1
|
Xie Y, Guo L, Qi X, Zhao S, Pei Q, Chen Y, Wu Q, Yao M, Yin D. Establishment of an I-ELISA method based on multi-epitope fusion protein for diagnosis of human brucellosis. PLoS Negl Trop Dis 2025; 19:e0012995. [PMID: 40193524 PMCID: PMC12002633 DOI: 10.1371/journal.pntd.0012995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 04/16/2025] [Accepted: 03/18/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Brucellosis is a significant zoonotic disease that impacts people globally, and its diagnosis has long posed challenges. This study aimed to explore the application value of multi-epitope fusion protein in the diagnosis of human brucellosis. METHODS Eight important Brucella outer membrane proteins (OMPs) were selected: BP26, omp10, omp16, omp25, omp2a, omp2b, and omp31. Bioinformatics techniques were used to predict the immune epitopes of these proteins, and a multi-epitope fusion protein was designed. This fusion protein was used as the antigen for indirect enzyme-linked immunosorbent assay (iELISA) testing on 100 positive and 96 negative serum samples. The performance of the fusion protein in diagnosing brucellosis was evaluated using receiver operating characteristic (ROC) curves. RESULTS A total of 31 epitopes were predicted from the eight proteins, and a multi-epitope fusion protein was successfully obtained. For the detection of human serum samples, the area under the ROC curve (AUC) of the fusion protein was 0.9594, with a positive diagnostic accuracy of 91.26% and a negative diagnostic accuracy of 93.55%. The area under the ROC curve (AUC) for lipopolysaccharides (LPS) was 0.9999, with a positive diagnostic accuracy of 100% and a negative diagnostic accuracy of 98.97%. CONCLUSIONS The fusion protein constructed using bioinformatics techniques, as the diagnostic antigen, showed significantly reduced cross-reactivity and enhanced specificity, improving diagnostic accuracy. This not only saves time but also avoids the preparation of LPS antigens, making the diagnostic process safer and more convenient.
Collapse
Affiliation(s)
- Yujia Xie
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liping Guo
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinru Qi
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shiqi Zhao
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qichuan Pei
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yixiao Chen
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qi Wu
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meixue Yao
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dehui Yin
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Zhu Y, Shi J, Wang Q, Zhu Y, Li M, Tian T, Shi H, Shang K, Yin Z, Zhang F. Novel dual-pathogen multi-epitope mRNA vaccine development for Brucella melitensis and Mycobacterium tuberculosis in silico approach. PLoS One 2024; 19:e0309560. [PMID: 39466745 PMCID: PMC11515988 DOI: 10.1371/journal.pone.0309560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/13/2024] [Indexed: 10/30/2024] Open
Abstract
Brucellosis and Tuberculosis, both of which are contagious diseases, have presented significant challenges to global public health security in recent years. Delayed treatment can exacerbate the conditions, jeopardizing patient lives. Currently, no vaccine has been approved to prevent these two diseases simultaneously. In contrast to traditional vaccines, mRNA vaccines offer advantages such as high efficacy, rapid development, and low cost, and their applications are gradually expanding. This study aims to develop multi-epitope mRNA vaccines argeting Brucella melitensis and Mycobacterium tuberculosis H37Rv (L4 strain) utilizing immunoinformatics approaches. The proteins Omp25, Omp31, MPT70, and MPT83 from the specified bacteria were selected to identify the predominant T- and B-cell epitopes for immunological analysis. Following a comprehensive evaluation, a vaccine was developed using helper T lymphocyte epitopes, cytotoxic T lymphocyte epitopes, linear B-cell epitopes, and conformational B-cell epitopes. It has been demonstrated that multi-epitope mRNA vaccines exhibit increased antigenicity, non-allergenicity, solubility, and high stability. The findings from molecular docking and molecular dynamics simulation revealed a robust and enduring binding affinity between multi-epitope peptides mRNA vaccines and TLR4. Ultimately, Subsequently, following the optimization of the nucleotide sequence, the codon adaptation index was calculated to be 1.0, along with an average GC content of 54.01%. This indicates that the multi-epitope mRNA vaccines exhibit potential for efficient expression within the Escherichia coli(E. coli) host. Analysis through immune modeling indicates that following administration of the vaccine, there may be variation in immunecell populations associated with both innate and adaptive immune reactions. These types encompass helper T lymphocytes (HTL), cytotoxic T lymphocytes (CTL), regulatory T lymphocytes, natural killer cells, dendritic cells and various immune cell subsets. In summary, the results suggest that the newly created multi-epitope mRNA vaccine exhibits favorable attributes, offering novel insights and a conceptual foundation for potential progress in vaccine development.
