1
|
Wang H, Feng W. Current Status of Porcine Reproductive and Respiratory Syndrome Vaccines. Vaccines (Basel) 2024; 12:1387. [PMID: 39772049 PMCID: PMC11679953 DOI: 10.3390/vaccines12121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 01/05/2025] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), characterized by reproductive failures in breeding pigs and respiratory diseases in growing pigs, is a widespread and challenging disease. The agent, PRRSV, is a single-strand RNA virus that is undergoing continuous mutation and evolution, resulting in the global spread of multiple strains with different genetic characteristics and variable antigens. There are currently no effective measures to eradicate PRRS, and vaccination is crucial for controlling the disease. At present, various types of vaccine are available or being studied, including inactivated vaccines, modified live virus (MLV) vaccines, vector vaccines, subunit vaccines, DNA vaccines, RNA vaccines, etc. MLV vaccines have been widely used to control PRRSV infection for more than 30 years since they were first introduced in North America in 1994, and have shown a certain efficacy. However, there are safety and efficacy issues such as virulence reversion, recombination with field strains, and a lack of protection against heterologous strains, while other types of vaccine have their own advantages and disadvantages, making the eradication of PRRS a challenge. This article reviews the latest progress of these vaccines in the prevention and control of PRRS and provides scientific inspiration for developing new strategies for the next generation of PRRS vaccines.
Collapse
Affiliation(s)
- Honglei Wang
- Department of Clinical Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Wenhai Feng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Chang H, Gao X, Wu Y, Wang F, Lai M, Zheng J, Qiu Y, He Y, Liang X, Yuan K, Lin L, Zhao H, Zhang G, Li Q, Sun Y. Genomic and pathogenicity analysis of two novel highly pathogenic recombinant NADC30-like PRRSV strains in China, in 2023. Microbiol Spectr 2024; 12:e0036824. [PMID: 39162500 PMCID: PMC11448138 DOI: 10.1128/spectrum.00368-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/29/2024] [Indexed: 08/21/2024] Open
Abstract
Porcine reproductive and respiratory syndrome viruses (PRRSVs) exhibit high mutability and recombination, posing challenges to their immunization and control. This study isolated two new PRRSV strains, GD-7 and GX-3, from samples collected in Guangdong and Guangxi in 2023. Whole-genome sequencing, along with phylogenetic and recombination analyses, confirmed that GD-7 and GX-3 are natural novel recombinant strains of NADC30 PRRSV. Moreover, we established a pathogenicity model for piglets and sows based on the two isolates. The results of piglet pathogenicity revealed that both GD-7 and GX-3 caused clinical symptoms such as fever, loss of appetite, depression, and slow weight gain. Moreover, we observed that the mortality rate of GD-7-inoculated group piglets was 33.3%, which was similar to that of piglets infected with other highly pathogenic PRRSV strains and exceeded the mortality rate of most NADC30-like PRRSV. In pregnant sow models, the survival rate of sows in the GD-7 group was 75%, in contrast to the GX-3 group, where no sow mortality was observed, and both strains resulted in abortion, mummified fetuses, and stillbirths. These results highlight the elevated pathogenicity of these recombinant strains in sows, with GD-7 mainly causing sows to abort, and GX-3 mainly causing sows to give birth to mummified fetuses. This study introduces two distinct clinical recombinant PRRSV strains that differ from the prevalent strains in China. This research furthers our understanding of the epidemiology of PRRSV and underscores the significance of ongoing monitoring and research in the face of evolving virus strains. Moreover, these discoveries act as early warnings, underscoring the necessity for active control and immunization against PRRSV.IMPORTANCESince the discovery of NADC30-like PRRSV in China in 2013, it has gradually become the dominant strain of PRRSV in China. NADC30-like PRRSV exhibits high recombination characteristics, constantly recombining with different strains, leading to the emergence of numerous novel strains. Of particular importance is the observation that NADC30-like PRRSV with different recombination patterns exhibits varying pathogenicity, which has a significant impact on the pig farming industry. This emphasizes the necessity of monitoring and responding to evolving PRRSV strains to develop effective immunization and control strategies. In this paper, we conducted pathogenicity studies on the isolated NADC30-like PRRSV and analyzed the differences in the genomes and pathogenicity of the different strains by recording clinical symptoms, temperature changes, detoxification tests, and changes in viremia and histopathology in infected pigs. This was done to provide a theoretical basis for the epidemiological situation and epidemic prevention and control of PRRSV.
