1
|
Tang J, Wang L, Fang W, Su CM, Kim J, Du Y, Yoo D. Coinfection with bacterial pathogens and genetic modification of PRRSV-2 for suppression of NF-κB and attenuation of proinflammatory responses. Virology 2025; 606:110484. [PMID: 40086205 DOI: 10.1016/j.virol.2025.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infects pulmonary alveolar macrophages and induces inflammation in the respiratory system. In swine farms, coinfection with PRRSV and bacterial pathogens is common and can result in clinically complicated outcomes, including porcine respiratory disease complex. Coinfection can cause excessive expressions of proinflammatory mediators and may lead to cytokine-storm-like syndrome. An immunological hallmark of PRRSV-2 is the bidirectional regulation of NF-κB with the nucleocapsid (N) protein identified as the NF-κB activator. We generated an NF-κB-silencing mutant PRRSV-2 by mutating the N gene to block its binding to PIAS1 [protein inhibitor of activated STAT-1 (signal transducer and activator of transcription 1)]. PIAS1 functions as an NF-κB repressor, and thus, the PIAS1-binding modified N-mutant PRRSV-2 became NF-κB activation-resistant in its phenotype. During coinfection of pigs with PRRSV-2 and Streptococcus suis, the N-mutant PRRSV-2 decreased the expression of proinflammatory cytokines and showed clinical attenuation. This review describes the coinfection of pigs with various pathogens, the generation of mutant PRRSV for NF-κB suppression, inflammatory profiles during bacterial coinfection, and the potential application of these findings to designing a new vaccine candidate for PRRSV-2.
Collapse
Affiliation(s)
- Junyu Tang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Leyi Wang
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Weihuan Fang
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chia-Ming Su
- Department of Biochemistry and Cell Biology, School of Medicine, Boston University, Boston, MA, USA
| | - Jineui Kim
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yijun Du
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Jiang R, Huang Q, Shen R, Zhang Y, Zhou L, Ge X, Han J, Guo X, Yang H. Foxp3 inhibits PCV2 replication by reducing the ATPase activity of Rep. Vet Microbiol 2025; 304:110441. [PMID: 40112692 DOI: 10.1016/j.vetmic.2025.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/22/2025]
Abstract
Porcine circovirus type 2 (PCV2) is the pathogen that causes porcine circovirus disease, characterized by severe immunosuppression and significant economic losses in the swine industry. The replicase (Rep), one of the most critical non-structural proteins of PCV2, plays a pivotal role in viral replication. However, the mechanism by which Rep regulates the replication of PCV2 still requires further investigation. Our study demonstrated that PCV2 can infect regulatory T cells (Tregs), and within the nucleus, Rep interacted with Foxp3, while the structural protein capsid protein (Cap) did not exhibit this interaction. Further investigations revealed that the Forkhead domain of Foxp3 was crucial for mediating its interaction with the C-terminal region of Rep, which had an ATPase activity-regulating domain. The interaction between Foxp3 and Rep reduced the ATPase activity of Rep, thereby inhibiting PCV2 replication. This study provided a theoretical foundation for elucidating the role of Rep in PCV2 pathogenesis and contributed to a deeper understanding of the molecular mechanisms underlying PCV2 immune evasion.
Collapse
Affiliation(s)
- Ruijiao Jiang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qiuyan Huang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ruiting Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Wang H, Dong C, Tian X, Pan Y, Wang L, An T, Zhu L. Development and application of a dual LAMP-LFD assay for the simultaneous detection of Streptococcus suis and Glaesserella parasuis. Front Cell Infect Microbiol 2025; 15:1575365. [PMID: 40235932 PMCID: PMC11996922 DOI: 10.3389/fcimb.2025.1575365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
Introduction Streptococcus suis (S. suis) and Glaesserella parasuis (G. parasuis) are prevalent pathogens in pig populations and are often associated with co-infections, leading to substantial economic losses in the swine industry. However, there is currently a shortage of rapid detection methods. In this study, a dual loop-mediated isothermal amplification combined with lateral flow dipstick (LAMP-LFD) assay was developed for the simultaneous and convenient detection of S. suis and G. parasuis. Methods The assay utilized primers targeting the conserved regions of the gdh gene of S. suis and the infB gene of G. parasuis. Optimal primer sets were identified, and reaction conditions, including temperature, time, and primer concentration ratios, were optimized using single-variable control method. The LAMP-LFD assay was established with biotin and digoxin or biotin and 6-FAM-labeled FIP/BIP primers, combined with LFD. Results The assay was most effective at a reaction temperature of 62°C, a primer concentration ratio of 1:4, and a reaction time of 40 minutes. The minimum detection limits were 22 and 18 copies/μL for recombinant plasmids and 19 and 20 CFU for bacterial samples of S. suis and G. parasuis, respectively. The assay showed no cross-reactivity with other pathogens and exhibited high adaptability across various thermal platforms, including PCR instruments, metal baths, and water baths. Clinical testing of 106 samples revealed positive rates of 11.32% (12/106) for S. suis, 25.47% (27/106) for G. parasuis, and 2.83% (3/106) for mixed infections. Discussion This simple, rapid, specific, and sensitive dual LAMP-LFD assay provides robust technical support for the prevention and control of swine streptococcosis and Glässer's disease.
