1
|
Kerek Á, Szabó Á, Barnácz F, Csirmaz B, Kovács L, Jerzsele Á. Antimicrobial Susceptibility Profiles of Commensal Enterococcus spp. Isolates from Turkeys in Hungarian Poultry Farms Between 2022 and 2023. Antibiotics (Basel) 2025; 14:331. [PMID: 40298473 PMCID: PMC12024081 DOI: 10.3390/antibiotics14040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Antimicrobial resistance (AMR) has become a serious global challenge in the 21st century. Poultry, including turkeys, are a vital source of animal-derived protein worldwide. Commensal bacterial strains in poultry can act as reservoirs for AMR, making monitoring them crucial for both veterinary and public health. Enterococcus species are emerging pathogens, particularly in severe nosocomial infections. Methods: This study aimed to assess the resistance profiles of commensal Enterococcus strains isolated (n = 470) from large-scale turkey flocks in Hungary. From each animal, two swab samples were collected: one from the oropharyngeal region near the tracheal entrance and one from the cloaca. The samples were subsequently processed, and the minimum inhibitory concentration (MIC) was determined following the Clinical and Laboratory Standards Institute (CLSI) guidelines. The tested antibiotics included amoxicillin, amoxicillin-clavulanic acid, imipenem, neomycin, doxycycline, florfenicol, tylosin, enrofloxacin, potentiated sulfonamide, vancomycin, ceftriaxone, spectinomycin, tiamulin, lincomycin, and colistin. The dilution range for MIC determination was set between 512 and 0.001 µg/mL. Results: Resistance to amoxicillin, a first-line treatment for Enterococcus infections, was low (11.1%). However, high resistance levels were observed for tylosin (62.6%), florfenicol (51.1%), doxycycline (48.7%), and enrofloxacin (45.5%). Notably, vancomycin resistance reached 15.5%, a finding consistent with global trends. Compared to human-derived Enterococcus data, resistance to aminopenicillins was significantly lower in turkey isolates, while neomycin resistance levels were comparable to those observed in human E. faecalis strains. Conclusions: The findings underscore the necessity of continuous surveillance of AMR trends in poultry production. While amoxicillin remains an effective treatment, the presence of multidrug-resistant strains and vancomycin-resistant isolates raises concerns regarding the potential dissemination of resistance genes. Future studies should incorporate next-generation sequencing to elucidate the genetic mechanisms underlying resistance. Additionally, integrating antibiotic usage data from farms may provide further insights into resistance dynamics. Strengthening antibiotic stewardship programs and fostering collaboration between veterinary and human medicine are crucial steps in addressing AMR under the One Health framework.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (Á.S.); (F.B.); (B.C.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary;
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (Á.S.); (F.B.); (B.C.); (Á.J.)
| | - Franciska Barnácz
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (Á.S.); (F.B.); (B.C.); (Á.J.)
| | - Bence Csirmaz
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (Á.S.); (F.B.); (B.C.); (Á.J.)
| | - László Kovács
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary;
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
- Poultry-Care Kft., Lehel út 21, H-5052 Újszász, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (Á.S.); (F.B.); (B.C.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary;
| |
Collapse
|
2
|
Roy S, Aung MS, Paul SK, Khan MNA, Nasreen SA, Hasan MS, Haque N, Barman TK, Khanam J, Sathi FA, Paul S, Ali MI, Kobayashi N. Isolation of vanA-Mediated Vancomycin-Resistant Enterococcus faecalis (ST1912/CC116) and Enterococcus faecium (ST80/CC17), optrA-Positive Linezolid-Resistant E. faecalis (ST32, ST1902) from Human Clinical Specimens in Bangladesh. Antibiotics (Basel) 2025; 14:261. [PMID: 40149072 PMCID: PMC11939402 DOI: 10.3390/antibiotics14030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Enterococcus is one of the major nosocomial pathogens. The present status of antimicrobial resistance determinants and virulence factors was analyzed for current Enterococcus causing infectious diseases in Bangladesh. METHODS Clinical isolates of Enterococcus recovered from various specimens in a tertiary care hospital were analyzed. Antimicrobial susceptibility was measured by a broth microdilution test, and resistance genes/virulence factors were detected by uniplex/multiplex PCR, along with sequencing analysis as required. The sequence type (ST) of E. faecalis and E. faecium was identified based on a multilocus sequence typing (MLST) scheme. RESULTS For a one-year period, a total of 143 isolates (135 E. faecalis, 7 E. faecium, and 1 E. hirae) were collected. Although all E. faecalis isolates were susceptible to penicillin, high resistance rates were noted against erythromycin (87%) and levofloxacin (62%). High-level resistance to gentamicin was detected in 30% of E. faecalis and 86% of E. faecium. Vancomycin resistance due to vanA was identified in one isolate each of E. faecalis (ST1912, CC116) and E. faecium (ST80, CC17). Three E. faecalis isolates (2.2%) with ST32 or ST1902 were resistant to linezolid, harboring optrA-fexA. CONCLUSIONS The present study identifies the vancomycin-resistant Enterococcus harboring vanA from humans in Bangladesh and shows the potential spread of optrA in multiple lineages of E. faecalis.
Collapse
Affiliation(s)
- Sangjukta Roy
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2200, Bangladesh; (S.R.); (S.A.N.); (M.S.H.); (N.H.); (J.K.); (F.A.S.); (S.P.)
| | - Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| | | | - Md. Nazmul Alam Khan
- Department of Radiology and Imaging, Mymensingh Medical College, Mymensingh 2200, Bangladesh;
| | - Syeda Anjuman Nasreen
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2200, Bangladesh; (S.R.); (S.A.N.); (M.S.H.); (N.H.); (J.K.); (F.A.S.); (S.P.)
| | - Muhammad Saiful Hasan
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2200, Bangladesh; (S.R.); (S.A.N.); (M.S.H.); (N.H.); (J.K.); (F.A.S.); (S.P.)
| | - Nazia Haque
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2200, Bangladesh; (S.R.); (S.A.N.); (M.S.H.); (N.H.); (J.K.); (F.A.S.); (S.P.)
| | - Tridip Kanti Barman
- Department of Medicine, Mymensingh Medical College, Mymensingh 2200, Bangladesh;
| | - Jobyda Khanam
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2200, Bangladesh; (S.R.); (S.A.N.); (M.S.H.); (N.H.); (J.K.); (F.A.S.); (S.P.)
| | - Fardousi Akter Sathi
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2200, Bangladesh; (S.R.); (S.A.N.); (M.S.H.); (N.H.); (J.K.); (F.A.S.); (S.P.)
| | - Shashwata Paul
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2200, Bangladesh; (S.R.); (S.A.N.); (M.S.H.); (N.H.); (J.K.); (F.A.S.); (S.P.)
| | | | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| |
Collapse
|
3
|
Kerek Á, Szabó Á, Jerzsele Á. Antimicrobial Susceptibility Profiles of Commensal Enterococcus spp. Isolates from Chickens in Hungarian Poultry Farms Between 2022 and 2023. Antibiotics (Basel) 2024; 13:1194. [PMID: 39766584 PMCID: PMC11672767 DOI: 10.3390/antibiotics13121194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The global spread of antimicrobial resistance (AMR) represents one of the most significant challenges of our generation. It is crucial to continuously monitor AMR, not only by investigating clinical, pathogenic strains but also by monitoring commensal bacterial strains, as they can serve as natural reservoirs of resistance. Infections caused by Enterococcus species are increasingly recognized as emerging threats to both animal and public health. Among economically important livestock, poultry as a major source of animal protein for humans is a frequent carrier of enterococci, and also of sporadically detected clinical disease. Methods: This study aimed to determine the antimicrobial susceptibility profile of Enterococcus strains (n = 499) isolated from chicken farms in Hungary. The minimum inhibitory concentration (MIC) was determined for 15 antibiotics, including 10 with established clinical breakpoints. Results: The strains exhibited good sensitivity to amoxicillin, one of the first-line treatments for Enterococcus infections in veterinary medicine, with only 20.8% showing resistance. However, we observed an alarming 27.9% resistance rate to vancomycin, which is reserved to treat infections caused by multidrug-resistant strains in humans. A comparison of our findings with Hungarian hospital records revealed that the resistance patterns of poultry-derived Enterococcus faecalis strains were very similar to those of human isolates, particularly regarding penicillins and aminoglycosides. Conclusions: Overall, the increasing rates of AMR reinforce the importance of conducting periodic studies to establish long-term trends. For multidrug-resistant strains, next-generation sequencing is recommended to elucidate the genetic basis of resistance.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary; (Á.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary; (Á.S.); (Á.J.)
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary; (Á.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| |
Collapse
|
4
|
Ullah MA, Islam MS, Ferdous FB, Rana ML, Hassan J, Rahman MT. Assessment of prevalence, antibiotic resistance, and virulence profiles of biofilm-forming Enterococcus faecalis isolated from raw seafood in Bangladesh. Heliyon 2024; 10:e39294. [PMID: 39640770 PMCID: PMC11620263 DOI: 10.1016/j.heliyon.2024.e39294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 12/07/2024] Open
Abstract
Enterococcus faecalis are often resistant to different classes of antibiotics, harbor virulence determinants, and produce biofilm. The presence of E. faecalis in raw seafood exhibits serious public health significance. This study aimed to identify antibiotic resistance patterns and virulence factors in biofilm-forming E. faecalis strains extracted from seafood in Bangladesh. A total of 150 samples of raw seafood, comprising 50 shrimps, 25 crabs, and 75 fish, were collected and subjected to culturing, biochemical, and PCR assays to detect E. faecalis. The biofilm-forming abilities of the isolates were determined by Congo Red agar (CRA) plate and Crystal Violet Micro-titer Plate (CVMP) tests. Antibiotic resistance profiles were evaluated using the disk diffusion method. Virulence genes of the isolates were detected by PCR assay. The occurrence of E. faecalis was 29.3 % (44/150), which was higher in crabs and fish (36 %) than in shrimps (16 %). In CRA and CVMP tests, biofilm-forming abilities were observed in 88.64 % of the isolates, whereas 11 (25 %) and 28 (63.6 %) were strong- and intermediate-biofilm formers, respectively. All the isolates contained at least two virulence genes, including pil and ace (97.7 %), sprE (95.5 %), gelE (90.9 %), fsrB (79.6 %), agg (70.5 %), fsrA (68.2 %), and fsrC (61.4 %). All the isolates were phenotypically resistant to penicillin, followed by ampicillin and rifampicin (86.4 %), erythromycin (13.7 %), and tetracycline, vancomycin, norfloxacin, and linezolid (2.3 %). Resistant gene bla TEM was found in 61.4 % of the isolates. Moreover, the study found that E. faecalis strains with strong biofilm-forming capabilities had significantly higher levels of virulence genes and antibiotic resistance (p < 0.05) compared to those with intermediate and/or no biofilm-forming abilities. To the best of our knowledge, this research represents the first instance in Bangladesh of assessing antibiotic resistance and identifying virulence genes in biofilm-forming E. faecalis strains isolated from seafood samples. Our study revealed that seafood is a carrier of antibiotic-resistant, virulent, and biofilm-forming E. faecalis, demonstrating a potential public health threat.
Collapse
Affiliation(s)
| | | | - Farhana Binte Ferdous
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Liton Rana
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Jayedul Hassan
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
5
|
Li Y, Bi S, Guan W, Iddrisu L, Wei S, Chen Y, Sun L, Deng Q, Jiang Y, Fang Z, Gooneratne R. Antibiotic susceptibility of Vibrio parahaemolyticus isolated from prawns and oysters marketed in Zhanjiang, China. MARINE POLLUTION BULLETIN 2024; 206:116712. [PMID: 39018820 DOI: 10.1016/j.marpolbul.2024.116712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
To evaluate the antibiotic susceptibility of Vibrio parahaemolyticus from prawns and oysters marketed in Zhanjiang, Guangdong, China. 84 strains of V. parahaemolyticus were isolated from prawns and oysters sampled from 9 major markets. The results showed that 84 V. parahaemolyticus strains had the highest rate of antibiotic resistance to oxytetracycline (69.05 %, 58/84) and the lowest rate of antibiotic resistance to enrofloxacin (1.19 %, 1/84), ciprofloxacin (4.76 %, 4/84) and norfloxacin (7.14 %, 6/84) in quinolone. Meanwhile, 96.42 % of the strains showed multiple antibiotic resistance (MAR). PCR results showed that the resistance phenotype was closely related to the antibiotic resistance genes and efflux pump genes (p < 0.01), and the efflux pump gene was the key causing MAR. The combination of antibiotics significantly eliminated multidrug resistance. In addition, efflux pump inhibitors also reduce MAR. This study may provide information on antibiotic susceptibility, antibiotic resistance and strategies for the control of V. parahaemolyticus.
