1
|
Lazzari F, Di Grande S, Crisci L, Mendolicchio M, Barone V. Molecular structures with spectroscopic accuracy at DFT cost by the templating synthon approach and the PCS141 database. J Chem Phys 2025; 162:114310. [PMID: 40110800 DOI: 10.1063/5.0255564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
The computation of accurate geometric parameters at density functional theory cost for large molecules in the gas phase is addressed through a novel strategy that combines quantum chemical models with machine learning techniques. The first key step is the expansion of a database of accurate semi-experimental equilibrium structures with additional molecular geometries optimized by version 2 of the Pisa composite scheme. Then, the templating synthon approach is used to improve the accuracy of structures optimized by a hybrid density functional paired with a double zeta basis set, leveraging chemical similarity to cluster different molecular environments and refine bond lengths and valence angles. A set of prototypical biomolecular building blocks is used to demonstrate that it is possible to achieve spectroscopic accuracy for molecular systems too large to be treated by state-of-the-art composite wavefunction methods. In addition, a freely accessible web-based tool has been developed to facilitate the post-processing of geometries optimized using standard electronic structure codes, thereby providing an accurate and efficient tool for the computational study of medium- to large-sized molecules, also accessible to experiment-oriented researchers.
Collapse
Affiliation(s)
- Federico Lazzari
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Silvia Di Grande
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Luigi Crisci
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Marco Mendolicchio
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | | |
Collapse
|
2
|
Lanoë PH, Philouze C, Molton F, Vanthuyne N, Kundu D, Delporte-Pebay M, Crassous J, Latouche C, Loiseau F. Phosphorescent Chiral Cationic Binuclear Iridium(III) Complexes: Boosting the Circularly Polarized Luminescence Brightness. Inorg Chem 2024; 63:24855-24866. [PMID: 39686711 DOI: 10.1021/acs.inorgchem.4c04271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
We report the synthesis and characterization of two chiral binuclear iridium(III) complexes (ΛΛ and ΔΔ) prepared from enantiopure building blocks [μ-Cl2(Δ-Ir(C^N)2)2] and [μ-Cl2(Λ-Ir(C^N)2)2]. These building blocks have been obtained by chiral preparative high-performance liquid chromatography of the neutral iridium(III) complex Irpiv (piv = 2,2,6,6-tetramethylheptane-3,5-dionate) followed by selective degradation of the ancillary ligand. For comparison purposes, we also synthesized a monomer (IrL1) and a dimer (Ir2L2, mixture). All the complexes exhibit similar emission properties, emitting in the orange-red region of the spectra with a good photoluminescence quantum yield (λmax = 610-625 nm, Φ ∼ 25%, τ ∼ 800-900 ns). However, the ΛΛ and ΔΔ complexes are optically active, indicating that no isomerization occurred during the different synthetic steps, as evidenced by both the circular dichroism spectra and their circularly polarized luminescence (CPL). The capital gain of the dimers (Ir2L2, ΛΛ, and ΔΔ) is a 4-fold brightness (B380 = ε380 nm × Φ) compared to the monomer (IrL1) and the CPL brightness (BCPL = B380 × glum/2) of the binuclear complexes being among the highest reported to date for chiral iridium(III) complexes.
Collapse
Affiliation(s)
| | | | | | - Nicolas Vanthuyne
- Aix Marseille University, CNRS, Centrale Marseille, FSCM, Chiropole, Marseille 13397, France
| | - Debsouri Kundu
- Univ Rennes, CNRS, ISCR-UMR 6226, ScanMAT-UMS 2001, Rennes F-35000, France
| | | | - Jeanne Crassous
- Univ Rennes, CNRS, ISCR-UMR 6226, ScanMAT-UMS 2001, Rennes F-35000, France
| | - Camille Latouche
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes F-44000, France
- Institut Universitaire de France (IUF), Paris 75005, France
| | | |
Collapse
|
3
|
Fusè M, Mazzeo G, Abbate S, Ruzziconi R, Bloino J, Longhi G. Mid-IR and CH stretching vibrational circular dichroism spectroscopy to distinguish various sources of chirality: The case of quinophaneoxazoline based ruthenium(II) complexes. Chirality 2024; 36:e23649. [PMID: 38409881 DOI: 10.1002/chir.23649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/28/2024]
Abstract
Five diastereomers of ruthenium(II) complexes based on quinolinophaneoxazoline ligands were investigated by vibrational circular dichroism (VCD) in the mid-IR and CH stretching regions. Diastereomers differ in three sources of chirality: the planar chirality of the quinolinophane moiety, the central chirality of an asymmetric carbon atom of the oxazoline ring, and the chirality of the ruthenium atom. VCD, allied to DFT calculations, has been found to be effective in disentangling the various forms of chirality. In particular, a VCD band is identified in the CH stretching region directly connected to the chirality of the metal. The analysis of the calculated VCD spectra is carried out by partitioning the complexes into fragments. The anharmonic analysis is also performed with a recently proposed reduced-dimensionality approach: such treatment is particularly important when examining spectroscopic regions highly perturbed by resonances, like the CH stretching region.