Collapse
Affiliation(s)
- Haojie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- China Institute of Veterinary Drug Control, Beijing, China
| | - Chenhui Dong
- China Institute of Veterinary Drug Control, Beijing, China
| | - Xiaoxiao Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yao Pan
- Animal Husbandry Science Institute of Ganzi Tibetan Autonomous Prefecture, Kangding, China
| | - Longxi Wang
- China Institute of Veterinary Drug Control, Beijing, China
| | - Tonqging An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liangquan Zhu
- China Institute of Veterinary Drug Control, Beijing, China
| |
Collapse
|
4
|
Yang X, Yin H, Liu M, Wang X, Song T, Song A, Xi Y, Zhang T, Sun Z, Li W, Niu S, Zainab F, Wang C, Zhang D, Wang H, Yang B. Isolation, phylogenetics, and characterization of a new PDCoV strain that affects cellular gene expression in human cells. Front Microbiol 2025; 16:1534907. [PMID: 40207165 PMCID: PMC11979167 DOI: 10.3389/fmicb.2025.1534907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/26/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction Porcine deltacoronavirus (PDCoV) is an enteropathogenic coronavirus that causes acute diarrhea, vomiting, dehydration, and even death in piglets, resulting in serious economic losses to the pork industry worldwide. PDCoV has received much attention owing to its broad host range, including humans, posing a potential threat to public health. However, the prevalence, characteristics, and host cellular gene expression of PDCoV remain poorly understood. Methods In this study, a new PDCoV strain (CHN/SX-Y/2023, GenBank number PQ373831) was successfully isolated, identified, and subjected to phylogenetic tree and transcriptome analysis in human hepatoma (Huh7) cells following PDCoV infection. Results The results showed that the CHN/SX-Y/2023 strain belongs to the Chinese lineage and causes cytopathic effects in canonical cell lines (LLC-PK1 and ST cells) and other cell lines (Huh7 and LMH cells). However, HEK-293T, EEC, MDBK, and Vero-CCL81 cells were not found to be susceptible in this study. Based on transcriptome analysis, 1,799 differentially expressed genes (DEGs) were upregulated and 771 were downregulated during PDCoV infection. Discussion Among the upregulated genes, FCGR1A, VSIG1, TNFRSF9, and PLCXD3 are associated with immunity, inflammation, and lipid catabolism. Moreover, Kyoto Encyclopedia of Genes and Genomes analysis revealed that the upregulated DEGs were significantly enriched in the MAPK, TNF, and NF-κB signaling pathways and viral protein interactions with cytokines and cytokine receptors. Protein-protein interaction networks showed that the upregulated genes CXCL8, DUSP1, PTGS2, and IL15 were associated with inflammation and immunity. In addition, the protein levels of p-IRF3, LC3-II, and ACSL4 increased, suggesting that PDCoV infection in Huh7 cells induces an intrinsic immune response, cellular autophagy, and ferroptosis. Collectively, our findings provide new insights into the characteristics and mechanisms of PDCoV infection.
Collapse
Affiliation(s)
- Xiaozhu Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Hanwei Yin
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Mengyuan Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xuemei Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Tao Song
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Aiai Song
- Xianyang Regional Wen's Animal Husbandry Co., Ltd., Xianyang, China
| | - Yibo Xi
- School of Management Shanxi Medical University, Taiyuan, China
| | - Ting Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Wei Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Sheng Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Farwa Zainab
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Chenyang Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Ding Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Bo Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
5
|
Hsueh FC, Chien CY, Chang SW, Lian BR, Lin HY, Ellerma L, Chiou MT, Lin CN. Field Evaluation of a Ready-to-Use Porcine Circovirus Type 2 and Mycoplasma hyopneumoniae Vaccine in Naturally Infected Farms in Taiwan. Vet Sci 2025; 12:304. [PMID: 40284806 PMCID: PMC12031627 DOI: 10.3390/vetsci12040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae (MHP) are both important and common pathogens in the pig industry. Both pathogens are major contributors to the porcine respiratory disease complex and serve to potentiate other bacterial infections such as Actinobacillus pleuropneumonia. This study aims to evaluate the efficacy of a ready-to-use bivalent PCV2 and MHP vaccine in the field under naturally PCV2-infected farms against existing monovalent options. We evaluated PCV2 viremia, PCV2 antibodies, and lung lesion scores in slaughtered pigs in our study across four farms in Taiwan. Our results found that in two out of four farms, the piglets vaccinated with Porcilis® PCV M Hyo had superior whole-life PCV2 viremia reduction compared to the existing vaccination program on farms. In the lung lesion scoring, the Porcilis® PCV M Hyo group had significantly lower Actinobacillus pleuropneumonia-type lesions in pigs than in the competitor group in two out of three farms evaluated. In this field trial, Porcilis® PCV M Hyo proved to be efficacious in protecting piglets against both PCV2 viremia and the impact of MHP secondary infection, in the context of a reduction in viremia and reduced APP-like lesions found at slaughter.
Collapse
Affiliation(s)
- Fu-Chun Hsueh
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (F.-C.H.); (C.-Y.C.)
| | - Chia-Yi Chien
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (F.-C.H.); (C.-Y.C.)
| | - Shu-Wei Chang
- Intervet Animal Health Taiwan Ltd., Taipei 11047, Taiwan; (S.-W.C.); (B.-R.L.)
| | - Bo-Rong Lian
- Intervet Animal Health Taiwan Ltd., Taipei 11047, Taiwan; (S.-W.C.); (B.-R.L.)
| | - Hong-Yao Lin
- MSD Animal Health Innovation Pte Ltd., Singapore 718847, Singapore;
| | - Leonardo Ellerma
- MSD Animal Health (Phils.), Inc., Makati City 1226, Philippines;
| | - Ming-Tang Chiou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (F.-C.H.); (C.-Y.C.)
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research and Technical Center for Sustainable and Intelligent Swine Production, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (F.-C.H.); (C.-Y.C.)
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research and Technical Center for Sustainable and Intelligent Swine Production, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
6
|
Huang X, Yao X, Song W, Zhao M, Zhu Z, Liu H, Song X, Huang J, Chen Y, Wang Z, Peng C, Wu W, Yang H, Hua L, Chen H, Wu B, Peng Z. Discovery of viruses and bacteria associated with swine respiratory disease on farms at a nationwide scale in China using metatranscriptomic and metagenomic sequencing. mSystems 2025; 10:e0002525. [PMID: 39882903 PMCID: PMC11834406 DOI: 10.1128/msystems.00025-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Respiratory disease (RD) is a worldwide leading threat to the pig industry, but there is still limited understanding of the pathogens associated with swine RD. In this study, we conducted a nationwide genomic surveillance on identifying viruses, bacteria, and antimicrobial resistance genes (ARGs) from the lungs of pigs with RD in China. By performing metatranscriptomic sequencing combined with metagenomic sequencing, we identified 21 viral species belonging to 12 viral families. Among them, porcine reproductive and respiratory syndrome virus, influenza A virus, herpes virus, adenovirus, and parvovirus were commonly identified. However, emerging viruses, such as Getah virus and porcine respiratory coronaviruses, were also characterized. Apart from viruses, a total of 164 bacterial species were identified, with Streptococcus suis, Mycoplasma hyorhinis, Mycoplasma hyopneumoniae, Glaesserella parasuis, and Pasteurella multocida being frequently detected in high abundances. Notably, Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, and Klebsiella pneumoniae were also highly detected. Our further analysis revealed a complex interaction between the identified pathogens in swine RD. We also conducted retrospectively analyses to demonstrate the prevalent viral genotypes or bacterial serotypes associated with swine RD in China. Finally, we identified 48 ARGs, which conferred resistance to 13 predicted antimicrobial classes, and many of these ARGs were significantly associated with a substantial number of mobile genetic elements, including transposons (e.g., tnpAIS1, tnpA1353, int3, and ISCau1) and plasmids (e.g., Col(BS512), Col(YC)]. These findings will contribute to further understanding the etiology, epidemiology, and microbial interactions in swine RD, and may also shed a light on the development of effective vaccines.IMPORTANCEIn this study, we identified viruses and bacteria from the lungs of pigs with RD in China at a nationwide farm scale by performing metatranscriptomic sequencing combined with metagenomic sequencing. We also demonstrated the complex interactions between different viral and/or bacterial species in swine RD. Our work provides a comprehensive knowledge about the etiology, epidemiology, and microbial interactions in swine RD and data reference for the research and development of effective vaccines against the disease.