Collapse
Affiliation(s)
- Hao Chang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Xinxing, Guangdong, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Xiaopeng Gao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Xinxing, Guangdong, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Yu Wu
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Xinxing, Guangdong, China
| | - Fang Wang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Minting Lai
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiaying Zheng
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Xinxing, Guangdong, China
| | - Yingwu Qiu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Xinxing, Guangdong, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Yiping He
- Guangzhou Yue Xiu animal husbandry food technology limited, Guangzhou, China
| | - Xiangjie Liang
- Guangzhou Yue Xiu animal husbandry food technology limited, Guangzhou, China
| | - Kun Yuan
- Guangzhou Yue Xiu animal husbandry food technology limited, Guangzhou, China
| | - Limiao Lin
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Xinxing, Guangdong, China
| | - Haishen Zhao
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Xinxing, Guangdong, China
| | - Guihong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qunhui Li
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Xinxing, Guangdong, China
| | - Yankuo Sun
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Huang B, Deng L, Xu T, Jian Z, Lai S, Ai Y, Xu Z, Zhu L. Isolation and pathogenicity comparison of two novel natural recombinant porcine reproductive and respiratory syndrome viruses with different recombination patterns in Southwest China. Microbiol Spectr 2024; 12:e0407123. [PMID: 38511956 PMCID: PMC11064529 DOI: 10.1128/spectrum.04071-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses in the swine industry. Frequent mutations and recombinations account for PRRSV immune evasion and the emergence of novel strains. In this study, we isolated and characterized two novel PRRSV-2 strains from Southwest China exhibiting distinct recombination patterns. They were designated SCABTC-202305 and SCABTC-202309. Phylogenetic results indicated that SCABTC-202305 was classified as lineage 8, and SCABTC-202309 was classified as lineage 1.8. Amino acid mutation analysis identified unique amino acid substitutions and deletions in ORF5 and Nsp2 genes. The results of the recombination analysis revealed that SCABTC-202305 is a recombinant with JXA1 as the major parental strain and NADC30 as the minor parental strain. At the same time, SCABTC-202309 is identified as a recombinant with NADC30 as the major parental strain and JXA1 as the minor parental strain. In this study, we infected piglets with SCABTC-202305, SCABTC-202309, or mock inoculum (control) to study the pathogenicity of these isolates. Although both isolated strains were pathogenic, SCABTC-202305-infected piglets exhibited more severe clinical signs and higher mortality, viral load, and antibody response than SCABTC-202309-infected piglets. SCABTC-202305 also caused more extensive lung lesions based on histopathology. Our findings suggest that the divergent pathogenicity observed between the two novel PRRSV isolates may be attributed to variations in the genetic information encoded by specific genomic regions. Elucidating the genetic determinants governing PRRSV virulence and transmissibility will inform efforts to control this devastating swine pathogen.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) is one of the most critical pathogens impacting the global swine industry. Frequent mutations and recombinations have made the control of PRRSV increasingly difficult. Following the NADC30-like PRRSV pandemic, recombination events involving PRRSV strains have further increased. We isolated two novel field PRRSV recombinant strains, SCABTC-202305 and SCABTC-202309, exhibiting different recombination patterns and compared their pathogenicity in animal experiments. The isolates caused higher viral loads, persistent fever, marked weight loss, moderate respiratory clinical signs, and severe histopathologic lung lesions in piglets. Elucidating correlations between recombinant regions and pathogenicity in these isolates can inform epidemiologic tracking of emerging strains and investigations into viral adaptive mechanisms underlying PRRSV immunity evasion. Our findings underscore the importance of continued genomic surveillance to curb this economically damaging pathogen.