Collapse
Affiliation(s)
- Marco Fusè
- Dipartimento di Medicina Molecolare e Traslazionale (DMMT), Università di Brescia, Brescia, Italy
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale (DMMT), Università di Brescia, Brescia, Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale (DMMT), Università di Brescia, Brescia, Italy
- Istituto Nazionale di Ottica (INO), CNR, Research Unit Brescia, Brescia, Italy
| | - Renzo Ruzziconi
- Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri, Pisa, Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale (DMMT), Università di Brescia, Brescia, Italy
- Istituto Nazionale di Ottica (INO), CNR, Research Unit Brescia, Brescia, Italy
| |
Collapse
|
4
|
D’Antoni P, Medves M, Toffoli D, Fortunelli A, Stener M, Visscher L. A Resolution of Identity Technique to Speed up TDDFT with Hybrid Functionals: Implementation and Application to the Magic Cluster Series Au 8n+4(SC 6H 5) 4n+8 ( n = 3-6). J Phys Chem A 2023; 127:9244-9257. [PMID: 37906956 PMCID: PMC10641850 DOI: 10.1021/acs.jpca.3c05368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
The Resolution of Identity (RI) technique has been employed to speed up the use of hybrid exchange-correlation (xc) functionals at the TDDFT level using the Hybrid Diagonal Approximation. The RI has been implemented within the polTDDFT algorithm (a complex damped polarization method) in the AMS/ADF suite of programs. A speedup factor of 30 has been obtained with respect to a previous numerical implementation, albeit with the same level of accuracy. Comparison of TDDFT simulations with the experimental photoabsorption spectra of the cluster series Au8n+4(SR)4n+8(n = 3-6; R = C6H5) showed the excellent accuracy and efficiency of the method. Results were compared with those obtained via the more simplified and computationally cheaper TDDFT+TB and sTDDFT methods. The present method represents an accurate as well as computationally affordable approach to predict photoabsorption spectra of complex species, realizing an optimal compromise between accuracy and computational efficiency, and is suitable for applications to large metal clusters with sizes up to several hundreds of atoms.
Collapse
Affiliation(s)
- Pierpaolo D’Antoni
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università
di Trieste, Via Giorgieri 1, Trieste 34127, Italy
| | - Marco Medves
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università
di Trieste, Via Giorgieri 1, Trieste 34127, Italy
| | - Daniele Toffoli
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università
di Trieste, Via Giorgieri 1, Trieste 34127, Italy
| | - Alessandro Fortunelli
- CNR-ICCOM,
Consiglio Nazionale delle Ricerche, via Giuseppe Moruzzi 1, Pisa 56124, Italy
| | - Mauro Stener
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università
di Trieste, Via Giorgieri 1, Trieste 34127, Italy
| | - Lucas Visscher
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
5
|
Brüggemann J, Wolter M, Jacob CR. Quantum-chemical calculation of two-dimensional infrared spectra using localized-mode VSCF/VCI. J Chem Phys 2022; 157:244107. [PMID: 36586972 DOI: 10.1063/5.0135273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Computational protocols for the simulation of two-dimensional infrared (2D IR) spectroscopy usually rely on vibrational exciton models which require an empirical parameterization. Here, we present an efficient quantum-chemical protocol for predicting static 2D IR spectra that does not require any empirical parameters. For the calculation of anharmonic vibrational energy levels and transition dipole moments, we employ the localized-mode vibrational self-consistent field (L-VSCF)/vibrational configuration interaction (L-VCI) approach previously established for (linear) anharmonic theoretical vibrational spectroscopy [P. T. Panek and C. R. Jacob, ChemPhysChem 15, 3365-3377 (2014)]. We demonstrate that with an efficient expansion of the potential energy surface using anharmonic one-mode potentials and harmonic two-mode potentials, 2D IR spectra of metal carbonyl complexes and dipeptides can be predicted reliably. We further show how the close connection between L-VCI and vibrational exciton models can be exploited to extract the parameters of such models from those calculations. This provides a novel route to the fully quantum-chemical parameterization of vibrational exciton models for predicting 2D IR spectra.
Collapse
Affiliation(s)
- Julia Brüggemann
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Mario Wolter
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Mendolicchio M, Bloino J, Barone V. Perturb-Then-Diagonalize Vibrational Engine Exploiting Curvilinear Internal Coordinates. J Chem Theory Comput 2022; 18:7603-7619. [PMID: 36322968 DOI: 10.1021/acs.jctc.2c00773] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present paper is devoted to the implementation and validation of a second-order perturbative approach to anharmonic vibrations, followed by variational treatment of strong couplings (GVPT2) based on curvilinear internal coordinates. The main difference with respect to the customary Cartesian-based formulation is that the kinetic energy operator is no longer diagonal, and has to be expanded as well, leading to additional terms which have to be taken into proper account. It is, however, possible to recast all the equations as well-defined generalizations of the corresponding Cartesian-based counterparts, thus achieving a remarkable simplification of the new implementation. Particular attention is paid to the treatment of Fermi resonances with significant number of test cases analyzed fully, validating the new implementation. The results obtained in this work confirm that curvilinear coordinates strongly reduce the strength of inter-mode couplings compared to their Cartesian counterparts. This increases the reliability of low-order perturbative treatments for semi-rigid molecules and paves the way toward the reliable representation of more flexible molecules where small- and large-amplitude motions can be safely decoupled and treated at different levels of theory.