Collapse
Affiliation(s)
- Yongbin Li
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Siyuan Bi
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Jinyue Test Technology Co., Ltd., Shenzhen 510100, China
| | - Wenhao Guan
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lukman Iddrisu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yinyan Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongqing Jiang
- Shenzhen Jinyue Test Technology Co., Ltd., Shenzhen 510100, China; Shenzhen Lvshiyuan Biotechnology Co., Ltd., Shenzhen 510100, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, Canterbury 7647, New Zealand
| |
Collapse
|
6
|
Zaidi SEZ, Zaheer R, Zovoilis A, McAllister TA. Enterococci as a One Health indicator of antimicrobial resistance. Can J Microbiol 2024; 70:303-335. [PMID: 38696839 DOI: 10.1139/cjm-2024-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The rapid increase of antimicrobial-resistant bacteria in humans and livestock is concerning. Antimicrobials are essential for the treatment of disease in modern day medicine, and their misuse in humans and food animals has contributed to an increase in the prevalence of antimicrobial-resistant bacteria. Globally, antimicrobial resistance is recognized as a One Health problem affecting humans, animals, and environment. Enterococcal species are Gram-positive bacteria that are widely distributed in nature. Their occurrence, prevalence, and persistence across the One Health continuum make them an ideal candidate to study antimicrobial resistance from a One Health perspective. The objective of this review was to summarize the role of enterococci as an indicator of antimicrobial resistance across One Health sectors. We also briefly address the prevalence of enterococci in human, animal, and environmental settings. In addition, a 16S RNA gene-based phylogenetic tree was constructed to visualize the evolutionary relationship among enterococcal species and whether they segregate based on host environment. We also review the genomic basis of antimicrobial resistance in enterococcal species across the One Health continuum.
Collapse
Affiliation(s)
- Sani-E-Zehra Zaidi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- University of Manitoba, Department of Biochemistry and Medical Genetics, 745 Bannatyne Ave, Winnipeg
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Athanasios Zovoilis
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- University of Manitoba, Department of Biochemistry and Medical Genetics, 745 Bannatyne Ave, Winnipeg
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
7
|
Massaccesi L, Albini E, Massacci FR, Giusepponi D, Paoletti F, Sdogati S, Morena F, Agnelli A, Leccese A, Magistrali CF, Galarini R. Impact of Soil Fertilization with Pig Slurry on Antibiotic Residues and Resistance Genes: A Longitudinal Study. Antibiotics (Basel) 2024; 13:486. [PMID: 38927154 PMCID: PMC11200711 DOI: 10.3390/antibiotics13060486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
The impact of soil fertilization with animal manure on the spread and persistence of antibiotic resistance in the environment is far from being fully understood. To add knowledge about persistence and correlations between antibiotic residues and antibiotic resistance genes (ARGs) in fertilized soil, a longitudinal soil mesocosm study was conducted. Soil samples were collected from the mesocosms immediately before spreading and then afterward at fifteen time points during a 320-day observation period. Eight ARGs (ermB, sul1, tetA, tetG, tetM, cfr, fexA, and optrA) and the class 1 integron-integrase gene, intI1, were determined in both pig slurry and soil, as well as residues of 36 antibiotics. Soil chemical and biochemical parameters were also measured. Twelve antibiotics were detected in the slurry in the range of 3 µg kg-1-3605 µg kg-1, with doxycycline, lincomycin, and tiamulin being the most abundant, whereas ermB, sul1, and tetM were the predominant ARGs. Before spreading, neither antibiotic residues nor ARGs were detectable in the soil; afterwards, their concentrations mirrored those in the slurry, with a gradual decline over the duration of the experiment. After about three months, the effect of the amendment was almost over, and no further evolution was observed.
Collapse
Affiliation(s)
- Luisa Massaccesi
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (ISAFOM-CNR), 06128 Perugia, Italy;
| | - Elisa Albini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| | - Francesca Romana Massacci
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| | - Danilo Giusepponi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| | - Fabiola Paoletti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| | - Stefano Sdogati
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy;
| | - Alberto Agnelli
- Department of Agricultural, Food and Environmental Science, University of Perugia, 06124 Perugia, Italy; (A.A.); (A.L.)
| | - Angelo Leccese
- Department of Agricultural, Food and Environmental Science, University of Perugia, 06124 Perugia, Italy; (A.A.); (A.L.)
| | - Chiara Francesca Magistrali
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, 25124 Brescia, Italy
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| |
Collapse
|
8
|
Wódz K, Chodkowska KA, Iwiński H, Różański H, Wojciechowski J. In Vitro Evaluation of Phytobiotic Mixture Antibacterial Potential against Enterococcus spp. Strains Isolated from Broiler Chicken. Int J Mol Sci 2024; 25:4797. [PMID: 38732016 PMCID: PMC11084370 DOI: 10.3390/ijms25094797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Enterococcus spp. are normal intestinal tract microflorae found in poultry. However, the last decades have shown that several species, e.g., Enterococcus cecorum, have become emerging pathogens in broilers and may cause numerous losses in flocks. In this study, two combinations (H1 and H2) of menthol, 1,8-cineol, linalool, methyl salicylate, γ-terpinene, p-cymene, trans-anethole, terpinen-4-ol and thymol were used in an in vitro model, analyzing its effectiveness against the strains E. cecorum, E. faecalis, E. faecium, E. hirae and E. gallinarum isolated from broiler chickens from industrial farms. To identify the isolated strains classical microbiological methods and VITEK 2 GP cards were used. Moreover for E. cecorum a PCR test was used.. Antibiotic sensitivity (MIC) tests were performed for all the strains. For the composition H1, the effective dilution for E. cecorum and E. hirae strains was 1:512, and for E. faecalis, E. faecium and E. gallinarum, 1:1024. The second mixture (H2) showed very similar results with an effectiveness at 1:512 for E. cecorum and E. hirae and 1:1024 for E. faecalis, E. faecium and E. gallinarum. The presented results suggest that the proposed composition is effective against selected strains of Enterococcus in an in vitro model, and its effect is comparable to classical antibiotics used to treat this pathogen in poultry. This may suggest that this product may also be effective in vivo and provide effective support in the management of enterococcosis in broiler chickens.
Collapse
Affiliation(s)
- Karolina Wódz
- Laboratory of Molecular Biology, Vet-Lab Brudzew, Turkowska 58c, 62-720 Brudzew, Poland;
| | | | - Hubert Iwiński
- AdiFeed Sp. z o.o., Chrzanowska 15, 05-825 Grodzisk Mazowiecki, Poland; (H.I.); (H.R.)
| | - Henryk Różański
- AdiFeed Sp. z o.o., Chrzanowska 15, 05-825 Grodzisk Mazowiecki, Poland; (H.I.); (H.R.)