Collapse
Affiliation(s)
- Bingzhou Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
4
|
Xia Z, Long D, Hong X, Lan Y, Xie L. Tissue expression of porcine transient receptor potential mucolipin protein channels and their differential responses to porcine reproductive and respiratory syndrome virus infection in vitro. J Vet Res 2024; 68:45-53. [PMID: 38525220 PMCID: PMC10960329 DOI: 10.2478/jvetres-2024-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Porcine reproductive and respiratory syndrome virus (PRRSV) infection results in a serious disease, posing a huge economic threat to the global swine industry. The transient receptor potential mucolipin proteins (TRPMLs) have been shown to be strongly associated with virus infection and other physiological processes in humans, but their tissue distribution and responses to PRRSV in pigs remain unknown. Material and Methods Quantitative reverse-transcription PCR analysis was undertaken to determine the optimal primer for TRPML expression detection and for quantifying that expression individually in different pig tissue samples. Meat Animal Research Center 145 (MARC-145) monkey kidney cells and the TRPML-specific activator mucolipin synthetic agonist 1 (ML-SA1) were used to reveal the relationship between TRPML and PRRSV-2 infection. Results The best primers for each TRPML gene used in a fluorescence-based quantitative method were identified and TRPML1 was found to be highly expressed in the kidneys and liver of pigs, while TRPML2 and TRPML3 were observed to be primarily expressed in the kidney and spleen tissues. The expression of TRPML2 was upregulated with the rise in PRRSV-2 infection titre but not the expression of TRPML1 or TRPML3, and ML-SA1 inhibited PRRSV-2 in a dose-dependent manner. Conclusion Our research revealed the gene expression of TRPMLs in pigs and identified that TRPML channels may act as key host factors against PRRSV infection, which could lead to new targets for the prevention and treatment of pig infectious diseases.
Collapse
Affiliation(s)
- Zhiqiang Xia
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian463000, China
- Zhumadian Huazhong Chia Tai Co., Ltd., Zhumadian463000, China
- Henan Topfond Pharmaceutical Company Limited, Zhumadian463000, China
| | - Denggao Long
- Sixteenth Middle School of Yiyang City, Yiyang413064, Hunan Province, China
| | - Xinyi Hong
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian463000, China
| | - Ying Lan
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian463000, China
| | - Lixia Xie
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian463000, China
| |
Collapse
|
5
|
Porcine reproductive and respiratory syndrome virus reinfection causes the distribution of porcine interleukin-4 in close proximity to B lymphocytes within lymphoid follicles and a reduction in B and T lymphocytes. Vet Microbiol 2022; 272:109498. [PMID: 35793585 DOI: 10.1016/j.vetmic.2022.109498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/15/2022] [Accepted: 06/25/2022] [Indexed: 11/22/2022]
Abstract
Interleukin 4 (IL-4) plays a major role in T-lymphocyte development and is thought to be a central regulator as a cofactor in resting B-lymphocyte proliferation. Primary infection with porcine reproductive and respiratory syndrome virus (PRRSV) induces minimal IL-4 production, whereas an IL-4 response occurs in the peripheral blood of piglets reinfected by PRRSV. The locations and interaction partners for the massive volume of IL-4 triggered by PRRSV reinfection remain unclear. This study aimed to investigate the characteristics of IL-4 secretion and location changes in peripheral immune organs induced by PRRSV infection and reinfection. Our results show that PRRSV reinfection induced higher levels of IL-4 mRNA and protein expression in the peripheral immune organs (e.g., lymph node and spleen) and peripheral blood compared with PRRSV primary infection. Importantly, we found that, following PRRSV reinfection, an obvious large-scale migration of IL-4 occurred in the lymph nodes. During PRRSV primary infection, IL-4 was mainly concentrated around the lymphoid follicles and paracortical regions of the lymph node and also located in the marginal area and periarterial lymphatic sheath region of the spleen. During PRRSV reinfection, the now abundant IL-4 gathered into the lymphoid follicles of the lymph node and spleen. Notably, IL-4 changed its location state from scattered and sparse during primary infection to clinging to B lymphocytes in the lymphoid follicles during reinfection. During reinfection, IL-4 was often co-localized with T and B lymphocytes; furthermore, the percentages of several T lymphocyte subsets, N protein-specific antibody levels, and viral load in the peripheral blood or lymph tissues underwent remarkable variation. Another important finding of this study was that the numbers of B lymphocytes and T lymphocytes in the lymphoid nodes were significantly reduced after PRRSV infection or reinfection, presumably due to PRRSV-induced acute bone marrow failure and autophagy in thymic epithelial cells. This study revealed the characteristics of IL-4 migration and distribution in the peripheral lymph organs induced by PRRSV reinfection and provides valuable clues for further exploration of the interactions between IL-4, B lymphocytes, and T lymphocytes during PRRSV infection and reinfection.