Collapse
Affiliation(s)
- Marco Mendolicchio
- Scuola Superiore Meridionale, Largo S. Marcellino 10, Napoli I-80138, Italy
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa I-56126, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa I-56126, Italy
| |
Collapse
|
7
|
Fusè M, Longhi G, Mazzeo G, Stranges S, Leonelli F, Aquila G, Bodo E, Brunetti B, Bicchi C, Cagliero C, Bloino J, Abbate S. Anharmonic Aspects in Vibrational Circular Dichroism Spectra from 900 to 9000 cm -1 for Methyloxirane and Methylthiirane. J Phys Chem A 2022; 126:6719-6733. [PMID: 36126273 PMCID: PMC9527749 DOI: 10.1021/acs.jpca.2c05332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Vibrational circular dichroism (VCD) spectra and the
corresponding
IR spectra of the chiral isomers of methyloxirane and of methylthiirane
have been reinvestigated, both experimentally and theoretically, with
particular attention to accounting for anharmonic corrections, as
calculated by the GVPT2 approach. De novo recorded VCD spectra in
the near IR (NIR) range regarding CH-stretching overtone transitions,
together with the corresponding NIR absorption spectra, were also
considered and accounted for, both with the GVPT2 and with the local
mode approaches. Comparison of the two methods has permitted us to
better describe the nature of active “anharmonic” modes
in the two molecules and the role of mechanical and electrical anharmonicity
in determining the intensities of VCD and IR/NIR data. Finally, two
nonstandard IR/NIR regions have been investigated: the first one about
≈2000 cm–1, involving mostly two-quanta bending
mode transitions, the second one between 7000 and 7500 cm–1 involving three-quanta transitions containing CH-stretching overtones
and HCC/HCH bending modes.
Collapse
Affiliation(s)
- Marco Fusè
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy.,Istituto Nazionale di Ottica (INO), CNR, Research Unit of Brescia, c/o CSMT, VIA Branze 45, 25123 Brescia, Italy
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Stefano Stranges
- Dipartimento di Chimica e Tecnologia del Farmaco, Università"La Sapienza", P.le A. Moro 5, 00185 Roma, Italy.,IOM-CNR, Laboratorio TASC, Basovizza, 34149 Trieste, Italy
| | - Francesca Leonelli
- Dipartimento di Chimica, Università"La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | - Giorgia Aquila
- Dipartimento di Chimica, Università"La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | - Enrico Bodo
- Dipartimento di Chimica, Università"La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | - Bruno Brunetti
- ISMN-CNR, Università La Sapienza, P.le A. Moro 5, 00185 Roma, Italy
| | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9,00124 Torino, Italy
| | - Cecilia Cagliero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9,00124 Torino, Italy
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri, 56125, Pisa, Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy.,Istituto Nazionale di Ottica (INO), CNR, Research Unit of Brescia, c/o CSMT, VIA Branze 45, 25123 Brescia, Italy
| |
Collapse
|
8
|
Sheka EF, Popova NA. Virtual Vibrational Analytics of Reduced Graphene Oxide. Int J Mol Sci 2022; 23:ijms23136978. [PMID: 35806012 PMCID: PMC9266465 DOI: 10.3390/ijms23136978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
The digital twin concept lays the foundation of the virtual vibrational analytics suggested in the current paper. The latter presents extended virtual experiments aimed at determining the specific features of the optical spectra of the studied molecules that provide reliable express analysis of the body spatial structure and chemical content. Reduced graphene oxide was selected as the virtual experiment goal. A set of nanosize necklaced graphene molecules, based on the same graphene domain but differing by the necklace contents, were selected as the relevant DTs. As shown, the Raman spectra signatures contained information concerning the spatial structure of the graphene domains, while the molecule necklaces were responsible for the IR spectra. Suggested sets of general frequency kits facilitate the detailed chemical analysis. Express analysis of a shungite carbon, composed of rGO basic structural units, revealed the high ability of the approach.