- Laboratory of Industrial and Experimental Biology, Institute for Health and Economics, Carpathian State College in Krosno, Rynek 1, 38-400 Krosno, Poland
| | - Jakub Wojciechowski
- Laboratory of Molecular Biology, Vet-Lab Brudzew, Turkowska 58c, 62-720 Brudzew, Poland;
| |
Collapse
|
9
|
Li Y, Li R, Hou J, Sun X, Wang Y, Li L, Yang F, Yao Y, An Y. Mobile genetic elements affect the dissemination of antibiotic resistance genes (ARGs) of clinical importance in the environment. ENVIRONMENTAL RESEARCH 2024; 243:117801. [PMID: 38043895 DOI: 10.1016/j.envres.2023.117801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The prevalence of antibiotic resistance genes (ARGs) in the environment is a quintessential One Health issue that threats both human and ecosystem health; however, the source and transmission of ARGs, especially clinically important ARGs (CLIARGs), in the environment have not yet been well studied. In the present study, shotgun metagenomic approaches were used to characterize the microbiome, resistome, and mobilome composition in human feces and six different environment sample types in South China. Overall, the resistome harbored 157 CLIARGs, with specific ARG hotspots (e.g., human feces, wastewater treatment plants, livestock manure and wastewater) excreting significantly higher abundance of CLIARGs compared with the natural environment. A redundancy analysis (RDA) was performed and revealed that the bacterial community compositions and mobile genetic elements (MGEs) explained 55.08% and 34.68% of the variations in ARG abundance, respectively, indicating that both bacterial community and MGEs are key contributors to the maintenance and dissemination of CLIARGs in the environment. The network analysis revealed non-random co-occurrence patterns between 200 bacterial genera and 147 CLIARGs, as well as between 135 MGEs and 123 CLIARGs. In addition to numerous co-shared CLIARGs among different sample types, the source tracking program based on the FEAST probabilistic model was used to estimate the relative contributions of the CLIARGs from potential sources to the natural environment. The source tracking analysis results delineated that mobilome, more than microbiome, contributed CLIARG transmission from those ARG hotspots into natural environment, and the MGEs in WWTPs seem to play the most significant role in the spread of CLIARGs to the natural environment (average contribution 32.9%-46.4%). Overall, this study demonstrated the distribution and dissemination of CLIARGs in the environment, and aimed to better inform strategies to control the spread of CLIARGs into the natural environment.
Collapse
Affiliation(s)
- Ye Li
- School of Environment Science and Engineering, Tianjin University, Tianjin, 300350, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Ruilin Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jie Hou
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Xuan Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yajun Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Linyun Li
- Ministry of Social and Ecological Civilization, Party School of Hebei Provincial Committee of C.P.C, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yanpo Yao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Yi An
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
10
|
Nemathaga M, Smith RM, Malatji DP. Interactions between the helminth and intestinal microbiome in smallholder chicken farming systems. Front Vet Sci 2023; 10:1309151. [PMID: 38179334 PMCID: PMC10766368 DOI: 10.3389/fvets.2023.1309151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
Helminth parasite infections are widespread in smallholder farming systems affecting farmers and livestock animals. There are pathogenic parasites that populate the gut of their host and coexist closely with the gut microbiota. The physical and immunological environment of the gut can be modified by parasites and microbiota creating a wide range of interactions. These interactions modify the development of infection, affects overall host health, and can modify the way a host interacts with its bacterial microbiota. In addition, where there is a high worm burden parasites will affect the health of the host and intestinal tract colonization. This review highlights key studies on the interaction between helminth parasites and the intestinal microbiome to understand the relationship between parasitic worm infections and gut microbiome health in chickens. Finally, the review discusses modulations, molecular changes, and the importance of helminth-microbiome interactions for the host.
Collapse
Affiliation(s)
| | | | - Dikeledi P. Malatji
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Science, University of South Africa, Roodepoort, South Africa
| |
Collapse
|
11
|
Ferdous T, Ferdouse S, Hossain MS, Sohidullah M, Marma YNF, Nath SK, Biswas PK. Prevalence of Escherichia coli isolated from oropharynx and trachea of clinically sick poultry and antimicrobial resistance pattern of the strains isolated. Biochem Biophys Rep 2023; 36:101555. [PMID: 37881408 PMCID: PMC10594550 DOI: 10.1016/j.bbrep.2023.101555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
The study was carried out to investigate the isolation of Escherichia coli from tracheal and oropharyngeal swab of clinically sick chickens. The antibiotic susceptibility patterns of the isolates to several antimicrobials were determined with a striking emphasis on oxytetracycline. The PCR technique was applied to detect tetA, tetB, and tetC in the tetracycline-resistant isolates. The isolates were initially screened for their resistance patterns against 6 antimicrobials of six different groups using the disc diffusion technique. The results showed that 41% tracheal, 51% oropharyngeal, and 34% samples from both sites were E. coli positive respectively. Antimicrobial resistance profiling of the isolates revealed that all the isolates were resistant to oxytetracycline and sulphamethoxazole-trimethoprim, and also 90 %, 82.9%, 63.4%, and 39% resistant to ciprofloxacin, amoxicillin, gentamicin, and colistin respectively. Notably, 82.9% isolates (95% CI 68.4%-91.8%) showed resistance to ≥3 groups of antimicrobials that means these were multi-drug resistant. Among the tetracycline-resistant isolates, 85.4% (95% CI 71.2%-93.5%), 29.3% (7.5%-44.6%), and 7.3% (1.8% - 20.1) were positive for tetA, tetB, and tetC genes respectively. The frequency of the isolation of E. coli is greater in oropharyngeal than tracheal and both kinds of samples. Commercial poultry with E. coli strains has acquired extensive resistance to oxytetracycline. This study suggests a possible association between the tetA gene and oxytetracycline resistance in E. coli isolates, but further investigations like knockdown, whole-genome sequencing, and rescue experiments are needed to establish a direct causal relationship.