Collapse
|
6
|
Cao Z, Chen J, Li L, Liu J, Tong W, Zhou Y, Tong G, Wang G, Gao F. A rescued NADC30-like virus by reverse genetic manipulation exhibits moderate virulence and a promising application perspective. Virus Res 2022; 316:198801. [PMID: 35550390 DOI: 10.1016/j.virusres.2022.198801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/15/2022]
Abstract
NADC30-like porcine reproductive and respiratory syndrome virus (PRRSV), which is highly homologous to the NADC30 strain isolated in the United States. The NADC30-like PRRSV was first reported in 2014 in China, where it spread and gradually caused an epidemic. Currently, growing research has shown that NADC30-like strains have greater propensity to recombine with other PRRSV strains, particularly the PPRSV vaccine virus used clinically, making the prevention and control of PRRSV highly complex. To carry out an in-depth molecular biology and virulence analysis, a full-length infectious clone of the NADC30-like strain was successfully constructed and rescued by reverse genetic manipulation. The rescued virus, rZJqz, was indistinguishable from its parental virus, ZJqz21, based on virological characteristics. Further animal experiments demonstrated that rZJqz retained similar pathogenicity and induced the typical clinical symptoms and viral shedding observed in the ZJqz21 challenge model. Together, these results provide a useful tool for further study of the biological characteristics and pathogenicity of NADC30-like strains. Moreover, these findings also provide a solid foundation for studying the recombination of different PRRSVs and developing new and effective universal vaccines in the future.
Collapse
Affiliation(s)
- Zhengda Cao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Shandong Agricultural University, Shandong, 271018, China
| | - Jinxia Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Liwei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jiachen Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Guihua Wang
- Shandong Agricultural University, Shandong, 271018, China.
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Zhao J, Zhu L, Xu L, Li F, Deng H, Huang Y, Gu S, Sun X, Zhou Y, Xu Z. The Construction and Immunogenicity Analyses of Recombinant Pseudorabies Virus With NADC30-Like Porcine Reproductive and Respiratory Syndrome Virus-Like Particles Co-expression. Front Microbiol 2022; 13:846079. [PMID: 35308386 PMCID: PMC8924499 DOI: 10.3389/fmicb.2022.846079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) and pseudorabies (PR) are highly infectious swine diseases and cause significant financial loss in China. The respiratory system and reproductive system are the main target systems. Previous studies showed that the existing PR virus (PRV) and PRRS virus (PRRSV) commercial vaccines could not provide complete protection against PRV variant strains and NADC30-like PRRSV strains in China. In this study, the PRV variant strain XJ and NADC30-like PRRSV strain CHSCDJY-2019 are used as the parent for constructing a recombinant pseudorabies virus (rPRV)-NC56 with gE/gI/TK gene deletion and co-expressing NADC30-like PRRSV GP5 and M protein. The rPRV-NC56 proliferated stably in BHK-21 cells, and it could stably express GP5 and M protein. Due to the introduction of the self-cleaving 2A peptide, GP5 and M protein were able to express independently and form virus-like particles (VLPs) of PRRSV in rPRV-NC56-infected BHK-21 cells. The rPRV-NC56 is safe for use in mice; it can colonize and express the target protein in mouse lungs for a long time. Vaccination with rPRV-NC56 induces PRV and NADC30-like PRRSV specific humoral and cellular immune responses in mice, and protects 100% of mice from virulent PRV XJ strain. Furthermore, the virus-neutralizing antibody (VNA) elicited by rPRV-NC56 showed significantly lower titer against SCNJ-2016 (HP-PRRSV) than that against CHSCDJY-2019 (NADC30-like PRRSV). Thus, rPRV-NC56 appears to be a promising candidate vaccine against NADC30-like PRRSV and PRV for the control and eradication of the variant PRV and NADC30-like PRRSV.