Collapse
|
9
|
Spectroscopic constants and anharmonic force field of dithioformic acid and its isomers: a theoretical study. J Mol Model 2022; 28:173. [DOI: 10.1007/s00894-022-05166-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 05/19/2022] [Indexed: 11/26/2022]
|
10
|
Mangiavacchi F, Mazzeo G, Graziani MC, Marini F, Drabowicz J, Wielgus E, Sancineto L, Longhi G, Vivani R, Abbate S, Santi C. A Vibrational and Electronic Circular Dichroism Study of Chiral Seleno Compounds Prepared from a Novel Naphthol based Diselenide. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Giuseppe Mazzeo
- Brescia University Department of Molecular and Translational Medicine ITALY
| | - Maria Chiara Graziani
- University of Perugia: Universita degli Studi di Perugia Scienze Farmaceutiche ITALY
| | - Francesca Marini
- University of Perugia: Universita degli Studi di Perugia Scienze Farmaceutiche ITALY
| | - Józef Drabowicz
- Polish Academy of Sciences Centre of Molecular and Macromolecular Studies: Polska Akademia Nauk Centrum Badan Molekularnych i Makromolekularnych Organic Chemistry POLAND
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies PAS: Polska Akademia Nauk Centrum Badan Molekularnych i Makromolekularnych Structural Chemistry POLAND
| | - Luca Sancineto
- University of Perugia: Universita degli Studi di Perugia Scienze Farmaceutiche ITALY
| | - Giovanna Longhi
- Brescia University Department of Molecular and Translational Medicine ITALY
| | - Riccardo Vivani
- University of Perugia: Universita degli Studi di Perugia Scienze Farmaceutiche ITALY
| | - Sergio Abbate
- Brescia University Department of Molecular and Translational Medicine ITALY
| | - Claudio Santi
- University of Perugia: Universita degli Studi di Perugia Scienze Farmaceutiche Via del Liceo 06100 Perugia ITALY
| |
Collapse
|
11
|
Sheka EF. Virtual Vibrational Spectrometry of Stable Radicals-Necklaced Graphene Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:597. [PMID: 35214926 PMCID: PMC8877590 DOI: 10.3390/nano12040597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023]
Abstract
The article presents results of an extended virtual experiment on graphene molecules performed using the virtual vibrational spectrometer HF Spectrodyn that exploits semiempirical Hartree-Fock approximation. The molecules are composed of flat graphene domains surrounded with heteroatom necklaces. Not existing individually, these molecules are met in practice as basic structure units of complex multilevel structure of all sp2 amorphous carbons. This circumstance deprives the solids' in vitro spectroscopy of revealing the individual character of basic structural elements, and in silico spectrometry fills this shortcoming. The obtained virtual vibrational spectra allow for drawing first conclusions about the specific features of the vibrational dynamics of the necklaced graphene molecules, caused by spatial structure and packing of their graphene domains as well as by chemical composition of the relevant necklaces. As shown, IR absorption spectra of the molecules are strongly necklace dependent, once becoming a distinct spectral signature of the amorphous body origin. Otherwise, Raman spectra are a spectral mark of the graphene domain's size and packing, thus disclosing the mystery of their universal D-G-band standard related to graphene-containing materials of various origins.
Collapse
Affiliation(s)
- Elena F Sheka
- Institute of Physical Research and Technologies, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
12
|
Martìnez-Vollbert E, Ciambrone C, Lafargue-Dit-Hauret W, Latouche C, Loiseau F, Lanoë PH. Bis-Heteroleptic Cationic Iridium(III) Complexes Featuring Cyclometalating 2-Phenylbenzimidazole Ligands: A Combined Experimental and Theoretical Study. Inorg Chem 2022; 61:3033-3049. [PMID: 35143722 DOI: 10.1021/acs.inorgchem.1c02968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this report, we investigate a new family of cationic iridium(III) complexes featuring the cyclometalating ligand 2-phenylbenzimidazole and ancillary ligand 4,4'-dimethyl-2,2'-bipyridine. Our benchmark complex IrL12 (L1 = 2-phenylbenzimidazole) displays emission properties similar to those of the archetypical complex 2,2'-dipyridylbis(2',4'-phenylpyridine)iridium(III) in deaerated CH3CN (Φ = 0.20, λem = 584 nm and Φ = 0.14, λem = 585 nm, respectively) but exhibits a higher photoluminescence quantum yield in deaerated CH2Cl2 (Φ = 0.32, λem = 566 nm and Φ = 0.20, λem = 595 nm, respectively) and especially a lower nonradiative constant (knr = 6.6 × 105 s-1 vs knr = 1.4 × 106 s-1, respectively). As a primary investigation, we explored the influence of the introduction of electron-donating and electron-withdrawing groups on the benzimidazole moiety and the synergetic effect of the substitution of the cyclometalating phenyl moiety at the para position with the same substituents. The emission energy displays very good correlation with the Hammett constants of the introduced substituents as well as with ΔEredox values, which allow us to ascribe the phosphorescence of these series to emanate mainly from a mixed metal/ligand to ligand charge transfer triplet excited state (3M/LLCT*). Two complexes (IrL52 and IrL82) display a switch of the lowest triplet excited state from 3M/LLCT* to ligand centered (3LC*), from the less polar CH2Cl2 to the more polar CH3CN. The observed results are supported by (TD)-DFT computations considering the vibrational contributions to the electronic transitions. Chromaticity diagrams based on the maximum emission wavelength of the recorded and simulated phosphorescence spectra demonstrate the strong promise of our complexes as emitting materials, together with the very good agreement between experimental and theoretical results.