Collapse
Affiliation(s)
- Tanima Ferdous
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, 4225, Chattogram, Bangladesh
| | - Shaolin Ferdouse
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Md. Shahadat Hossain
- Upazilla Livestock Office and Veterinary Hospital, Dighalia, 9220, Khulna, Bangladesh
| | - M. Sohidullah
- Department of Microbiology and Public Health, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Yaing Nue Frue Marma
- Livestock Extension Officer, Upazilla Livestock Office and Veterinary Hospital, Lohagara, 4396, Chattogram, Bangladesh
| | - Sabuj Kanti Nath
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Paritosh Kumar Biswas
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, 4225, Chattogram, Bangladesh
| |
Collapse
|
12
|
Mudenda S, Bumbangi FN, Yamba K, Munyeme M, Malama S, Mukosha M, Hadunka MA, Daka V, Matafwali SK, Siluchali G, Mainda G, Mukuma M, Hang’ombe BM, Muma JB. Drivers of antimicrobial resistance in layer poultry farming: Evidence from high prevalence of multidrug-resistant Escherichia coli and enterococci in Zambia. Vet World 2023; 16:1803-1814. [PMID: 37859964 PMCID: PMC10583887 DOI: 10.14202/vetworld.2023.1803-1814] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/10/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim Inappropriate use of antimicrobials exacerbates antimicrobial resistance (AMR) in the poultry sector. Information on factors driving AMR in the layer poultry sector is scarce in Zambia. This study examined the drivers of AMR in the layer poultry sector in the Lusaka and Copperbelt Provinces of Zambia. Materials and Methods This cross-sectional study employed a structured questionnaire in 77 layer poultry farms in the provinces of Lusaka and Copperbelt, Zambia, from September 2020 to April 2021. Data analysis was conducted using Stata version 16.1. Antimicrobial resistance was defined as the presence of multidrug resistance (MDR) isolates. Multivariable regression analysis was used to identify drivers of AMR. Results In total, 365 samples were collected, from which 339 (92.9%) Escherichia coli and 308 (84.4%) Enterococcus spp. were isolated. Multidrug resistance was identified in 39% of the E. coli and 86% of the Enterococcus spp. The overall prevalence of AMR in layer poultry farms was 51.7% (95% confidence interval [CI]: 40.3%-63.5%). Large-scale farmers (Adjusted odds ratio [AOR] = 0.20, 95% CI: 0.04%-0.99%) than small-scale and farmers who were aware of AMR than those who were unaware (AOR = 0.26, 95% CI: 0.08%-0.86%) were less likely to experience AMR problems. Conclusion This study found a high prevalence of AMR in layer poultry farming linked to the type of farm management practices and lack of AMR awareness. Evidence of high MDR in our study is of public health concern and requires urgent attention. Educational interventions must increase AMR awareness, especially among small- and medium-scale poultry farmers.
Collapse
Affiliation(s)
- Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Flavien Nsoni Bumbangi
- Department of Medicine and Clinical Sciences, School of Medicine, Eden University, Lusaka, Zambia
| | - Kaunda Yamba
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
- Department of Biological Sciences, School of Natural Sciences, University of Zambia, Lusaka, Zambia
| | - Musso Munyeme
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Sydney Malama
- Department of Pathology and Microbiology Laboratory, University Teaching Hospitals, Lusaka, Zambia
| | - Moses Mukosha
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | | | - Victor Daka
- Department of Public Health, Michael Chilufya Sata School of Medicine, Copperbelt University, Ndola, Zambia
| | - Scott Kaba Matafwali
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Godfrey Siluchali
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
- Department of Anatomy and Physiological Sciences, Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Geoffrey Mainda
- Food and Agriculture Organization (FAO) of the United Nations, House No. 5 Chaholi, off Addis Ababa drive, Lusaka, Zambia
| | - Mercy Mukuma
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Zambia, Lusaka, Zambia
| | - Bernard Mudenda Hang’ombe
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| |
Collapse
|
13
|
Ullah MA, Islam MS, Rana ML, Ferdous FB, Neloy FH, Firdous Z, Hassan J, Rahman MT. Resistance Profiles and Virulence Determinants in Biofilm-Forming Enterococcus faecium Isolated from Raw Seafood in Bangladesh. Pathogens 2023; 12:1101. [PMID: 37764909 PMCID: PMC10535238 DOI: 10.3390/pathogens12091101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Pathogenic, antibiotic-resistant, and biofilm-forming bacteria can be transferred to humans through the consumption of contaminated seafood. The present study was carried out to determine antibiotic resistance profiles and virulence determinants in biofilm-forming Enterococcus faecium isolated from seafood in Bangladesh. A total of 150 seafood samples, including shrimp (n = 50), crabs (n = 25), and marine fish (n = 75), were screened using cultural, staining, biochemical, polymerase chain reaction (PCR), Congo red (CR), and disk diffusion (DD) assays. In PCR, E. faecium was detected in 27.3% (41/150; CI95% 20.8; 34.9) of samples, where marine fish (34.7%, CI95% 24.9; 45.9) had the highest prevalence (p < 0.05) compared to crabs (32%, CI95% 17.2; 51.6) and shrimp (14%, CI95% 7.0; 26.1). Thirty-two (78.1%, CI95% 63.3; 88.0) of the E. faecium isolates were determined to be biofilm formers in the CR test, where 43.9% (18/41, CI95% 29.9; 59.0) and 34.2% (14/41, CI95% 21.6; 49.5) of the isolates were strong and intermediate biofilm formers, respectively. In PCR, virulence genes, i.e., pil (100%), ace (92.7%), agg (68.3%), fsrA (65.9%), gelE (63.4%), sprE (53.7%), fsrB (51.2%), and fsrC (43.9%), were detected in E. faecium isolates. All the E. faecium isolates were phenotypically resistant to ≥3 antimicrobial categories and ≥3 antibiotics, including WHO-classified reserve antibiotics linezolid (70.7%) and fosfomycin (19.5%). Moreover, the multiple antibiotic resistance index ranged up to 0.8, showing resistance to ten antibiotics and eight antibiotic classes. In this study, the prevalence of virulence genes and antibiotic resistance was significantly greater (p < 0.05) in strong biofilm-forming E. faecium strains as compared to strains with intermediate and non-biofilm-forming abilities. As far as we know, this study, for the first time in Bangladesh, determined antibiotic resistance and detected virulence genes in biofilm-forming E. faecium isolated from seafood samples. The data from this study could play a significant role in evaluating potential health hazards linked to the ingestion of uncooked or minimally processed seafood.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Md. Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.U.); (M.S.I.); (M.L.R.); (F.B.F.); (F.H.N.); (Z.F.); (J.H.)
| |
Collapse
|
14
|
Ferdous FB, Islam MS, Ullah MA, Rana ML, Punom SA, Neloy FH, Chowdhury MNU, Hassan J, Siddique MP, Saha S, Rahman MT. Antimicrobial Resistance Profiles, Virulence Determinants, and Biofilm Formation in Enterococci Isolated from Rhesus Macaques ( Macaca mulatta): A Potential Threat for Wildlife in Bangladesh? Animals (Basel) 2023; 13:2268. [PMID: 37508046 PMCID: PMC10376288 DOI: 10.3390/ani13142268] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Enterococci are commensal bacteria that inhabit the digestive tracts of animals and humans. The transmission of antibiotic-resistant genes through human-animal contact poses a potential public health risk worldwide, as zoonoses from wildlife reservoirs can occur on every continent. The purpose of this study was to detect Enterococcus spp. in rhesus macaques (Macaca mulatta) and to investigate their resistance patterns, virulence profiles, and biofilm-forming ability. Conventional screening of rectal swabs (n = 67) from macaques was followed by polymerase chain reaction (PCR). The biofilm-forming enterococci were determined using the Congo red agar plate assay. Using the disk diffusion test (DDT), antibiogram profiles were determined, followed by resistance and virulence genes identification by PCR. PCR for bacterial species confirmation revealed that 65.7% (44/67) and 22.4% (15/67) of the samples tested positive for E. faecalis and E. faecium, respectively. All the isolated enterococci were biofilm formers. In the DDT, enterococcal isolates exhibited high to moderate resistance to penicillin, rifampin, ampicillin, erythromycin, vancomycin, and linezolid. In the PCR assays, the resistance gene blaTEM was detected in 61.4% (27/44) of E. faecalis and 60% (9/15) of E. faecium isolates. Interestingly, 88.63 % (39/44) of E. faecalis and 100% (15/15) of E. faecium isolates were phenotypically multidrug-resistant. Virulence genes (agg, fsrA, fsrB, fsrC, gelE, sprE, pil, and ace) were more frequent in E. faecalis compared to E. faecium; however, isolates of both Enterococcus spp. were found negative for the cyl gene. As far as we know, the present study has detected, for the first time in Bangladesh, the presence of virulence genes in MDR biofilm-forming enterococci isolated from rhesus macaques. The findings of this study suggest employing epidemiological surveillance along with the one-health approach to monitor these pathogens in wild animals in Bangladesh, which will aid in preventing their potential transmission to humans.
