1
|
Butovskaya E, Gambi L, Giovanetti A, Fedrizzi G. Screening of antibiotic residues in raw bovine milk in Lombardy, Italy: Microbial growth inhibition assay and LC-HRMS technique integration for an accurate monitoring. Heliyon 2023; 9:e15395. [PMID: 37123980 PMCID: PMC10130878 DOI: 10.1016/j.heliyon.2023.e15395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Antibiotic residues in food of animal origin is a great concern for public health worldwide in terms of antibiotic resistance development, potential allergic reactions and disruption of intestinal flora equilibrium. In this study the presence of antibiotic residues in raw bovine milk samples collected from farms located in Lombardy region in Italy from 2018 to 2022 was assessed in the context of the national milk quality payment system. Samples were screened with microbiological growth inhibition test Delvotest ® SP NT and a very low positivity rate ranging from 0.1% to 0.07% over the four years was determined. A total of 79 positive samples were further analysed by LC-HRMS screening technique to confirm positivity and detect the specific antibiotic compound contaminating the sample. The β-lactam antibiotics resulted to be the most frequently detected, with the penicillin G being the most abundant compound. The data suggested that low levels of antibiotic contamination are consistently maintained over the last four years and the integration of the techniques used in this study is a valuable tool for a deep and precise monitoring of antibiotic residues in milk.
Collapse
Affiliation(s)
- Elena Butovskaya
- Food and Feed Chemistry Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini” (IZSLER), Via A. Bianchi 9, 25124, Brescia, Italy
- Corresponding author.
| | - Lorenzo Gambi
- Produzione Primaria” Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini” (IZSLER), Via A. Bianchi 9, 25124, Brescia, Italy
| | - Alice Giovanetti
- Food and Feed Chemistry Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini” (IZSLER), Via A. Bianchi 9, 25124, Brescia, Italy
| | - Giorgio Fedrizzi
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna “Bruno Ubertini” (IZSLER), Via A. Bianchi 9, 25124, Brescia, Italy
| |
Collapse
|
2
|
Wang H, Chen C, Chen X, Zhang J, Liu Y, Li X. PK/PD Modeling to Assess Rifaximin Clinical Dosage in a Mouse Model of Staphylococcus aureus-Induced Mastitis. Front Vet Sci 2021; 8:651369. [PMID: 34195244 PMCID: PMC8236590 DOI: 10.3389/fvets.2021.651369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a common pathogen that causes mastitis, an infection of the milk-secreting tissue of the udder, in dairy cows, and presents a huge economic problem for the dairy industry worldwide. Thus, control and treatment of mastitis in dairy cows is vital in order to reduce the costs associated with the disease. The main purpose of the current work was to examine the current dosage of rifaximin for the treatment mastitis in cows caused by S. aureus using pharmacokinetic/pharmacodynamic integration in a mouse mastitis model. The mouse mastitis model was established via injection of S. aureus Newbould 305 (400 CFU/gland) into the mouse mammary gland. A single dose of 50, 100, 200, or 400 μg/gland, administered via intramammary infusion, was used to study the pharmacokinetics of rifaximin. The pharmacokinetic parameters were analyzed by non-compartment and non-linear mixed-effect models using Phoenix software (version 8.1; Pharsight, USA). In vivo pharmacodynamics was used to examine 18 therapeutic regimens covering various doses ranging from 25 to 800 μg/gland and three dosing intervals of 8, 12, and 24 h per 24 h experiment cycle. The antibacterial effect of rifaximin was elevated with higher concentrations of rifaximin or shorter intervals of administration. The percentage of time that drug concentrations exceeded the MIC during a dose interval (%T > MIC) was generally 100% for rifaximin and was not better than AUC24/MIC in the sigmoid Emax model of inhibitory effect. The optimal antibacterial effect was 2log10CFU/gland when the magnitude of AUC24/MIC reached 14,281.63 h. A total of 14,281.63 h of AUC24/MIC was defined as a target value in the Monte Carlo simulation. The clinically recommended dosage regimen of 100 mg/gland every 8 h in 1 day achieved an 82.97% cure rate for the treatment of bovine mastitis caused by Staphylococcus aureus infection.