Collapse
Affiliation(s)
| | | | | | - Camille Latouche
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | | | | |
Collapse
|
13
|
Sheng M, Silvestrini F, Biczysko M, Puzzarini C. Structural and Vibrational Properties of Amino Acids from Composite Schemes and Double-Hybrid DFT: Hydrogen Bonding in Serine as a Test Case. J Phys Chem A 2021; 125:9099-9114. [PMID: 34623165 DOI: 10.1021/acs.jpca.1c06993] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The structures, relative stabilities, and vibrational wavenumbers of the two most stable conformers of serine, stabilized by the O-H···N, O-H···O═C and N-H···O-H intramolecular hydrogen bonds, have been evaluated by means of state-of-the-art composite schemes based on coupled-cluster (CC) theory. The so-called "cheap" composite approach (CCSD(T)/(CBS+CV)MP2) allowed determination of accurate equilibrium structures and harmonic vibrational wavenumbers, also pointing out significant corrections beyond the CCSD(T)/cc-pVTZ level. These accurate results stand as a reference for benchmarking selected hybrid and double-hybrid, dispersion-corrected DFT functionals. B2PLYP-D3 and DSDPBEP86 in conjunction with a triple-ζ basis set have been confirmed as effective methodologies for structural and spectroscopic studies of medium-sized flexible biomolecules, also showing intramolecular hydrogen bonding. These best performing double-hybrid functionals have been employed to simulate IR spectra by means of vibrational perturbation theory, also considering hybrid CC/DFT schemes. The best overall agreement with experiment, with mean absolute error of 8 cm-1, has been obtained by combining CCSD(T)/(CBS+CV)MP2 harmonic wavenumbers with B2PLYP-D3/maug-cc-pVTZ anharmonic corrections. Finally, a composite scheme entirely based on CCSD(T) calculations (CCSD(T)/CBS+CV) has been employed for energetics, further confirming that serine II is the most stable conformer, also when zero-point vibrational energy corrections are included.
Collapse
Affiliation(s)
- Mingzhu Sheng
- International Centre for Quantum and Molecular Structures, Physics Department, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Filippo Silvestrini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Malgorzata Biczysko
- International Centre for Quantum and Molecular Structures, Physics Department, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Cristina Puzzarini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
14
|
Mendolicchio M, Bloino J, Barone V. General Perturb-Then-Diagonalize Model for the Vibrational Frequencies and Intensities of Molecules Belonging to Abelian and Non-Abelian Symmetry Groups. J Chem Theory Comput 2021; 17:4332-4358. [PMID: 34085530 PMCID: PMC8280743 DOI: 10.1021/acs.jctc.1c00240] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 11/29/2022]
Abstract
In this paper, we show that the standard second-order vibrational perturbation theory (VPT2) for Abelian groups can be used also for non-Abelian groups without employing specific equations for two- or threefold degenerate vibrations but rather handling in the proper way all the degeneracy issues and deriving the peculiar spectroscopic signatures of non-Abelian groups (e.g., l -doubling) by a posteriori transformations of the eigenfunctions. Comparison with the results of previous conventional implementations shows a perfect agreement for the vibrational energies of linear and symmetric tops, thus paving the route to the transparent extension of the equations already available for asymmetric tops to the energies of spherical tops and the infrared and Raman intensities of molecules belonging to non-Abelian symmetry groups. The whole procedure has been implemented in our general engine for vibro-rotational computations beyond the rigid rotor/harmonic oscillator model and has been validated on a number of test cases.
Collapse
Affiliation(s)
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
15
|
Borrego-Sánchez A, Zemmouche M, Carmona-García J, Francés-Monerris A, Mulet P, Navizet I, Roca-Sanjuán D. Multiconfigurational Quantum Chemistry Determinations of Absorption Cross Sections (σ) in the Gas Phase and Molar Extinction Coefficients (ε) in Aqueous Solution and Air-Water Interface. J Chem Theory Comput 2021; 17:3571-3582. [PMID: 33974417 PMCID: PMC8444339 DOI: 10.1021/acs.jctc.0c01083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 11/29/2022]
Abstract
Theoretical determinations of absorption cross sections (σ) in the gas phase and molar extinction coefficients (ε) in condensed phases (water solution, interfaces or surfaces, protein or nucleic acids embeddings, etc.) are of interest when rates of photochemical processes, J = ∫ ϕ(λ) σ(λ) I(λ) dλ, are needed, where ϕ(λ) and I(λ) are the quantum yield of the process and the irradiance of the light source, respectively, as functions of the wavelength λ. Efficient computational strategies based on single-reference quantum-chemistry methods have been developed enabling determinations of line shapes or, in some cases, achieving rovibrational resolution. Developments are however lacking for strongly correlated problems, with many excited states, high-order excitations, and/or near degeneracies between states of the same and different spin multiplicities. In this work, we define and compare the performance of distinct computational strategies using multiconfigurational quantum chemistry, nuclear sampling of the chromophore (by means of molecular dynamics, ab initio molecular dynamics, or Wigner sampling), and conformational and statistical sampling of the environment (by means of molecular dynamics). A new mathematical approach revisiting previous absolute orientation algorithms is also developed to improve alignments of geometries. These approaches are benchmarked through the nπ* band of acrolein not only in the gas phase and water solution but also in a gas-phase/water interface, a common situation for instance in atmospheric chemistry. Subsequently, the best strategy is used to compute the absorption band for the adduct formed upon addition of an OH radical to the C6 position of uracil and compared with the available experimental data. Overall, quantum Wigner sampling of the chromophore with molecular dynamics sampling of the environment with CASPT2 electronic-structure determinations arise as a powerful methodology to predict meaningful σ(λ) and ε(λ) band line shapes with accurate absolute intensities.