Collapse
Affiliation(s)
- Farhana Binte Ferdous
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Saiful Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Ashek Ullah
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Liton Rana
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sadia Afrin Punom
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Fahim Haque Neloy
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | | | - Jayedul Hassan
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mahbubul Pratik Siddique
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
15
|
Islam MS, Rahman AT, Hassan J, Rahman MT. Extended-spectrum beta-lactamase in Escherichia coli isolated from humans, animals, and environments in Bangladesh: A One Health perspective systematic review and meta-analysis. One Health 2023; 16:100526. [PMID: 37363210 PMCID: PMC10288049 DOI: 10.1016/j.onehlt.2023.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli has been linked to both life-threatening hospital- and community-acquired infections across the globe. Here, we conducted a systematic review and meta-analysis to evaluate the prevalence of ESBL in E. coli isolated from humans, animals, and environments in Bangladesh. Following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, the current systematic review and meta-analysis was taken into account for studies published between 2010 and 2021 in peer-reviewed journals. The meta-analysis was performed on "R" version 4.2.2. A total of 36 studies were included in this systematic review and meta-analysis; among them, 22 were human, seven were animal, four were environmental, and three were multidisciplinary studies. The meta-analysis revealed that the pooled prevalence of ESBL-producing E. coli in Bangladesh was 21% (95% CI: 15%-27%). On the sample basis, the pooled prevalence of ESBL-producing E. coli in humans, animals, and environments was 17% (95% CI: 11%-23%), 22% (95% CI: 9%-34%), and 39% (95% CI: 16%-62%), respectively. All the pooled prevalence of ESBL-producing E. coli showed substantial heterogeneity (I2 > 75%; p < 0.05) among the selected studies. This systematic review reported 13 different types of resistance genes encoding ESBL, such as blaTEM-1 (37.5%), blaCMY (34.6%), blaCTX-M-1 (20.7%), blaCTX-M-15 (16.1%), blaTEM (12.3%), blaCTX-M and blaOXA (9.6%), blaOXA-1 (5.8%), blaampC (3.9%), blaSHV (3.8%), blaCMY-2 (2.3%), blaCTX-M-14 (1.3%), and blaCTX-M-9 (0.3%). Moreover, 39 types of epidemiologically important clones (including ST10 and ST131) were detected in ESBL-producing E. coli isolated from humans, animals, and environments in Bangladesh. To the best of our knowledge, this is the first systematic review and meta-analysis of integrated studies on ESBL-producing E. coli using the One Health approach in Bangladesh. The high prevalence of ESBL-producing E. coli, their resistance genes, and epidemiologically important clones in humans, animals, and environments highlights the importance of implementing comprehensive antimicrobial resistance (AMR) surveillance under a One Health perspective to mitigate the AMR consequences in Bangladesh.
Collapse
Affiliation(s)
- Md. Saiful Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | | | - Jayedul Hassan
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
16
|
Ahmed T, Islam MS, Haider N, Elton L, Hasan B, Nuruzzaman M, Rahman MT, Kabir SML, Khan MSR. Phenotypic and Genotypic Characteristics of Antimicrobial Resistance in Citrobacter freundii Isolated from Domestic Ducks ( Anas platyrhynchos domesticus) in Bangladesh. Antibiotics (Basel) 2023; 12:antibiotics12040769. [PMID: 37107131 PMCID: PMC10135275 DOI: 10.3390/antibiotics12040769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Antimicrobial resistance (AMR) in Citrobacter freundii poses a serious challenge as this species is one of the sources of nosocomial infection and causes diarrheal infections in humans. Ducks could be the potential source of multidrug-resistant (MDR) C. freundii; however, AMR profiles in C. freundii from non-human sources in Bangladesh have remained elusive. This study aimed to detect C. freundii in domestic ducks (Anas platyrhynchos domesticus) in Bangladesh and to determine their phenotypic and genotypic antibiotic susceptibility patterns. A total of 150 cloacal swabs of diseased domestic ducks were screened using culturing, staining, biochemical, polymerase chain reaction (PCR), and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) to detect C. freundii. Phenotypic and genotypic antibiotic susceptibility patterns were done by the disk diffusion method and PCR, respectively. In total, 16.67% (25/150) of the samples were positive for C. freundii. C. freundii isolates showed a range of 20% to 96% resistance to cefotaxime, gentamicin, levofloxacin, ciprofloxacin, cotrimoxazole, tetracycline, ampicillin, and cephalexin. More than 60% of the isolates were phenotypically MDR, and the index of multiple antibiotic resistance ranged from 0.07 to 0.79. Genes encoding resistance to beta-lactams [blaTEM-1-88% (22/25), blaCMY-2-56% (14/25), blaCMY-9-8% (2/25), and blaCTX-M-14-20% (5/25)], sulfonamides [sul1-52% (13/25), sul2-24% (6/25)], tetracyclines [tetA-32% (8/25) and tetB-4% (1/25)], aminoglycosides [aacC4-16% (4/25)], and fluoroquinolones [qnrA-4% (1/25), qnrB-12% (3/25), and qnrS-4% (1/25)] were detected in the isolated C. freundii. To the best of our knowledge, this is the first study in Bangladesh to detect MDR C. freundii with their associated resistance genes from duck samples. We suggest addressing the burden of diseases in ducks and humans and associated AMR issues using the One Health approach.