Collapse
Affiliation(s)
- Honglei Wang
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chen Chen
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojie Chen
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingju Zhang
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiming Liu
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiubo Li
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Ortiz Y, García-Heredia A, Merino-Mascorro A, García S, Solís-Soto L, Heredia N. Natural and synthetic antimicrobials reduce adherence of enteroaggregative and enterohemorrhagic Escherichia coli to epithelial cells. PLoS One 2021; 16:e0251096. [PMID: 33939753 PMCID: PMC8092791 DOI: 10.1371/journal.pone.0251096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Adherence of bacteria to the human intestinal mucosa can facilitate their internalization and the development of pathological processes. Escherichia coli O104:H4 is considered a hybrid strain (enteroaggregative hemorrhagic E. coli [EAHEC]), sharing virulence factors found in enterohemorrhagic (EHEC), and enteroaggregative (EAEC) E. coli pathotypes. The objective of this study was to analyze the effects of natural and synthetic antimicrobials (carvacrol, oregano extract, brazilin, palo de Brasil extract, and rifaximin) on the adherence of EHEC O157:H7, EAEC 042, and EAHEC O104:H4 to HEp-2 cells and to assess the expression of various genes involved in this process. Two concentrations of each antimicrobial that did not affect (p≤0.05) bacterial viability or damage the bacterial membrane integrity were used. Assays were conducted to determine whether the antimicrobials alter adhesion by affecting bacteria and/or alter adhesion by affecting the HEp-2 cells, whether the antimicrobials could detach bacteria previously adhered to HEp-2 cells, and whether the antimicrobials could modify the adherence ability exhibited by the bacteria for several cycles of adhesion assays. Giemsa stain and qPCR were used to assess the adhesion pattern and gene expression, respectively. The results showed that the antimicrobials affected the adherence abilities of the bacteria, with carvacrol, oregano extract, and rifaximin reducing up to 65% (p≤0.05) of E. coli adhered to HEp-2 cells. Carvacrol (10 mg/ml) was the most active compound against EHAEC O104:H4, even altering its aggregative adhesion pattern. There were changes in the expression of adhesion-related genes (aggR, pic, aap, aggA, and eae) in the bacteria and oxidative stress-related genes (SOD1, SOD2, CAT, and GPx) in the HEp-2 cells. In general, we demonstrated that carvacrol, oregano extract, and rifaximin at sub-minimal bactericidal concentrations interfere with target sites in E. coli, reducing the adhesion efficiency.
Collapse
Affiliation(s)
- Yaraymi Ortiz
- Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Ciudad Universitaria, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Alam García-Heredia
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States of America
| | - Angel Merino-Mascorro
- Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Ciudad Universitaria, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Santos García
- Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Ciudad Universitaria, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Luisa Solís-Soto
- Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Ciudad Universitaria, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Norma Heredia
- Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Ciudad Universitaria, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| |
Collapse
|
4
|
Tkaczuk-Włach J, Kędzierski W, Jonik I, Sadok I, Filip A, Kankofer M, Polkowski W, Ziółkowski P, Gamian A, Staniszewska M. Immunomodulatory Factors in Primary Endometrial Cell Cultures Isolated from Cancer and Noncancerous Human Tissue-Focus on RAGE and IDO1. Cells 2021; 10:cells10051013. [PMID: 33922995 PMCID: PMC8145962 DOI: 10.3390/cells10051013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Immune modulatory factors like indoleamine 2,3-dioxygenase 1 (IDO1) generating kynurenine (Kyn) and receptor for advanced glycation end-products (RAGE) contribute to endometrial and cancer microenvironment. Using adequate experimental models is needed to learn about the significance of these molecular factors in endometrial biology. In this paper we study IDO1 activity and RAGE expression in the in vitro cultured primary human endometrial cells derived from cancerous and noncancerous tissue. Methods: The generated primary cell cultures from cancer and noncancerous endometrial tissues were characterized using immunofluorescence and Western Blot for expression of endometrial and cancer markers. IDO1 activity was studied by Kyn quantification with High Performance Liquid Chromatography with Diode Array Detector. Results: The primary cultures of endometrial cells were obtained with 80% success rate and no major genetic aberrations. The cells retained in vitro expression of markers (mucin MUC1 and HER2) or immunomodulatory factors (RAGE and IDO1). Increased Kyn secretion was associated with cancer endometrial cell culture in contrast to the control one. Conclusions: Primary endometrial cells express immune modulatory factors RAGE and IDO1 in vitro associated with cancer phenotype of endometrium.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Case-Control Studies
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/immunology
- Endometrial Neoplasms/metabolism
- Endometrial Neoplasms/pathology
- Endometrium/immunology
- Endometrium/metabolism
- Endometrium/pathology
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Humans
- Immunomodulation
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Kynurenine/metabolism
- Middle Aged
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Primary Cell Culture
- Prognosis
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Joanna Tkaczuk-Włach
- Diagnostic Techniques Unit, Collegium Maximum, Medical University of Lublin, Staszica 4/6, 20-081 Lublin, Poland;
| | - Witold Kędzierski
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland; (W.K.); (I.J.); (M.K.)