Collapse
Affiliation(s)
- Xi Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xinzhi Yao
- College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Wenbo Song
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengfei Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhanwei Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hanyuan Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaorong Song
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jingwen Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yongrun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zihao Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Changjiang Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wenqing Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hao Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lin Hua
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Bin Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhong Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
7
|
Alshammari AK, Maina M, Blanchard AM, Daly JM, Dunham SP. Understanding the Molecular Interactions Between Influenza A Virus and Streptococcus Proteins in Co-Infection: A Scoping Review. Pathogens 2025; 14:114. [PMID: 40005491 PMCID: PMC11857950 DOI: 10.3390/pathogens14020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/08/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Influenza A virus infections are known to predispose infected individuals to bacterial infections of the respiratory tract that result in co-infection with severe disease outcomes. Co-infections involving influenza A viruses and streptococcus bacteria result in protein-protein interactions that can alter disease outcomes, promoting bacterial colonisation, immune evasion, and tissue damage. Focusing on the synergistic effects of proteins from different pathogens during co-infection, this scoping review evaluated evidence for protein-protein interactions between influenza A virus proteins and streptococcus bacterial proteins. Of the 2366 studies initially identified, only 32 satisfied all the inclusion criteria. Analysis of the 32 studies showed that viral and bacterial neuraminidases (including NanA, NanB and NanC) are key players in desialylating host cell receptors, promoting bacterial adherence and colonisation of the respiratory tract. Virus hemagglutinin modulates bacterial virulence factors, hence aiding bacterial internalisation. Pneumococcal surface proteins (PspA and PspK), bacterial M protein, and pneumolysin (PLY) enhance immune evasion during influenza co-infections thus altering disease severity. This review highlights the importance of understanding the interaction of viral and bacterial proteins during influenza virus infection, which could provide opportunities to mitigate the severity of secondary bacterial infections through synergistic mechanisms.
Collapse
Affiliation(s)
- Askar K. Alshammari
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf 36388, Saudi Arabia
| | - Meshach Maina
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
| | - Adam M. Blanchard
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
| | - Janet M. Daly
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
| | - Stephen P. Dunham
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, College Road, Loughborough LE12 5RD, UK; (A.K.A.); (M.M.); (A.M.B.); (J.M.D.)
| |
Collapse
|
8
|
Lu TY, Sun Z, Liang LY, Zhang J, Guo WL, Wang ZY, Sun J, Liao XP, Zhou YF. Concentration-resistance relationship and PK/PD evaluation of danofloxacin against emergence of resistant Pasteurella multocida in an in vitro dynamic model. J Appl Microbiol 2024; 135:lxae154. [PMID: 38925653 DOI: 10.1093/jambio/lxae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
AIMS This study aimed to assess the pharmacokinetic/pharmacodynamic (PK/PD) targets of danofloxacin to minimize the risk of selecting resistant Pasteurella multocida mutants and to identify the mechanisms underlying their resistance in an in vitro dynamic model, attaining the optimum dosing regimen of danofloxacin to improve its clinical efficacy based on the mutant selection window (MSW) hypothesis. METHODS AND RESULTS Danofloxacin at seven dosing regimens and 5 days of treatment were simulated to quantify the bactericidal kinetics and enrichment of resistant mutants upon continuous antibiotic exposure. The magnitudes of PK/PD targets associated with different efficacies were determined in the model. The 24 h area under the concentration-time curve (AUC) to minimum inhibitory concentration (MIC) ratios (AUC24h/MIC) of danofloxacin associated with bacteriostatic, bactericidal and eradication effects against P. multocida were 34, 52, and 64 h. This translates to average danofloxacin concentrations (Cav) over 24 h being 1.42, 2.17, and 2.67 times the MIC, respectively. An AUC/MIC-dependent antibacterial efficacy and AUC/mutant prevention concentration (MPC)-dependent enrichment of P. multocida mutants in which maximum losses in danofloxacin susceptibility occurred at a simulated AUC24h/MIC ratio of 72 h (i.e. Cav of three times the MIC). The overexpression of efflux pumps (acrAB-tolC) and their regulatory genes (marA, soxS, and ramA) was associated with reduced susceptibility in danofloxacin-exposed P. multocida. The AUC24h/MPC ratio of 19 h (i.e. Cav of 0.8 times the MPC) was determined to be the minimum mutant prevention target value for the selection of resistant P. multocida mutants. CONCLUSIONS The emergence of P. multocida resistance to danofloxacin exhibited a concentration-dependent pattern and was consistent with the MSW hypothesis. The current clinical dosing regimen of danofloxacin (2.5 mg kg-1) may have a risk of treatment failure due to inducible fluoroquinolone resistance.