Collapse
Affiliation(s)
- Ana Borrego-Sánchez
- Instituto
Andaluz de Ciencias de la Tierra, CSIC-University
of Granada, Av. de las
Palmeras 4, 18100 Armilla, Granada, Spain
| | - Madjid Zemmouche
- MSME,
Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris-Est Créteil 8208, F-77454 Marne-la-Vallée, France
| | - Javier Carmona-García
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, València, Spain
| | - Antonio Francés-Monerris
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
- Departamento
de Química Física, Universitat
de València, C/Dr.
Moliner 50, 46100 Burjassot, Spain
| | - Pep Mulet
- Departamento
de Matemáticas Área de Matemática Aplicada Facultad
de Matemáticas C/Dr. Moliner, 50 46100 Burjassot, Spain
| | - Isabelle Navizet
- MSME,
Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris-Est Créteil 8208, F-77454 Marne-la-Vallée, France
| | - Daniel Roca-Sanjuán
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, València, Spain
| |
Collapse
|
16
|
Yang Q, Fusè M, Bloino J, Barone V. Interplay of stereo-electronic, vibronic and environmental effects in tuning the chiroptical properties of an Ir(III) cyclometalated N-heterocyclic carbene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119631. [PMID: 33761386 DOI: 10.1016/j.saa.2021.119631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Chiroptical spectra are among the most suitable techniques for investigating the ground and excited electronic states of chiral systems, but their interpretation is not straightforward and strongly benefits from quantum chemical simulations, provided that the employed computational model is sufficiently accurate and deals properly with stereo-electronic, vibrational averaging and environmental effects. Since the synergy among all these effects is only rarely accounted for, especially for large and flexible organometallic systems, the main aim of this contribution is to illustrate the latest developments of computational approaches rooted into the density functional theory for describing stereo-electronic effects and complemented by effective techniques to deal with vibrational modulation effects and solvatochromic shifts. In this connection, chiral iridium complexes offer an especially suitable case study in view of their bright phosphorescence, which is particularly significant for building effective light emitting diodes (OLEDs) and biomarkers and can be finely tuned by the nature of the metal ligands. For instance, a recently synthesized family of cycloiridiated complexes, KC and KD, bearing a pentahelicenic N-heterocyclic carbene (KB), has shown an enhanced long-lasting, bright phosphorescence. Deeper insights into the still unclear nature and origin of the enhancement could be gained by the interpretation of the chiroptical spectra, which is quite challenging in view of the presence of two sources of chirality, the chiral center on Ir and the chiral axis related to the helicene ligand, in addition to the relativistic effects related to the presence of the Ir center. At the same time, the large dimensions of KC and KD hamper the use of the most sophisticated (but prohibitively expensive) computational models, so that more approximate approaches must be validated on a suitable model compound. To this end, after optimizing the computational scheme on a model system devoid of the helicene moiety (KA), we have performed a comprehensive investigation of the KC and KD spectra, whose interpretation is further aided by novel graphical tools. The discussion and analysis of the results will not be focused on the theoretical background, but, rather, on practical details (specific functional, basis set, vibronic model, solvent regime) with the aim of providing general guidelines for the use of last-generation computational spectroscopy tools also by non-specialists.
Collapse
Affiliation(s)
- Qin Yang
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Marco Fusè
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| |
Collapse
|
17
|
Barone V, Alessandrini S, Biczysko M, Cheeseman JR, Clary DC, McCoy AB, DiRisio RJ, Neese F, Melosso M, Puzzarini C. Computational molecular spectroscopy. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00034-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Tirri B, Mazzone G, Ottochian A, Gomar J, Raucci U, Adamo C, Ciofini I. A combined Monte Carlo/DFT approach to simulate UV-vis spectra of molecules and aggregates: Merocyanine dyes as a case study. J Comput Chem 2021; 42:1054-1063. [PMID: 33797766 DOI: 10.1002/jcc.26505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 11/09/2022]
Abstract
The combination of a Monte Carlo (MC) sampling of the configurational space with time dependent-density functional theory (TD-DFT) to estimate vertical excitations energies has been applied to compute the absorption spectra of a family of merocyanine dyes in both their monomeric and dimeric forms. These results have been compared to those obtained using a static DFT/TD-DFT approach as well as to the available experimental spectra. Though suffering of the limitations related to the use of DFT and TD-DFT for this type of systems, our data clearly show that the classical MC sampling provides a suitable alternative to classical molecular dynamics to explore the structural flexibility of these donor-acceptor (D-π-A) chromophores enabling a realistic description of the potential energy surface of both their monomers and aggregates (here dimers) and thus of their spectra. Overall, the combination of MC sampling with quantum mechanics (TD-DFT) calculations, carried out in implicit dioxane solvent on random snapshots, provides a workable compromise to solve the combined challenge of accuracy and time-consuming problem not only for merocyanines momers, but also for their dimers, up to now less investigated. Indeed, the simulated absorption spectra fairly agree with the experimental ones, suggesting the general reliability of the method.