Collapse
Affiliation(s)
- Tarana Ahmed
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Department of Livestock Services, Ministry of Fisheries & Livestock, Government of the Peoples Republic of Bangladesh, Krishi Khamar Sarak, Farmgate, Dhaka 1215, Bangladesh
| | - Md Saiful Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Najmul Haider
- School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK
- The Royal Veterinary College, University of London, Hertfordshire AL9 7TA, UK
| | - Linzy Elton
- Centre for Clinical Microbiology, Department of Infection, Division of Infection and Immunity, Royal Free Campus, University College London, London NW3 2PF, UK
| | - Badrul Hasan
- Department of Jobs, Precincts and Regions, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | | | - Md Tanvir Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - S M Lutful Kabir
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Shahidur Rahman Khan
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
17
|
Ribeiro J, Silva V, Monteiro A, Vieira-Pinto M, Igrejas G, Reis FS, Barros L, Poeta P. Antibiotic Resistance among Gastrointestinal Bacteria in Broilers: A Review Focused on Enterococcus spp. and Escherichia coli. Animals (Basel) 2023; 13:1362. [PMID: 37106925 PMCID: PMC10135345 DOI: 10.3390/ani13081362] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Chickens can acquire bacteria at different stages, and bacterial diversity can occur due to production practices, diet, and environment. The changes in consumer trends have led to increased animal production, and chicken meat is one of the most consumed meats. To ensure high levels of production, antimicrobials have been used in livestock for therapeutic purposes, disease prevention, and growth promotion, contributing to the development of antimicrobial resistance across the resident microbiota. Enterococcus spp. and Escherichia coli are normal inhabitants of the gastrointestinal microbiota of chickens that can develop strains capable of causing a wide range of diseases, i.e., opportunistic pathogens. Enterococcus spp. isolated from broilers have shown resistance to at least seven classes of antibiotics, while E. coli have shown resistance to at least four. Furthermore, some clonal lineages, such as ST16, ST194, and ST195 in Enterococcus spp. and ST117 in E. coli, have been identified in humans and animals. These data suggest that consuming contaminated animal-source food, direct contact with animals, or environmental exposure can lead to the transmission of antimicrobial-resistant bacteria. Therefore, this review focused on Enterococcus spp. and E. coli from the broiler industry to better understand how antibiotic-resistant strains have emerged, which antibiotic-resistant genes are most common, what clonal lineages are shared between broilers and humans, and their impact through a One Health perspective.
Collapse
Affiliation(s)
- Jessica Ribeiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Andreia Monteiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Madalena Vieira-Pinto
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Filipa S. Reis
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
18
|
A Systematic Review on the Occurrence of Antimicrobial-Resistant Escherichia coli in Poultry and Poultry Environments in Bangladesh between 2010 and 2021. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2425564. [PMID: 36778056 PMCID: PMC9908353 DOI: 10.1155/2023/2425564] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023]
Abstract
Antimicrobial resistance (AMR) is a significant public health issue in Bangladesh like many other developing countries where data on resistance trends are scarce. Moreover, the existence of multidrug-resistant (MDR) Escherichia coli exerts an ominous effect on the poultry sector. Therefore, the current systematic review, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, was conducted to find out the AMR scenarios in E. coli isolates sourced from poultry and poultry environments in Bangladesh between 2010 and 2021. Following the PRISMA guidelines, a total of 17 published scientific articles were selected for this systematic review. This review revealed that 18 out of 64 districts in Bangladesh reported E. coli in poultry, having a higher prevalence (combined prevalence: 69.3%, 95% confidence interval, CI: 67.3-71%). Moreover, the prevalence ranged from 24.3% to 100%. This review found that E. coli isolates showed resistance to 14 antimicrobial classes and 45 different antimicrobial agents, including the last-line (reserve group) antibiotics and banned antimicrobial categories for the treatment of infections in agricultural animals. Phenotypic resistance of E. coli against penicillins and beta-lactamase inhibitors (20.2%-100%), cephalosporins (1.9%-100%), fluoroquinolones (5.98%-100%), aminoglycosides (6%-100%), tetracyclines (17.7%-100%), carbapenems (13.6%-72.7%), macrolides (11.8%-100%), polymyxins (7.9%-100%), phenicols (20%-97.2%), sulfa drugs (44.7%-100%), cephamycins (21.4%-48.8%), nitrofurans (21.4%-63.2%), monobactams (1.2%), and glycylcyclines (2.3%) was recorded in the last decades in Bangladesh. Also, 14 articles reported MDR E. coli in poultry, including a 100% MDR in nine articles and a 92.7% (95% CI: 91.2-94%) combined percentage of MDR E. coli isolates. Twenty-four different AMR genes encoding resistance to beta-lactams (bla TEM, bla CTX-M-1, bla CTX-M-2, bla CTX-M-9, bla OXA-1, bla OXA-47, bla SHV, and CITM), colistin (mcr1 and mcr3), fluoroquinolones (qnrB and qnrS), tetracyclines (tetA, tetB, and tetC), sulfonamides (sulI and sulII), trimethoprim (dfrA1), aminoglycosides (rmtB), streptomycin (aadA1), gentamicin (aac-3-IV), erythromycin (ereA), and chloramphenicol (catA1 and cmlA) were detected in E. coli isolates. The presence of MDR E. coli and their corresponding resistance genes in poultry and poultry environments is an alarming issue for all health communities in Bangladesh. We suggest a regular antimicrobial surveillance program with a strong One Health approach to lessen the hazardous effects of AMR E. coli in poultry industries in Bangladesh.
Collapse
|
19
|
Mudenda S, Matafwali SK, Malama S, Munyeme M, Yamba K, Katemangwe P, Siluchali G, Mainda G, Mukuma M, Bumbangi FN, Mirisho R, Muma JB. Prevalence and antimicrobial resistance patterns of Enterococcus species isolated from laying hens in Lusaka and Copperbelt provinces of Zambia: a call for AMR surveillance in the poultry sector. JAC Antimicrob Resist 2022; 4:dlac126. [PMID: 36570686 PMCID: PMC9772873 DOI: 10.1093/jacamr/dlac126] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Background The use of antimicrobials in layer poultry production for improved production, growth promotion, prophylaxis and treatment purposes has contributed to the development of antimicrobial resistance (AMR) in poultry. In Zambia, there is a paucity of information on the prevalence and AMR patterns of Enterococcus species isolated from laying hens. Objectives This study investigated the prevalence and AMR patterns of enterococci isolated in layer hens in Lusaka and Copperbelt provinces of Zambia. Methods A cross-sectional study was conducted from September 2020 to April 2021. Three hundred and sixty-five pooled cloacal swab samples were collected from 77 layer poultry farms. Enterococci identification and confirmation were performed using Analytical Profile Index (API 20 STREP) and 16S rRNA sequencing, respectively. A panel of nine antibiotics was used for antibiotic susceptibility testing and interpreted according to the CLSI 2020 guidelines. Data were analysed using SPSS version 23 and WHONET 2020. Results A total of 308 (83%) single Enterococcus species isolates were obtained and showed resistance to tetracycline (80.5%), erythromycin (53.6%), quinupristin/dalfopristin (53.2%), ampicillin (36.72%), vancomycin (32.8%), linezolid (30.2%), ciprofloxacin (11.0%), nitrofurantoin (6.5%) and chloramphenicol (3.9%). The prevalence of enterococci resistant to at least one antibiotic was 99.4% (n = 306), of which 86% (n = 265) were MDR. Conclusions This study found a high prevalence of antimicrobial-resistant enterococci. The presence of MDR requires urgent intervention and implementation of AMR surveillance strategies and antimicrobial stewardship programmes in layer poultry production in Zambia.