Collapse
Affiliation(s)
- Yuejie Zhu
- Department of Reproductive Assistance, Center for Reproductive Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Juan Shi
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Quan Wang
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yun Zhu
- Xinjiang Uygur Autonomous Region Disease Prevention Control Center, Urumqi, Xinjiang, China
| | - Min Li
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tingting Tian
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huidong Shi
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Kaiyu Shang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhengwei Yin
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Fengbo Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
3
|
Li Z, Wang S, Han J, Shi C, Xi L, Cui Y, Zhang H. Expression of cytokine and Apoptosis-Associated genes in mice bone Marrow-Derived Macrophages stimulated with Brucella recombinant type IV secretion effectors. Cytokine 2024; 182:156711. [PMID: 39094437 DOI: 10.1016/j.cyto.2024.156711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/23/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Brucellosis is an economically important infectious caused by most commonly by Brucella. Detection of infected animals at the early stage is important for controlling the disease. The diagnostic antigens, usually protein antigens, have attracted much interest. However, the accurate mechanism of immune response is still unknown. The secretory effectors (BPE005, BPE275, and BPE123) of the type IV secretion system (T4SS) were involved in the intracellular circulation process of Brucella and the immune responses of the host. METHODS Genes encoding three B. abortus effector proteins (BPE005, BPE275, and BPE123) of T4SS were cloned and the recombinant proteins were expressed and purified. The purified recombinant proteins were named rBPE005, rBPE275 and rBPE123. Then, the expressions of Th1- and Th2-related cytokine genes were analyzed in mice bone marrow-derived macrophages (BMDMs) after stimulation with rBPE005, rBPE275, and rBPE123. Furthermore, four apoptosis-associated genes (Caspase-3, Caspase-8, Bax, and Bcl-2) were also detected to explore the damage of the proteins to the cells. RESULTS Expressions of all Th1- and Th2-related cytokine genes were induced with three proteins, and different cytokine expression patterns induced by each protein depend on the stimulation time and dose of protein. However, expressions of apoptosis-related genes did not change. CONCLUSION These results showed that the secreted antigens of Brucella induced an immune reaction via the production of Th1- and Th2-type cytokines in BMDMs without exerting any damage on the cells.
Collapse
Affiliation(s)
- Zhiqiang Li
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, Henan Provence, China; College of Smart Animal Husbandry, Shangqiu Normal University, Shangqiu 476000, Henan Provence, China
| | - Shuli Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, Henan Provence, China; College of Smart Animal Husbandry, Shangqiu Normal University, Shangqiu 476000, Henan Provence, China
| | - Jincheng Han
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, Henan Provence, China; College of Smart Animal Husbandry, Shangqiu Normal University, Shangqiu 476000, Henan Provence, China
| | - Chuanxin Shi
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, Henan Provence, China; College of Smart Animal Husbandry, Shangqiu Normal University, Shangqiu 476000, Henan Provence, China
| | - Li Xi
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, Henan Provence, China; College of Smart Animal Husbandry, Shangqiu Normal University, Shangqiu 476000, Henan Provence, China
| | - Yanyan Cui
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, Henan Provence, China; College of Smart Animal Husbandry, Shangqiu Normal University, Shangqiu 476000, Henan Provence, China
| | - Hui Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang Province, China.
| |
Collapse
|
4
|
Akmayan I, Oztav S, Coksu I, Abamor ES, Acar S, Ozbek T. Construction of recombinant Omp25 or EipB protein loaded PLGA nanovaccines for Brucellosis protection. NANOTECHNOLOGY 2024; 35:395707. [PMID: 38917779 DOI: 10.1088/1361-6528/ad5b66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Safe and effective vaccine candidates are needed to address the limitations of existing vaccines against Brucellosis, a disease responsible for substantial economic losses in livestock. The present study aimed to encapsulate recombinant Omp25 and EipB proteins, knowledged antigen properties, into PLGA nanoparticles, characterize synthesized nanoparticles with different methods, and assessed theirin vitro/in vivoimmunostimulatory activities to develop new vaccine candidates. The recombinant Omp25 and EipB proteins produced with recombinant DNA technology were encapsulated into PLGA nanoparticles by double emulsion solvent evaporation technique. The nanoparticles were characterized using FE-SEM, Zeta-sizer, and FT-IR instruments to determine size, morphology, zeta potentials, and polydispersity index values, as well as to analyze functional groups chemically. Additionally, the release profiles and encapsulation efficiencies were assessed using UV-Vis spectroscopy. After loading with recombinant proteins, O-NPs reached sizes of 221.2 ± 5.21 nm, while E-NPs reached sizes of 274.4 ± 9.51 nm. The cumulative release rates of the antigens, monitored until the end of day 14, were determined to be 90.39% for O-NPs and 56.1% for E-NPs. Following the assessment of thein vitrocytotoxicity and immunostimulatory effects of both proteins and nanoparticles on the J774 murine macrophage cells,in vivoimmunization experiments were conducted using concentrations of 16µg ml-1for each protein. Both free antigens and antigen-containing nanoparticles excessively induced humoral immunity by increasing producedBrucella-specific IgG antibody levels for 3 times in contrast to control. Furthermore, it was also demonstrated that vaccine candidates stimulated Th1-mediated cellular immunity as well since they significantly raised IFN-gamma and IL-12 cytokine levels in murine splenocytes rather than IL-4 following to immunization. Additionally, the vaccine candidates conferred higher than 90% protection from the infection according to challenge results. Our findings reveal that PLGA nanoparticles constructed with the encapsulation of recombinant Omp25 or EipB proteins possess great potential to triggerBrucella-specific humoral and cellular immune response.