Collapse
Affiliation(s)
- Ting-Yin Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Zhen Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Liu-Yan Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
- Yantai Fushan Center for Animal Disease Control and Prevention, Yantai, 265500, China
| | - Wen-Long Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Zi-Ye Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Ping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Feng Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
9
|
Zhu H, Wang G, Liu X, Wu W, Yu T, Zhang W, Liu X, Cheng G, Wei L, Ni L, Peng Z, Li X, Xu D, Qian P, Chen P. Establishment and application of a quadruplex real-time RT-qPCR assay for differentiation of TGEV, PEDV, PDCoV, and PoRVA. Microb Pathog 2024; 191:106646. [PMID: 38631414 DOI: 10.1016/j.micpath.2024.106646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Porcine viral diarrhea is a common ailment in clinical settings, causing significant economic losses to the swine industry. Notable culprits behind porcine viral diarrhea encompass transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA). Co-infections involving the viruses are a common occurrence in clinical settings, thereby amplifying the complexities associated with differential diagnosis. As a consequence, it is therefore necessary to develop a method that can detect and differentiate all four porcine diarrhea viruses (TGEV, PEDV, PDCoV, and PoRVA) with a high sensitivity and specificity. Presently, polymerase chain reaction (PCR) is the go-to method for pathogen detection. In comparison to conventional PCR, TaqMan real-time PCR offers heightened sensitivity, superior specificity, and enhanced accuracy. This study aimed to develop a quadruplex real-time RT-qPCR assay, utilizing TaqMan probes, for the distinctive detection of TGEV, PEDV, PDCoV, and PoRVA. The quadruplex real-time RT-qPCR assay, as devised in this study, exhibited the capacity to avoid the detection of unrelated pathogens and demonstrated commendable specificity, sensitivity, repeatability, and reproducibility, boasting a limit of detection (LOD) of 27 copies/μL. In a comparative analysis involving 5483 clinical samples, the results from the commercial RT-qPCR kit and the quadruplex RT-qPCR for TGEV, PEDV, PDCoV, and PoRVA detection were entirely consistent. Following sample collection from October to March in Guangxi Zhuang Autonomous Region, we assessed the prevalence of TGEV, PEDV, PDCoV, and PoRVA in piglet diarrhea samples, revealing positive detection rates of 0.2 % (11/5483), 8.82 % (485/5483), 1.22 % (67/5483), and 4.94 % (271/5483), respectively. The co-infection rates of PEDV/PoRVA, PEDV/PDCoV, TGEV/PED/PoRVA, and PDCoV/PoRVA were 0.39 %, 0.11 %, 0.01 %, and 0.03 %, respectively, with no detection of other co-infections, as determined by the quadruplex real-time RT-qPCR. This research not only established a valuable tool for the simultaneous differentiation of TGEV, PEDV, PDCoV, and PoRVA in practical applications but also provided crucial insights into the prevalence of these viral pathogens causing diarrhea in Guangxi.
Collapse
Affiliation(s)
- Hechao Zhu
- Guangxi Yangxiang Co., LTD, Guigang, 537100, China; National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Geng Wang
- Guangxi Yangxiang Co., LTD, Guigang, 537100, China
| | - Xiangzu Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wenqing Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Teng Yu
- Guangxi Yangxiang Co., LTD, Guigang, 537100, China
| | | | - Xiangdong Liu
- Guangxi Yangxiang Co., LTD, Guigang, 537100, China; College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Guofu Cheng
- College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Liuqing Wei
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lumei Ni
- Guangxi Yangxiang Co., LTD, Guigang, 537100, China
| | - Zhong Peng
- College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiangmin Li
- College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dequan Xu
- College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Pin Chen
- College of Animal Science & Technology, Collegel of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
10
|
Guo X, Zhao X, Li L, Jiang M, Zhou A, Gao Y, Zheng P, Liu J, Zhao X. Platycodon grandiflorus polysaccharide inhibits the inflammatory response of 3D4/21 cells infected with PCV2. Microb Pathog 2024; 189:106592. [PMID: 38423406 DOI: 10.1016/j.micpath.2024.106592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Porcine circovirus type 2 (PCV2) infection cause multi-systemic inflammation in pigs. Platycodon grandiflorus polysaccharide (PGPSt) has been reported to have the effects of immune regulation and disease resistance. Nevertheless, the role and mechanism of PGPSt in the inflammatory response of 3D4/21 cells induced by PCV2 infection remain unclear. The present study aims to investigate effects of PGPSt on inflammatory response and its possible underlying mechanisms in vitro models. Cells were treated with PCV2 for 36 h to construct a cell inflammation model. The 3D4/21 cell lines were pretreated with or without PGPSt, and the changes of inflammation-related markers and the signaling pathway were detected by CCK-8, ELISA, qPCR and Western blot. The results showed that PGPSt was non-toxic to cells and protected PCV2-infected cells from inflammatory damage. PGPSt could significantly inhibit the high acetylation of histone H3 (AcH3) and histone H4 (AcH4), down-regulate HAT and up-regulate HDAC activity, and reduce the expression of pro-inflammatory enzymes iNOS and COX-2 proteins levels. Then the levels of IL-1β, IL-6 and TNF-α were significantly inhibited, and the level of IL-10 was promoted. We also observed that PGPSt inhibited the phosphorylation of p65, p38 and Erk1/2, which subsequently inhibited nuclear translocation of NF-κB p65 to express pro-inflammatory factors. In conclusion, PGPSt can reduce the inflammatory response by regulating histone acetylation, reducing the release of inflammatory factors, reducing the expression of pro-inflammatory enzymes, and inhibiting the activation of NF-κB and MAPKs signaling pathways. This suggests that PGPSt had an anti-inflammatory effect on the inflammatory response caused by PCV2 infection, which provided theoretical data support for the research.
Collapse
Affiliation(s)
- Xiaocheng Guo
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China; Weifang University of Science and Technology, Weifang, Shandong, 262700, China
| | - Ximan Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Linjue Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Menglin Jiang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Aiqin Zhou
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Yifan Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Pimiao Zheng
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Jianzhu Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong, 271018, China.
| | - Xiaona Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China.
| |
Collapse
|
11
|
Renzhammer R, Auer A, Loncaric I, Entenfellner A, Dimmel K, Walk K, Rümenapf T, Spergser J, Ladinig A. Retrospective Analysis of the Detection of Pathogens Associated with the Porcine Respiratory Disease Complex in Routine Diagnostic Samples from Austrian Swine Stocks. Vet Sci 2023; 10:601. [PMID: 37888553 PMCID: PMC10610783 DOI: 10.3390/vetsci10100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
The diagnostic workup of respiratory disease in pigs is complex due to coinfections and non-infectious causes. The detection of pathogens associated with respiratory disease is a pivotal part of the diagnostic workup for respiratory disease. We aimed to report how frequently certain viruses and bacteria were detected in samples from pigs with respiratory symptoms in the course of routine diagnostic procedures. Altogether, 1975 routine diagnostic samples from pigs in Austrian swine stocks between 2016 and 2021 were analysed. PCR was performed to detect various pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV) (n = 921), influenza A virus (n = 479), porcine circovirus type 2 (PCV2) (n = 518), Mycoplasma (M.) hyopneumoniae (n = 713), Actinobacillus pleuropneumoniae (n = 198), Glaesserella (G.) parasuis (n = 165) and M. hyorhinis (n = 180). M. hyorhinis (55.1%) had the highest detection rate, followed by PCV2 (38.0%) and Streptococcus (S.) suis (30.6%). PRRSV was detected most frequently in a pool of lung, tonsil and tracheobronchial lymph node (36.2%). G. parasuis was isolated more frequently from samples taken after euthanasia compared to field samples. PRRSV-positive samples were more likely to be positive for PCV2 (p = 0.001), M. hyopneumoniae (p = 0.032) and Pasteurella multocida (p < 0.001). M. hyopneumoniae-positive samples were more likely to be positive for P. multocida (p < 0.001) and S. suis (p = 0.046), but less likely for M. hyorhinis (p = 0.004). In conclusion, our data provide evidence that lung samples that were positive for a primary pathogenic agent were more likely to be positive for a secondary pathogenic agent.