Collapse
Affiliation(s)
- Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia.,Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Sydney Malama
- Department of Biological Sciences, School of Natural Sciences, University of Zambia, Lusaka, Zambia
| | - Musso Munyeme
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Kaunda Yamba
- Department of Pathology & Microbiology Laboratory, University Teaching Hospitals, Lusaka, Zambia
| | - Patrick Katemangwe
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Godfrey Siluchali
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia.,Department of Anatomy and Physiological Sciences, Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Geoffrey Mainda
- Department of Veterinary Services, Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Mercy Mukuma
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Zambia, Lusaka, Zambia
| | - Flavien Nsoni Bumbangi
- Department of Medicine, School of Medicine, Eden University, P.O. Box 37727, Lusaka, Zambia
| | - Robert Mirisho
- Department of Public Health, St Francis University College of Health and Allied Sciences, Ifakara, Tanzania
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| |
Collapse
|
20
|
Ballah FM, Islam MS, Rana ML, Ullah MA, Ferdous FB, Neloy FH, Ievy S, Sobur MA, Rahman AMMT, Khatun MM, Rahman M, Rahman MT. Virulence Determinants and Methicillin Resistance in Biofilm-Forming Staphylococcus aureus from Various Food Sources in Bangladesh. Antibiotics (Basel) 2022; 11:antibiotics11111666. [PMID: 36421310 PMCID: PMC9686753 DOI: 10.3390/antibiotics11111666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
The eradication of staphylococcal infections has become more difficult due to the development of antibiotic resistance and virulence in biofilm-forming Staphylococcus aureus. The presence of the life-threatening zoonotic pathogen, methicillin-resistant S. aureus (MRSA), in foods indicates a public health issue. This study, therefore, aimed to determine virulence factors and methicillin resistance in biofilm-forming S. aureus isolates from different foods and food handlers. A total of 100 PCR-positive S. aureus isolates (97 biofilm formers and three non-biofilm formers) were screened using the disk diffusion method and PCR assay. By PCR, genes encoding virulence factors, e.g., enterotoxin (sea, 30%, 95% CI: 21.90−39.59%), toxic shock syndrome toxin (tst, 20%, 95% CI: 13.34−28.88%), and Panton−Valentine leukocidin toxin (PVL, 15%, 95% CI: 9.31−23.28%), were detected in the S. aureus isolates. By the disk diffusion method, 100% (95% CI: 96.30−100.00%) of S. aureus isolates were phenotypically MRSA in nature, showing 100% resistance to oxacillin and cefoxitin. Moreover, the methicillin-resistant gene mecA was found in 61 (61%, 95% CI: 51.20−69.98%) MRSA isolates. Furthermore, all the S. aureus isolates were phenotypically resistant to ampicillin and penicillin, 30% to erythromycin, and 11% to gentamycin. Among them, 51% (95% CI: 41.35−60.58%) of S. aureus isolates were phenotypically multidrug-resistant in nature, and the multiple antibiotic resistance index varied from 0.33 to 0.55. Genes encoding resistance to beta-lactams (blaZ, 100%, 95% CI: 96.30−100.00%) and tetracyclines (tetA and tetC, 3%, 95% CI: 0.82−8.45%) were found positive in the S. aureus isolates. Genes encoding virulence determinants and MRSA were significantly (p < 0.05) higher in strong biofilm-forming S. aureus than in moderate and non-biofilm-forming isolates. To our knowledge, this is the first study in Bangladesh to incorporate preliminary data on the occurrence of virulence determinants and methicillin resistance, including resistance to clinically important antibiotics, in biofilm-forming S. aureus isolates from different foods and food handlers in Bangladesh, emphasizing a potential threat to human health.
Collapse
Affiliation(s)
- Fatimah Muhammad Ballah
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Department of Veterinary Public Health and Preventive Medicine, Usmanu Danfodiyo University, Sokoto 840004, Nigeria
| | - Md. Saiful Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Liton Rana
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Ashek Ullah
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Farhana Binte Ferdous
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Fahim Haque Neloy
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Samina Ievy
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Abdus Sobur
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | | | - Mst. Minara Khatun
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Marzia Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Correspondence:
| |
Collapse
|
21
|
Antimicrobial-Resistant Enterococcus spp. in Wild Avifauna from Central Italy. Antibiotics (Basel) 2022; 11:antibiotics11070852. [PMID: 35884106 PMCID: PMC9311988 DOI: 10.3390/antibiotics11070852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteria of the genus Enterococcus are opportunistic pathogens, part of the normal intestinal microflora of animals, able to acquire and transfer antimicrobial resistance genes. The aim of this study was to evaluate the possible role of wild avifauna as a source of antimicrobial-resistant enterococci. To assess this purpose, 103 Enterococcus spp. strains were isolated from the feces of wild birds of different species; they were tested for antimicrobial resistance against 21 molecules, vancomycin resistance, and high-level aminoglycosides resistance (HLAR). Furthermore, genes responsible for vancomycin, tetracycline, and HLAR were searched. E. faecium was the most frequently detected species (60.20% of isolates), followed by E. faecalis (34.95% of isolates). Overall, 99.02% of the isolated enterococci were classified as multidrug-resistant, with 19.41% extensively drug-resistant, and 2.91% possible pan drug-resistant strains. Most of the isolates were susceptible to amoxicillin/clavulanic acid (77.67%) and ampicillin (75.73%), with only 5.83% of isolates showing an ampicillin MIC ≥ 64 mg/L. HLAR was detected in 35.92% of isolates, mainly associated with the genes ant(6)-Ia and aac(6′)-Ie-aph(2″)-Ia. Few strains (4.85%) were resistant to vancomycin, and the genes vanA and vanB were not detected. A percentage of 54.37% of isolates showed resistance to tetracycline; tet(M) was the most frequently detected gene in these strains. Wild birds may contribute to the spreading of antimicrobial-resistant enterococci, which can affect other animals and humans. Constant monitoring is essential to face up to the evolving antimicrobial resistance issue, and monitoring programs should include wild avifauna, too.
Collapse
|