Collapse
Affiliation(s)
- Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fengqing Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sirui Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xianggang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuancheng Zhou
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
8
|
Li Y, Jiao D, Jing Y, He Y, Han W, Li Z, Ma Z, Feng Y, Xiao S. Genetic characterization and pathogenicity of a novel recombinant PRRSV from lineage 1, 8 and 3 in China failed to infect MARC-145 cells. Microb Pathog 2022; 165:105469. [PMID: 35271985 DOI: 10.1016/j.micpath.2022.105469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/20/2022] [Accepted: 03/06/2022] [Indexed: 01/09/2023]
Abstract
The diversity of porcine reproductive and respiratory syndrome virus (PRRSV) in China is increasing rapidly along with mutation and recombination. Recombination could occur between inter- and intra-lineage of PRRSV, which accelerated the complexity of pathogenicity and cell tropism of the recombinant strain. In the present study, a novel PRRSV strain named HN-YL1711 was isolated from a pig farm suffering from severe respiratory difficulty in Henan province, China. The whole genomic sequence analysis indicated that the genome of HN-YL1711 was 15018 nt. It shared 86%, 87.3%, 88.1%, 91.1%, 84.2%, and 84.1% nucleotide similarities with PRRSVs VR2332, CH1a, JXA1, NADC30, QYYZ, and GM2, respectively. Based on phylogenetic analysis of Nsp2, ORF5 and complete genomes, HN-YL1711 was classified into lineage 1 of PRRSV. However, seven genomic break points were detected in recombination analysis, which indicated that the HN-YL1711 originated from multiple recombination among NADC30-like (major parent, lineage 1), JXA1-like (minor parent, lineage 8), and QYYZ-like (minor parent, lineage 3) PRRSV. Porcine alveolar macrophages (PAMs), 3D4/21-CD163 and MARC-145 cells were used to explore the viral adaptation of HN-YL1711. The results indicated that it could infect the PAMs but failed to infect MARC-145 cells. Challenge experiments showed that HN-YL1711 exhibits intermediate virulence in pigs, compared with HP-PRRSV JXA1 and LP-PRRSV CH1a. Taken together, our findings suggest that recombination remains an important factor in PRRSV evolution and that recombination further complicates the cell tropism and pathogenicity of PRRSV.
Collapse
Affiliation(s)
- Yang Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dian Jiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Jing
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan He
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Weiguo Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiwei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiqian Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yingtong Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
9
|
Yu Y, Zhang Q, Cao Z, Tang YD, Xia D, Wang G, Shan H. Recent Advances in Porcine Reproductive and Respiratory Syndrome Virus NADC30-Like Research in China: Molecular Characterization, Pathogenicity, and Control. Front Microbiol 2022; 12:791313. [PMID: 35087492 PMCID: PMC8787316 DOI: 10.3389/fmicb.2021.791313] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
The name porcine reproductive and respiratory syndrome virus (PRRSV) NADC30-like was first coined in 2015. It originated from the NADC30 strain that was introduced into China by importing breeding pigs and has since undergone mutations or recombination, resulting in variant viruses. Following widespread outbreaks in China in recent years, these NADC30-like strains have presented major health challenges in swine production systems. Outcomes induced by PRRSV NADC30-like infection are highly variable, ranging from inapparent to severe, depending on the recombination between NADC30 and field PRRSV strains prevalent in swine farms. Vaccines and strict biosecurity measures have been explored to fight this disease; however, current PRRSV commercially modified-live virus vaccines (MLVs) have the potential to revert to virulence and only provide limited or no cross-protection efficacy against NADC30-like strains. PRRSVs will remain an ongoing challenge to the swine industry until safe and effective vaccines or antiviral reagents are developed.