Collapse
Affiliation(s)
- Ilkgul Akmayan
- Department of Molecular Biology and Genetics Faculty of Arts and Sciences, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Sedanur Oztav
- Department of Bioengineering, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Irem Coksu
- Department of Bioengineering, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Emrah Sefik Abamor
- Department of Bioengineering, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Serap Acar
- Department of Bioengineering, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Tulin Ozbek
- Department of Molecular Biology and Genetics Faculty of Arts and Sciences, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| |
Collapse
|
5
|
Yang J, Wang Y, Hou Y, Sun M, Xia T, Wu X. Evasion of host defense by Brucella. CELL INSIGHT 2024; 3:100143. [PMID: 38250017 PMCID: PMC10797155 DOI: 10.1016/j.cellin.2023.100143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Brucella , an adept intracellular pathogen, causes brucellosis, a zoonotic disease leading to significant global impacts on animal welfare and the economy. Regrettably, there is currently no approved and effective vaccine for human use. The ability of Brucella to evade host defenses is essential for establishing chronic infection and ensuring stable intracellular growth. Brucella employs various mechanisms to evade and undermine the innate and adaptive immune responses of the host through modulating the activation of pattern recognition receptors (PRRs), inflammatory responses, or the activation of immune cells like dendritic cells (DCs) to inhibit antigen presentation. Moreover, it regulates multiple cellular processes such as apoptosis, pyroptosis, and autophagy to establish persistent infection within host cells. This review summarizes the recently discovered mechanisms employed by Brucella to subvert host immune responses and research progress on vaccines, with the aim of advancing our understanding of brucellosis and facilitating the development of more effective vaccines and therapeutic approaches against Brucella .
Collapse
Affiliation(s)
- Jinke Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yue Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yuanpan Hou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Mengyao Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Tian Xia
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xin Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| |
Collapse
|
6
|
Synthetic selenium nanoparticles as co-adjuvant improved immune responses against methicillin-resistant Staphylococcus aureus. World J Microbiol Biotechnol 2023; 39:16. [PMID: 36401129 PMCID: PMC9676803 DOI: 10.1007/s11274-022-03455-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of hospital-acquired infections worldwide, which is resistant to many antibiotics, resulting in significant mortality in societies. Vaccination is a well-known approach to preventing disease. Autolysin, a surface-associated protein in S. aureus with multiple functions, is a suitable candidate for vaccine development. As a co-adjuvant, selenium nanoparticles (SeNPs) can increase the immune system, presumably resulting in increased vaccine efficacy. The present study evaluated the immunogenicity and defense of recombinant autolysin formulated in SeNPs and Alum adjuvants against MRSA. r-Autolysin was expressed and purified by the Ni-NTA affinity chromatography. SeNPs were synthetically obtained from sodium dioxide, followed by an assessment of shape and size using SEM and DLS. Balb/c mice were injected subcutaneously with 20 mg of r-autolysin formulated in Alum and SeNps adjuvants three times with the proper control group in 2 weeks intervals. Cytokine profile and isotyping ELISA were conducted to determine the type of induced immunity. Opsonophagocytosis tests assessed the functional activity of the vaccine, and the bacterial burden from the infected tissues was determined. Results showed that mice receiving SeNps and r-Autolysin had higher levels of total IgG and isotypes (IgG1 and IgG2a) and increased cytokine levels (IFN-γ, TNF-α, IL-12, and IL-4) as compared with those only receiving autolysin and PBS as a control. More importantly, mice immunized with SeNps and r-Autolysin exhibited a decrease in mortality and bacterial burden compared to the control group. We concluded that SeNps could stimulate immune responses and can be used as an adjuvant element in vaccine formulation.
Collapse
|