Collapse
Affiliation(s)
- Bernardino Tirri
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, Paris, France
| | - Gloria Mazzone
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, Paris, France
| | - Alistar Ottochian
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, Paris, France
| | - Jerôme Gomar
- L'Oréal, Research and Innovation, Aulnay-sous-Bois, France
| | - Umberto Raucci
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, Paris, France
| | - Carlo Adamo
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, Paris, France.,Institut Universitaire de France, Paris, France
| | - Ilaria Ciofini
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, Paris, France
| |
Collapse
|
19
|
Ravutsov M, Dobrikov GM, Dangalov M, Nikolova R, Dimitrov V, Mazzeo G, Longhi G, Abbate S, Paoloni L, Fusè M, Barone V. 1,2-Disubstituted Planar Chiral Ferrocene Derivatives from Sulfonamide-Directed ortho-Lithiation: Synthesis, Absolute Configuration, and Chiroptical Properties. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martin Ravutsov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Akademic Georgi Bonchev Street, Bl. 9, 1113 Sofia, Bulgaria
| | - Georgi M. Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Akademic Georgi Bonchev Street, Bl. 9, 1113 Sofia, Bulgaria
| | - Miroslav Dangalov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Akademic Georgi Bonchev Street, Bl. 9, 1113 Sofia, Bulgaria
| | - Rositsa Nikolova
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Akademic Georgi Bonchev Street, Bl. 107, Sofia 1113, Bulgaria
| | - Vladimir Dimitrov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Akademic Georgi Bonchev Street, Bl. 9, 1113 Sofia, Bulgaria
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
- Research Unit of Brescia, Istituto Nazionale di Ottica (INO), CNR, 25123 Brescia, Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
- Research Unit of Brescia, Istituto Nazionale di Ottica (INO), CNR, 25123 Brescia, Italy
| | - Lorenzo Paoloni
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Marco Fusè
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
20
|
Barone V, Puzzarini C. Looking for the bricks of the life in the interstellar medium: The fascinating world of astrochemistry. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202024600021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The discovery in the interstellar medium of molecules showing a certain degree of complexity, and in particular those with a prebiotic character, has attracted great interest. A complex chemistry takes place in space, but the processes that lead to the production of molecular species are a matter of intense discussion, the knowledge still being at a rather primitive stage. Debate on the origins of interstellar molecules has been further stimulated by the identification of biomolecular building blocks, such as nucleobases and amino acids, in meteorites and comets. Since many of the molecules found in space play a role in the chemistry of life, the issue of their molecular genesis and evolution might be related to the profound question of the origin of life itself. Understanding the underlying chemical processes, including the production, reactions and destruction of compounds, requires the concomitant study of spectroscopy, gas-phase reactivity, and heterogeneous processes on dust-grains. The aim of this contribution is to provide a general view of a complex and multifaceted challenge, while focusing on the role played by molecular spectroscopy and quantum-chemical computations. In particular, the derivation of the molecular spectroscopic features and the investigation of gas-phase formation routes of prebiotic species in the interstellar medium are addressed from a computational point of view.
Collapse
|
21
|
Barone V, Ceselin G, Fusè M, Tasinato N. Accuracy Meets Interpretability for Computational Spectroscopy by Means of Hybrid and Double-Hybrid Functionals. Front Chem 2020; 8:584203. [PMID: 33195078 PMCID: PMC7645164 DOI: 10.3389/fchem.2020.584203] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/17/2020] [Indexed: 11/13/2022] Open
Abstract
Accuracy and interpretability are often seen as the devil and holy grail in computational spectroscopy and their reconciliation remains a primary research goal. In the last few decades, density functional theory has revolutionized the situation, paving the way to reliable yet effective models for medium size molecules, which could also be profitably used by non-specialists. In this contribution we will compare the results of some widely used hybrid and double hybrid functionals with the aim of defining the most suitable recipe for all the spectroscopic parameters of interest in rotational and vibrational spectroscopy, going beyond the rigid rotor/harmonic oscillator model. We will show that last-generation hybrid and double hybrid functionals in conjunction with partially augmented double- and triple-zeta basis sets can offer, in the framework of second order vibrational perturbation theory, a general, robust, and user-friendly tool with unprecedented accuracy for medium-size semi-rigid molecules.