Collapse
Affiliation(s)
- René Renzhammer
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria;
| | - Angelika Auer
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria; (A.A.); (K.D.); (T.R.)
| | - Igor Loncaric
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria; (I.L.); (J.S.)
| | | | - Katharina Dimmel
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria; (A.A.); (K.D.); (T.R.)
| | - Karin Walk
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria; (A.A.); (K.D.); (T.R.)
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria; (A.A.); (K.D.); (T.R.)
| | - Joachim Spergser
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria; (I.L.); (J.S.)
| | - Andrea Ladinig
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria;
| |
Collapse
|
12
|
Bujold AR, Barre AME, Kunkel E, MacInnes JI. Strain-dependent interactions of Streptococcus suis and Glaesserella parasuis in co-culture. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2023; 87:245-253. [PMID: 37790267 PMCID: PMC10542955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/01/2023] [Indexed: 10/05/2023]
Abstract
Streptococcus suis (S. suis) and Glaesserella parasuis (G. parasuis) are ubiquitous colonizers of swine tonsils that can cause systemic disease and death, under undefined conditions. It is not known, however, whether these 2 species interact during initial infection. To investigate whether such interactions occur, the objective of this study was to assess phenotypic differences between mono-and co-cultures of S. suis and G. parasuis when representative strains with different virulence potential were co-cultured in vitro. In cross-streak screening experiments, some G. parasuis (GP) serovar strains (GP3, GP4, GP5) exhibited altered morphology with some S. suis (SS) serovar strains, such as SS2, but not with SS1. Co-culture with GP5 reduced hemolytic activity of SS1, but not of SS2. Although both SS strains outgrew GP isolates in biofilm co-cultures, strain type affected the number of planktonic or sessile cells in co-culture biofilms. Numbers of sessile SS1 increased in co-cultures, but not of GP3. Both planktonic and sessile SS2 increased in co-culture, whereas GP5 decreased. Sessile SS1 increased, but planktonic GP5 decreased in co-culture and planktonic SS2 increased, but sessile GP3 decreased when grown together. The SS2 strain had a competitive advantage over GP3 during mid-exponential co-culture in broth. Streptococcus suis is predicted to use more unique carbon sources, suggesting that S. suis outcompetes G. parasuis in growth and nutrient consumption. This work provides direction for future studies of phenotypic and genotypic interactions between these and other swine tonsil co-colonizers.
Collapse
Affiliation(s)
- Adina R Bujold
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1
| | - Allison M E Barre
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1
| | - Elizabeth Kunkel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1
| | - Janet I MacInnes
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1
| |
Collapse
|
13
|
Xu X, Li J, Huang P, Cui X, Li X, Sun J, Huang Y, Ji Q, Wei Q, Bao G, Liu Y. Isolation, Identification and Drug Resistance Rates of Bacteria from Pigs in Zhejiang and Surrounding Areas during 2019-2021. Vet Sci 2023; 10:502. [PMID: 37624289 PMCID: PMC10458188 DOI: 10.3390/vetsci10080502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
This study aimed to determine the prevalence of bacterial diseases in pig farms in various regions of Zhejiang Province and surrounding areas. A total of 526 samples were collected from 85 pig farms in Zhejiang Province and surrounding areas. In this study, samples were analyzed using bacterial isolation and purification, Gram staining, PCR amplification, and antimicrobial susceptibility testing. A total of 36 Pasteurella multocida (Pm) isolates were detected, with an isolation rate of 6.84%; 37 Bordetella bronchiseptica (Bb) isolates were detected, with an isolation rate of 7.03%; 60 Glasserella parasuis (G. parasuis) isolates were detected, with an isolation rate of 11.41%; 170 Escherichia coli (E. coli) isolates were detected, with an isolation rate of 32.32%; 67 Streptococcus suis (SS) isolates were detected, with an isolation rate of 12.74%; 44 Actinobacillus pleuropneumoniae (APP) isolates were detected, with an isolation rate of 8.37%; and 7 Salmonella enteritis (SE) isolates were detected, with an isolation rate of 1.33%. Antimicrobial drug susceptibility testing against 21 types of antibiotics was carried out on the isolated strains, and the results showed that 228 strains had varying degrees of resistance to 21 antibiotics, including Pm, Bb, E. coli, and APP, with the highest resistance to lincomycin, at 100%. Pm and APP were the most sensitive to cephalothin, with resistance rates of 0. In terms of strains, Pm had the highest overall sensitivity to 21 antibiotics, and E. coli had the highest resistance. In short, bacterial diseases in Zhejiang and the surrounding areas were harmful, and the drug resistance situation was severe. This study provides scientific guidance for the clinical treatment of bacterial diseases.
Collapse
Affiliation(s)
- Xiangfei Xu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Junxing Li
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
| | - Pan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuemei Cui
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
| | - Xuefeng Li
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
| | - Jiaying Sun
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
| | - Yee Huang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
| | - Quanan Ji
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
| | - Qiang Wei
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
| |
Collapse
|
14
|
Guan Z, Pang L, Ouyang Y, Jiang Y, Zhang J, Qiu Y, Li Z, Li B, Liu K, Shao D, Ma Z, Wei J. Secondary Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus (HP-PRRSV2) Infection Augments Inflammatory Responses, Clinical Outcomes, and Pathogen Load in Glaesserella-parasuis-Infected Piglets. Vet Sci 2023; 10:vetsci10050365. [PMID: 37235448 DOI: 10.3390/vetsci10050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Glaesserella parasuis (Gps), Gram-negative bacteria, are a universal respiratory-disease-causing pathogen in swine that colonize the upper respiratory tract. Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus (HP-PRRSV2HP-PRRSV2) and Gps coinfections are epidemics in China, but little is known about the influence of concurrent coinfection on disease severity and inflammatory responses. Herein, we studied the effects of secondary HP-PRRS infection on clinical symptoms, pathological changes, pathogen load, and inflammatory response of Gps coinfection in the upper respiratory tract of piglets. All coinfected piglets (HP-PRRSV2 + Gps) displayed fever and severe lesions in the lungs, while fever was present in only a few animals with a single infection (HP-PRRSV2 or Gps). Additionally, HP-PRRSV2 and Gps loading in nasal swabs and blood and lung tissue samples was significantly increased in the coinfected group. Necropsy data showed that coinfected piglets suffered from severe lung damage and had significantly higher antibody titers of HP-PRRSV2 or Gps than single-infected piglets. Moreover, the serum and lung concentrations of inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8) were also significantly higher in coinfected piglets than in those infected with HP-PRRSV2 or Gps alone. In conclusion, our results show that HP-PRRSV2 promotes the shedding and replication of Gps, and their coinfection in the upper respiratory tract aggravates the clinical symptoms and inflammatory responses, causing lung damage. Therefore, in the unavoidable situation of Gps infection in piglets, necessary measures must be made to prevent and control secondary infection with HP-PRRSV2, which can save huge economic losses to the pork industry.
