medical Genetics and Applied GenomicsTübingenGermany
| | | | | | - Jessica L. Giordano
- Department of Obstetrics and GynecologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Ragnhild Glad
- Department of Obstetrics and GynecologyUniversity Hospital of North NorwayTromsøNorway
| | - Ieva Grinfelde
- Department of Medical Genetics and Prenatal diagnosisChildren's University HospitalRigaLatvia
| | - Dominic G. Iliescu
- Department of Obstetrics and GynecologyUniversity of Medicine and Pharmacy CraiovaCraiovaDoljRomania
| | - Markus S. Ladewig
- Department of OphthalmologyKlinikum SaarbrückenSaarbrückenSaarlandGermany
| | - Monica C. Munoz‐Torres
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Marzia Pollazzon
- Azienda USL‐IRCCS di Reggio EmiliaMedical Genetics UnitReggio EmiliaItaly
| | | | - Carlota Rodo
- Vall d'Hebron Hospital Campus, Maternal & Fetal MedicineBarcelonaSpain
| | - Raquel Gouveia Silva
- Hospital Santa Maria, Serviço de Genética, Departamento de PediatriaHospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de LisboaLisboaPortugal
| | - Damian Smedley
- William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | | | - Sabrina Toro
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Irene Valenzuela
- Hospital Vall d'Hebron, Clinical and Molecular Genetics AreaBarcelonaSpain
| | - Nicole A. Vasilevsky
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Ronald J. Wapner
- Department of Obstetrics and GynecologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Roni Zemet
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
| | - Melissa A Haendel
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Peter N. Robinson
- Department of Genomic MedicineThe Jackson LaboratoryFarmingtonConnecticutUSA
| |
Collapse
|
27
|
Mone F, Kilby MD. Reply. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 59:834-835. [PMID: 35642913 DOI: 10.1002/uog.24924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- F Mone
- Centre for Public Health, Queen's University Belfast, UK
| | - M D Kilby
- Fetal Medicine Centre, Birmingham Women's and Children's NHS Foundation Trust, Edgbaston, UK
- Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, UK
| |
Collapse
|