| | - Ilona Jonik
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland; (W.K.); (I.J.); (M.K.)
| | - Ilona Sadok
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708 Lublin, Poland;
| | - Agata Filip
- Department of Cancer Genetics with Cytogenetic Laboratory, Medical University of Lublin, Radziwillowska 11, 20-080 Lublin, Poland;
| | - Marta Kankofer
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland; (W.K.); (I.J.); (M.K.)
| | - Wojciech Polkowski
- Department of Surgical Oncology, Medical University of Lublin, Radziwillowska 13, 20-080 Lublin, Poland;
| | - Piotr Ziółkowski
- Department of Pathomorphology, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wroclaw, Poland;
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland;
| | - Magdalena Staniszewska
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708 Lublin, Poland;
- SDS Optic S.A., Centrum ECOTECH-COMPLEX, Block A, 20-612 Lublin, Poland
- Correspondence: or ; Tel.: +48-814-545-621
| |
Collapse
|
5
|
Peng-Fei H, A-Ru-Na, Hui C, Hong-Yu W, Jin-Shan C. Activation of alpha7 nicotinic acetylcholine receptor protects bovine endometrial tissue against LPS-induced inflammatory injury via JAK2/STAT3 pathway and COX-2 derived prostaglandin E 2. Eur J Pharmacol 2021; 900:174067. [PMID: 33811838 DOI: 10.1016/j.ejphar.2021.174067] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Bovine endometritis is one of the major postpartum diseases associated with infertility and subfertility, decreasing the benefit of dairy industry. It is important to develop alternate therapies for endometritis in the context of drug residues in the milk and hormone disorder in the estrous cycle. α7 nicotine acetylcholine receptor has been identified as the core of 'cholinergic anti-inflammatory pathway (CAP)', which is a potential drug target to inflammatory diseases. However, there has been still no study on its anti-inflammatory effects and mechanism on lipopolysaccharide (LPS)-induced bovine endometritis. This study aimed to demonstrate the underlying anti-inflammatory effects and mechanism of α7-nACh receptor on LPS-induced inflammation in bovine endometrial tissues cultured in vitro. The results suggested that activation of α7-nACh receptor significantly suppressed the mRNA expression levels of interleukin 1β (IL-1β), IL-6, IL-8, and tumor necrosis factor alpha (TNF-α) in bovine endometrial tissues. Western blot and enzyme-linked immunosorbent assay (ELISA) detection results showed that activation of α7-nACh receptor inhibited LPS-induced phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3). Moreover, α7-nACh receptor agonist decreased the expression of cyclooxygenase 2 (COX-2) and microsomal prostaglandin E synthase-1(mPGES-1), as well as prostaglandin E2 (PGE2) secretion. Interestingly, in COX-2 inhibition experiment, activation of α7-nACh receptor increased COX-2 expression and PGE2 production, compared with COX-2 inhibitor treatment. In conclusion, activation of the cholinergic system through α7-nACh receptor agonist has suppressed inflammation of bovine endometrial tissues via JAK2/STAT3 pathway and potential COX-2-derived PGE2.