Collapse
Affiliation(s)
- Zhixin Guan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Linlin Pang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Yan Ouyang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
- College of Agriculture, Hubei Three Gorges Polytechnic, Yichang 443000, China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| |
Collapse
|
15
|
Rao J, Wei X, Li H, Zhang Z, Liu J, Lian M, Cao W, Yuan L, Dou B, Tian Y, Chen H, Li J, Bei W. Novel Multiplex PCR Assay and Its Application in Detecting Prevalence and Antibiotic Susceptibility of Porcine Respiratory Bacterial Pathogens in Guangxi, China. Microbiol Spectr 2023; 11:e0397122. [PMID: 36916923 PMCID: PMC10100844 DOI: 10.1128/spectrum.03971-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/27/2023] [Indexed: 03/15/2023] Open
Abstract
Porcine respiratory disease complex (PRDC) is a serious disease caused by multiple pathogens which inflicts huge economic losses on the pig industry. Investigating the epidemiology of porcine respiratory bacterial pathogens (PRBPs) in specific geographic areas and exploring the antibiotic susceptibility of local strains will contribute to the prevention and control of PRDC. However, the epidemiology of PRBPs in Guangxi Province remains unclear, and existing diagnostic methods have multiple limitations, such as high costs and the detection of only a single pathogen at a time. In this study, we developed a multiplex PCR assay for Streptococcus suis, Glaesserella parasuis, Actinobacillus pleuropneumoniae, Pasteurella multocida, and Mycoplasma hyopneumoniae, and investigated the prevalence of PRBPs in pigs with respiratory symptoms in Guangxi Province. The isolates from positive samples were subjected to susceptibility tests to 16 antibiotics. Our results indicated that of the 664 samples from pigs with respiratory symptoms, 433 (65.21%), 320 (48.19%), 282 (42.47%), 23 (3.46%), and 9 (1.36%), respectively, carried each of these 5 pathogens; 533 samples were positive; and 377 (56.78%) carried multiple pathogens simultaneously. The dominant PRBPs in pigs with respiratory symptoms in Guangxi province were S. suis, G. parasuis, and A. pleuropneumoniae, which frequently co-infected swine herds. Most of the isolates (A. pleuropneumoniae, G. parasuis, S. suis, and P. multocida) were sensitive to cefquinome, ceftiofur, trimethoprim-sulfamethoxazole (TMP-SMX), and tiamulin antibiotics. We developed a rapid specific multiplex PCR assay for PRBPs. Our findings provide new information on the epidemiology of PRBPs in Guangxi Province and offer a reference for developing drug targets against PRDC. IMPORTANCE Pigs are closely associated with humans as the most common food animals and the vectors of numerous pathogens. PRDC, caused by multiple pathogens, is a serious disease that can cause growth retardation in swine and even sudden death. Due to the droplet transmission of PRBP and the similar clinical signs of different pathogen infections, most pig farms struggle to identify and control PRBPs, leading to the abuse of antibiotics. In addition, some PRBPs have the potential to infect humans and threaten human health. Therefore, this study developed a multiplex PCR method targeting PRBPs, investigated the prevalence of these pathogens, and tested their antibiotic susceptibility. Our studies have important implications for public health safety and the development of the pig industry.
Collapse
Affiliation(s)
- Jing Rao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xinchen Wei
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huan Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhewei Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiahui Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengjie Lian
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Long Yuan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Beibei Dou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yanhong Tian
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
16
|
Liu P, Zhang Y, Tang H, Wang Y, Sun X. Prevalence of Streptococcus suis in pigs in China during 2000–2021: A systematic review and meta-analysis. One Health 2023. [DOI: 10.1016/j.onehlt.2023.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
17
|
Assavacheep P, Thanawongnuwech R. Porcine respiratory disease complex: Dynamics of polymicrobial infections and management strategies after the introduction of the African swine fever. Front Vet Sci 2022; 9:1048861. [PMID: 36504860 PMCID: PMC9732666 DOI: 10.3389/fvets.2022.1048861] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
A few decades ago, porcine respiratory disease complex (PRDC) exerted a major economic impact on the global swine industry, particularly due to the adoption of intensive farming by the latter during the 1980's. Since then, the emerging of porcine reproductive and respiratory syndrome virus (PRRSV) and of porcine circovirus type 2 (PCV2) as major immunosuppressive viruses led to an interaction with other endemic pathogens (e.g., Mycoplasma hyopneumoniae, Actinobacillus pleuropneumoniae, Streptococcus suis, etc.) in swine farms, thereby exacerbating the endemic clinical diseases. We herein, review and discuss various dynamic polymicrobial infections among selected swine pathogens. Traditional biosecurity management strategies through multisite production, parity segregation, batch production, the adoption of all-in all-out production systems, specific vaccination and medication protocols for the prevention and control (or even eradication) of swine diseases are also recommended. After the introduction of the African swine fever (ASF), particularly in Asian countries, new normal management strategies minimizing pig contact by employing automatic feeding systems, artificial intelligence, and robotic farming and reducing the numbers of vaccines are suggested. Re-emergence of existing swine pathogens such as PRRSV or PCV2, or elimination of some pathogens may occur after the ASF-induced depopulation. ASF-associated repopulating strategies are, therefore, essential for the establishment of food security. The "repopulate swine farm" policy and the strict biosecurity management (without the use of ASF vaccines) are, herein, discussed for the sustainable management of small-to-medium pig farms, as these happen to be the most potential sources of an ASF re-occurrence. Finally, the ASF disruption has caused the swine industry to rapidly transform itself. Artificial intelligence and smart farming have gained tremendous attention as promising tools capable of resolving challenges in intensive swine farming and enhancing the farms' productivity and efficiency without compromising the strict biosecurity required during the ongoing ASF era.