Collapse
Affiliation(s)
- Ying Yu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qiaoya Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhi Cao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin Veterinary Research Institute, Harbin, China
| | - Dasong Xia
- State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin Veterinary Research Institute, Harbin, China
| | - Gang Wang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Hu Shan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
10
|
Zhao J, Zhang R, Zhu L, Deng H, Li F, Xu L, Huan J, Sun X, Xu Z. Establishment of a peptide-based enzyme-linked immunosorbent assay for detecting antibodies against PRRSV M protein. BMC Vet Res 2021; 17:355. [PMID: 34798885 PMCID: PMC8602981 DOI: 10.1186/s12917-021-03060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating diseases affecting the swine industry globally. Evaluation of antibody responses and neutralizing antibody titers is the most effective method for vaccine evaluation. In this study, the B cell line epitopes of PRRSV M protein were predicted, and two peptide ELISA assays were established (M-A110-129 ELISA, M-A148-174 ELISA) to detect antibodies against PRRSV M protein. Field serum samples collected from pig farms were used to validate the peptide ELISA and compare it with an indirect immunofluorescence assay. RESULTS The sensitivity and specificity of M-A110-129 ELISA and M-A148-174 ELISA were (111/125) 88.80%, (69/70) 98.57% and (122/125) 97.60%, (70/70) 100%, relative to indirect immunofluorescence assay. This peptide ELISA could detect antibodies against different genotypes of PRRSV including type 1 PRRSV, classical PRRSV, HP-PRRSV, and NADC30 like PRRSV, but not antibodies against other common swine viruses. The results of ROC analysis showed that the area under the curve (AUC) of the M-A110-129 ELISA and M-A148-174 ELISA were 0.967 and 0.996, respectively. Compared the concordance of results using two peptide ELISA assays, the IDEXX PRRSV X3 Ab ELISA and a virus neutralization test, were assessed using a series of 147 sera from pigs vaccinated with the NADC30-like PRRSV inactivated vaccine. The M-A148-174 ELISA had the best consistency, with a Cohen's kappa coefficient of 0.8772. The concordance rates of the Hipra PRRSV ELISA kit, M-A110-129 ELISA and M-A148-174 ELISA in the field seropositive detection results were 91.08, 86.32 and 95.35%, relative to indirect immunofluorescence assay. CONCLUSIONS In summary, compared with M-A110-129 ELISA, the PRRSV M-A148-174 ELISA is of value for detecting antibodies against PRRSV and the evaluation of the NADC30-like PRRSV inactivated vaccine, but the advantage is insufficient in serological early diagnosis.
Collapse
Affiliation(s)
- Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rubo Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Fengqing Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,College of Animal Science, Xichang University, Xichang, 615000, Sichuan, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianbo Huan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China. .,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, China.
| |
Collapse
|
11
|
Zhao J, Zhu L, Huang J, Yang Z, Xu L, Gu S, Huang Y, Zhang R, Sun X, Zhou Y, Xu Z. Genetic characterization of a novel recombined porcine reproductive and respiratory syndrome virus 2 among Nadc30-like, Jxa1-like and TJ-like strains. Vet Med Sci 2020; 7:697-704. [PMID: 33277984 PMCID: PMC8136965 DOI: 10.1002/vms3.402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/03/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating viral diseases in the global pig industry, including China. Recently, we successfully isolated a porcine reproductive and respiratory syndrome virus (PRRSV) from lung tissue and peripheral blood of piglets at a farm from Dujiangyan in Sichuan, China, and named it the DJY-19 strain. The full-length genome sequence of DJY-19 shared 86.8%-94.1% nucleotide similarity with NADC30-like and NADC30 PRRSV strains. We compared the open reading frame (ORF) 5 gene of DJY-19 with 34 PRRSV strains from Genbank. Phylogenetic analysis showed that DJY-19 clustered with NADC30 strains, characterized by a predicted 131-amino-acid deletion in the nonstructural protein (NSP) 2. The results of homology analysis showed that the homology between DJY-19 and NADC30 (JN654459.1) strains was the highest (95.9%), whereas homology with other domestic strains was lower (80.9%-92.6%). Furthermore, we identified four recombination breakpoints in the DJY-19 genome; they separated the DJY-19 genome into four regions. The 8106-9128 nucleotide (nt) region of DIY-19 was highly similar to the TJ strain, and the 12106-12580 nt region of DIY-19 was highly similar to the JXA1-R strain. Our findings demonstrate that DJY-19 arose from the recombination of North America NADC30 strain and TJ strain and JXA1-R in China. The application of multiple attenuated vaccine strains has led to complex recombination of PRRSV strains in China. This study provides a theoretical basis for making a more reasonable PRRS virus control and prevention strategy.
Collapse
Affiliation(s)
- Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jianbo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zexiao Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sirui Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rubo Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuancheng Zhou
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|