Collapse
Affiliation(s)
- He Peng-Fei
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China.
| | - A-Ru-Na
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Chen Hui
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Wei Hong-Yu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Cao Jin-Shan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| |
Collapse
|
6
|
Lian Y, Hu Y, Gan L, Huo YN, Luo HY, Wang XZ. Ssc-novel-miR-106-5p reduces lipopolysaccharide-induced inflammatory response in porcine endometrial epithelial cells by inhibiting the expression of the target gene mitogen-activated protein kinase kinase kinase 14 (MAP3K14). Reprod Fertil Dev 2019; 31:1616-1627. [PMID: 31242957 DOI: 10.1071/rd19097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/12/2019] [Indexed: 12/26/2022] Open
Abstract
As an important gram-negative bacterial outer membrane component, lipopolysaccharide (LPS) plays an important role in bacterial-induced endometritis in sows. However, how LPS induces endometritis is unclear. We stimulated sow endometrial epithelial cells (EECs) with LPS and detected cell viability and tumour necrosis factor-α (TNF-α) and interleukin-1 (IL-1) secretion. LPS affected EEC viability and TNF-α and IL-1 secretion in a dose-dependent manner. LPS induced differential expression in 10 of 393 miRNAs in the EECs (downregulated, nine; upregulated, one). MicroRNA (miRNA) high-throughput sequencing of the LPS-induced EECs plus bioinformatics analysis and the dual-luciferase reporter system revealed a novel miRNA target gene: mitogen-activated protein kinase kinase kinase 14 (MAP3K14). Ssc-novel-miR-106-5p mimic, inhibitor and the nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) phosphorylation inhibitor Bay11-7085 were used to detect EEC nuclear factor-κB phosphorylation levels (p-NF-κB) and TNF-α and IL-1 secretion. MiR-106-5p mimic downregulated MAP3K14 mRNA and protein expression levels, inhibited p-NF-κB levels and decreased IL-1 and TNF-α secretion, whereas miR-106-5p inhibitor had the opposite effect. Bay11-7085 inhibited p-NF-κB expression and TNF-α and IL-1 secretion. These results suggest that LPS downregulates ssc-novel-miR-106-5p expression in sow EECs to increase MAP3K14 expression, which increases p-NF-κB to promote IL-1 and TNF-α secretion.
Collapse
Affiliation(s)
- Yu Lian
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400716, P. R. China
| | - Yu Hu
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400716, P. R. China
| | - Lu Gan
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400716, P. R. China
| | - Yuan-Nan Huo
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400716, P. R. China
| | - Hong-Yan Luo
- College of Resource and Environment, Southwest University, Beibei, Chongqing 400716, P. R. China
| | - Xian-Zhong Wang
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400716, P. R. China; and Corresponding author.
| |
Collapse
|
7
|
Antibiotics and the nervous system: More than just the microbes? Brain Behav Immun 2019; 77:7-15. [PMID: 30582961 DOI: 10.1016/j.bbi.2018.12.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
The use of antibiotics has recently risen to prominence in neuroscience due to their potential value in studying the microbiota-gut-brain axis. In this context they have been largely employed to illustrate the many influences of the gut microbiota on brain function and behaviour. Much of this research is bolstered by the abnormal behaviour seen in germ-free animals and other well-controlled experiments. However, this literature has largely failed to consider the neuroactive potential of antibiotics themselves, independent from, or in addition to, their microbicidal effects. This is problematic, as clinical as well as experimental literature, largely neglected through the past decade, has clearly demonstrated that broad classes of antibiotics are neuroactive or neurotoxic. This is true even for some antibiotics that are widely regarded as not absorbed in the intestinal tract, and is especially concerning when considering the highly-concentrated and widely-ranging doses that have been used. In this review we will critically survey the clinical and experimental evidence that antibiotics may influence a variety of nervous system functions, from the enteric nervous system through to the brain and resultant behaviour. We will discuss substantial evidence which clearly suggests neuro-activity or -toxicity by most classes of antibiotics. We will conclude that, while evidence for the microbiota-gut-brain axis remains strong, clinical and experimental studies which employ antibiotics to probe it must consider this potential confound.
Collapse
|