Collapse
Affiliation(s)
- Pornchalit Assavacheep
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand,*Correspondence: Pornchalit Assavacheep
| | - Roongroje Thanawongnuwech
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand,Faculty of Veterinary Science, Center of Emerging and Re-emerging Infectious Diseases in Animals, Chulalongkorn University, Bangkok, Thailand,Roongroje Thanawongnuwech
| |
Collapse
|
18
|
Severe Inflammation Caused by Coinfection of PCV2 and Glaesserella parasuis Is Associated with Pyroptosis via Noncanonical Inflammasome Pathway. Cell Microbiol 2022. [DOI: 10.1155/2022/7227099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Coinfections of porcine circovirus type 2 (PCV2) and Glaesserella parasuis (G. parasuis) are widely existing in the swine industry worldwide. However, the mechanisms for this coinfection remain unclear. The aim of this study is to assess whether the coinfection PCV2 and G. parasuis would affect the inflammatory response and related mechanisms. In this study, BALB/c mice and RAW264.7 cells were used to study the inflammation and related mechanism caused by the coinfection of PCV2 and G. parasuis. Coinfection with PCV2 and G. parasuis significantly increased the mortality of mice and led to the development of more severe lung and spleen lesions compared with single agent infection. Especially, coinfection significantly increased the bacterial loads in the lungs. Coinfection with PCV2 and G. parasuis can enhance RAW264.7 cell phagocytosis and elimination to G. parasuis. Cell death rate of cells increased in coinfection was measured with Flow cytometry. Moreover, coinfection led to the downregulation of the expression of TNFα and IL-8 in comparison with G. parasuis infection, but the maturation of interleukin-1β (IL-1β) was significantly upregulated. Our study firstly revealed that coinfection of PCV2 and G. parasuis can increase the phagocytosis of cells to G. parasuis, and LPS in the cytoplasm will induce the maturation of caspase-11 and lead to the cleavage of Gasdermin D (GSDMD) to cause pyroptosis by noncanonical pathway. The revealing of mechanisms associated with coinfection with PCV2 and G. parasuis will provide a scientific basis for investigating the synergistic infection mechanisms between viruses and bacteria.
Collapse
|
19
|
Sun Q, Yu X, He D, Ku X, Hong B, Zeng W, Zhang H, He Q. Investigation and analysis of etiology associated with porcine respiratory disease complex in China from 2017 to 2021. Front Vet Sci 2022; 9:960033. [PMID: 36304408 PMCID: PMC9592729 DOI: 10.3389/fvets.2022.960033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/12/2022] [Indexed: 11/04/2022] Open
Abstract
Porcine respiratory diseases complex (PRDC) is a highly serious threat to the pig industry. In the present study, we investigated and analyzed the etiology associated with PRDC and explored the role of viruses in respiratory bacterial infections. From 2017 to 2021, clinical samples were collected from 1,307 pigs with typical respiratory symptoms in 269 farms in China and screened for pathogens related to PRDC by PCR and bacterial isolation. The results indicated that PRRSV (41.16%, 95%CI: 38.49~43.83%), PCV2 (21.58%,95%CI: 19.35~23.81%), S. suis (63.50%, 95%CI: 60.89~66.11%), and G. parasuis (28.54%, 95%CI: 26.09~30.99%) were the most commonly detected pathogens in pigs with PRDC in China. The dominant epidemic serotypes (serogroups) of S. suis, G. parasuis, and P. multocida were serotype 2, serotype 1, and capsular serogroups D, respectively. Pigs of different ages exhibited different susceptibilities to these pathogens, e.g., PRRSV, PCV2, and G. parasuis had the highest detection rates in nursery pigs, whereas fattening pigs had the highest detection rates of P. multocida and A. pleuropneumoniae. Among the 1,307 pigs, the detection rates of S. suis, G. parasuis, P. multocida, and B. bronchiseptica were higher in virus-positive pigs, especially G. parasuis and P. multocida were significantly (p < 0.01) higher than in virus-negative pigs. In addition, a strong positive correlation was found between coinfection by PRRSV and G. parasuis (OR = 2.33, 95%CI: 1.12~2.14), PRRSV and P. multocida (OR = 1.55, 95%CI: 1.12~2.14), PCV2 and P. multocida (OR = 2.27, 95%CI: 1.33~3.87), PRRSV-PCV2 and S. suis (OR = 1.83, 95%CI: 1.29~2.60), PRRSV-PCV2 and G. parasuis (OR = 3.39, 95%CI: 2.42~4.74), and PRRSV-PCV2 and P. multocida (OR = 2.09, 95%CI: 1.46~3.00). In summary, PRRSV, PCV2, S. suis, and G. parasuis were the major pathogens in pigs with PRDC, and coinfections of two or more PRDC-related pathogens with strong positive correlations were common in China, such as PRRSV and G. parasuis, PRRSV and P. multocida, PCV2 and P. multocida, and also PRRSV-PCV2 and G. parasuis and PRRSV-PCV2 and P. multocida.
Collapse
Affiliation(s)
- Qi Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Xuexiang Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Dongxian He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,College of Animal Science and Technology, Guangxi Agriculural Vocational and Technical University, Nanning, China
| | - Xugang Ku
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Bo Hong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Wei Zeng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Haifeng Zhang
- Wuhan Green Giant Agriculture, Agriculture and Animal Husbandry Co., Ltd, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China,*Correspondence: Qigai He
| |
Collapse
|
20
|
Tang Q, Ge L, Tan S, Zhang H, Yang Y, Zhang L, Deng Z. Epidemiological Survey of Four Reproductive Disorder Associated Viruses of Sows in Hunan Province during 2019–2021. Vet Sci 2022; 9:vetsci9080425. [PMID: 36006340 PMCID: PMC9416293 DOI: 10.3390/vetsci9080425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine reproductive disorders have been considered as the major factors that threaten pig industries worldwide. In this study, 407 aborted-fetus samples were obtained from 89 pig farms in Hunan province, to investigate the prevalence of four viruses associated with porcine reproductive disease, including porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2), pseudorabies virus (PRV), and classical swine fever virus (CSFV). Meanwhile, the target gene sequences of representative PRRSV (ORF5), PCV2 (ORF2), CSFV (E2), and PRV (gE) strains were amplified, sequenced, and analyzed. The results showed that the positive rates of PRRSV, PCV2, PRV, and CSFV among the collected samples were 26.29% (107/407), 52.83% (215/407), 6.39% (26/407), and 12.29% (50/407), respectively. Moreover, co-infection with two and three pathogens were frequently identified, with PCV2/PRRSV, PRRSV/CSFV, PRRSV/PRV, PCV2/CSFV, PCV2/PRV, and PRRSV/PCV2/CSFV mix infection rates of 9.09%, 3.19%, 2.95%, 3.69%, 2.21%, and 0.49%, respectively. Moreover, ORF5-based phylogenetic analysis showed that 9, 4, and 24 of 37 PRRSV strains belonged to the PRRSV2 lineages 1, 5, and 8, respectively. ORF2-based phylogenetic analysis revealed that PCV2d and PCV2b were prevalent in Hunan province, with the proportions of 87.5% (21/24) and 12.5% (3/24), respectively. An E2-based phylogenetic tree showed that all 13 CSFV strains were clustered with 2.1 subgenotypes, these isolates were composed of 2.1b (10/13) and 2.1c (3/13) sub-subgenotypes. A gE-based phylogenetic tree showed that all six PRV strains belonged to the genotype II, which were genetically closer to variant PRV strains. Collectively, the present study provides the latest information on the epidemiology and genotype diversity of four viruses in sows with reproductive diseases in Hunan province, China, which would contribute to developing effective strategies for disease control.
Collapse
Affiliation(s)
- Qiwu Tang
- Hunan Biological and Electromechanical Polytechnic, Changsha 410128, China
| | - Lingrui Ge
- Hunan Biological and Electromechanical Polytechnic, Changsha 410128, China
| | - Shengguo Tan
- Hunan Biological and Electromechanical Polytechnic, Changsha 410128, China
| | - Hai Zhang
- Animal Epidemic Prevention Station of Xiangxi Autonomous Prefecture, JiShou City 416000, China
| | - Yu Yang
- Animal Disease Prevention and Control Center, Wangcheng District, Changsha 410128, China
| | - Lei Zhang
- Subdistrict Office of Nanzhuangping Street, Yongding District, Zhangjiajie 427000, China
| | - Zaofu Deng
- Hunan Biological and Electromechanical Polytechnic, Changsha 410128, China
- Correspondence:
| |
Collapse
|
21
|
Genetic Diversity and Epidemic Types of Porcine Reproductive and Respiratory Syndrome (PRRS) Virus in Japan from 2018 to 2020. EPIDEMIOLOGIA 2022; 3:285-296. [PMID: 36417258 PMCID: PMC9620939 DOI: 10.3390/epidemiologia3020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/13/2022] [Accepted: 06/01/2022] [Indexed: 12/14/2022] Open
Abstract
To clarify the genetic diversity of the porcine reproductive and respiratory syndrome virus (PRRSV) in Japan in recent years, we determined the nucleotide sequence of open reading frame 5 of 2482 PRRSV sequences obtained from samples collected from pigs between January 2018 and December 2020. As a result of molecular phylogenetic analysis, Cluster II represented the largest proportion (44.9−50.6%) throughout the study period, followed by Cluster IV (34.0−40.8%), Cluster III (7.8−12.1%), Cluster I (3.1−6.7%), and Cluster V (0.1−0.2%). The relative distributions between Clusters varied between geographic regions and between years: in 2018, Cluster II was the most prevalent in all regions. In 2019, Cluster II was dominant in the Hokkaido and Tohoku regions, while in other regions Cluster IV was dominant. In 2020, Cluster IV was dominant in the Kanto/Tosan and Kyushu/Okinawa regions, whilst in other regions Cluster II was predominant. Compared with a previous study, the proportions of genome sequences classified in Clusters II and IV significantly increased (p = 0.042 and 0.018, respectively) and those classified in Cluster III significantly decreased (p < 0.01). The widespread use of live attenuated vaccines using strains that belong to Cluster II might have accounted for these changes in the relative distribution between Clusters.
Collapse
|
22
|
Zhou YF, Sun Z, Wang RL, Li JG, Niu CY, Li XA, Feng YY, Sun J, Liu YH, Liao XP. Comparison of PK/PD Targets and Cutoff Values for Danofloxacin Against Pasteurella multocida and Haemophilus parasuis in Piglets. Front Vet Sci 2022; 9:811967. [PMID: 35187143 PMCID: PMC8847440 DOI: 10.3389/fvets.2022.811967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Danofloxacin is a synthetic fluoroquinolone with broad-spectrum activity developed for use in veterinary medicine. The aim of this study was to evaluate the pharmacokinetic/pharmacodynamic (PK/PD) targets, PK/PD cutoff values and the optimum doses of danofloxacin against P. multocida and H. parasuis in piglets. Single dose serum pharmacokinetics was determined in piglets after intravenous and intramuscular administration of 2.5 mg/kg. Danofloxacin was well absorbed and fully bioavailable (95.2%) after intramuscular administration of 2.5 mg/kg. The epidemiological cutoff (ECOFF) values of danofloxacin from 931 P. multocida isolates and 263 H. parasuis isolates were 0.03 and 4 mg/L, respectively. Danofloxacin MICs determined in porcine serum were markedly lower than those measured in artificial broth, with a broth/serum ratio of 4.33 for H. parasuis. Compared to P. multocida, danofloxacin exhibited significantly longer post-antibiotic effects (3.18-6.60 h) and post-antibiotic sub-MIC effects (7.02-9.94 h) against H. parasuis. The mean area under the concentration-time curve/MIC (AUC24h/MIC) targets of danofloxacin in serum associated with the static and bactericidal effects were 32 and 49.8, respectively, for P. multocida, whereas they were 14.6 and 37.8, respectively, for H. parasuis. Danofloxacin AUC24h/MIC targets for the same endpoints for P. multocida were higher than those for H. parasuis. At the current dose of 2.5 mg/kg, the PK/PD cutoff (COPD) values of danofloxacin against P. multocida and H. parasuis were calculated to be 0.125 and 0.5 mg/L, respectively, based on Monte Carlo simulations. The predicted optimum doses of danofloxacin for a probability of target attainment (PTA) of > 90% to cover the overall MIC population distributions of P. multocida and H. parasuis in this study were 2.38 and 13.36 mg/kg, respectively. These PK/PD-based results have potential relevance for the clinical dose optimization and evaluation of susceptibility breakpoints for danofloxacin in the treatment of swine respiratory tract infections involving these pathogens.
Collapse
Affiliation(s)
- Yu-Feng Zhou
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Zhen Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Rui-Ling Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian-Guo Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Chao-Yan Niu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xian-An Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yun-Yun Feng
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| |
Collapse
|