Collapse
Affiliation(s)
- Vincenzo Barone
- SMART Laboratory, Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Giorgia Ceselin
- SMART Laboratory, Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Marco Fusè
- SMART Laboratory, Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Nicola Tasinato
- SMART Laboratory, Scuola Normale Superiore di Pisa, Pisa, Italy
| |
Collapse
|
22
|
Petrovic AG, Polavarapu PL, Łopusiński A, Krasowska D, Wieczorek W, Szyrej M, Błaszczyk J, Drabowicz J. Absolute Configuration and Conformation of (-)- R- t-Butylphenylphosphinoamidate: Chiroptical Spectroscopy and X-ray Analysis. J Org Chem 2020; 85:14456-14466. [PMID: 32786637 PMCID: PMC7684576 DOI: 10.1021/acs.joc.0c00756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
The
absolute configuration and conformations of (−)-tert-butylphenylphosphinoamidate were determined using three
different chiroptical spectroscopic methods, namely vibrational circular
dichroism (VCD), electronic circular dichroism (ECD), and optical
rotatory dispersion (ORD). In each of the spectroscopic methods used,
experimental data for the (−)-enantiomer of tert-butylphenylphosphinoamidate were measured in the solution phase.
Using the concentration-dependent experimental infrared spectra, the
existence of dimers in the solution was investigated, and the monomer–dimer
equilibrium constant was determined. Concomitant quantum mechanical
predictions of the VCD, ECD, and ORD for monomeric tert-butylphenylphosphinoamidate were carried out using density functional
theory (DFT) calculations using the B3LYP functional and the 6-31G(d),
6-311G(2d,2p) and aug-cc-pVDZ basis sets. Similar predictions for
dimeric tert-butylphenylphosphinoamidate were also
obtained using the B3LYP/6-31G(d) method. A comparison of theoretically
predicted data with the corresponding experimental data led to the
elucidation of the absolute configuration as (−)-(R)-tert-butylphenylphosphinoamidate with one predominant
conformation in the solution. This conclusion was independently supported
by X-ray analysis of the complex with (+)-R-2,2′-dihydroxy-1,1′-binaphthol
((+)-R- BINOL).
Collapse
Affiliation(s)
- Ana G Petrovic
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Prasad L Polavarapu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Andrzej Łopusiński
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Dorota Krasowska
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Wanda Wieczorek
- Institute of General and Ecological Chemistry, Technical University of Łódź, Żeromskiego 116, 90-924 Łódź, Poland
| | - Małgorzata Szyrej
- Institute of Chemistry, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Jarosław Błaszczyk
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Józef Drabowicz
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland.,Institute of Chemistry, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| |
Collapse
|
23
|
Mancini G, Del Galdo S, Chandramouli B, Pagliai M, Barone V. Computational Spectroscopy in Solution by Integration of Variational and Perturbative Approaches on Top of Clusterized Molecular Dynamics. J Chem Theory Comput 2020; 16:5747-5761. [PMID: 32697580 PMCID: PMC8009517 DOI: 10.1021/acs.jctc.0c00454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Multiscale QM/MM approaches have
become the most suitable and effective
methods for the investigation of spectroscopic properties of medium-
or large-size chromophores in condensed phases. On these grounds,
we are developing a novel workflow aimed at improving the generality,
reliability, and ease of use of the available tools. In the present
paper, we report the latest developments of such an approach with
specific reference to a general workplan starting with the addition
of acetonitrile to the panel of solvents already available in the
General Liquid Optimized Boundary (GLOB) model enforcing nonperiodic
boundary conditions (NPBC). Next, the solvatochromic shifts induced
by acetonitrile on both rigid (uracil and thymine) and flexible (thyrosine)
chromophores have been studied introducing in our software a number
of new features ranging from rigid-geometry NPBC molecular dynamics
based on the quaternion formalism to a full integration of variational
(ONIOM) and perturbative (perturbed matrix method (PMM)) approaches
for describing different solute–solvent topologies and local
fluctuations, respectively. Finally, thymine and uracil have been
studied also in methanol to point out the generality of the computational
strategy. While further developments are surely needed, the strengths
of our integrated approach even in its present version are demonstrated
by the accuracy of the results obtained by an unsupervised approach
and coupled to a computational cost strongly reduced with respect
to that of conventional QM/MM models without any appreciable accuracy
deterioration.
Collapse
Affiliation(s)
- Giordano Mancini
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.,Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Sara Del Galdo
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | | | - Marco Pagliai
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.,Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| |
Collapse
|
24
|
Puzzarini C, Spada L, Alessandrini S, Barone V. The challenge of non-covalent interactions: theory meets experiment for reconciling accuracy and interpretation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:343002. [PMID: 32203942 DOI: 10.1088/1361-648x/ab8253] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 03/23/2020] [Indexed: 06/10/2023]
Abstract
In the past decade, many gas-phase spectroscopic investigations have focused on the understanding of the nature of weak interactions in model systems. Despite the fact that non-covalent interactions play a key role in several biological and technological processes, their characterization and interpretation are still far from being satisfactory. In this connection, integrated experimental and computational investigations can play an invaluable role. Indeed, a number of different issues relevant to unraveling the properties of bulk or solvated systems can be addressed from experimental investigations on molecular complexes. Focusing on the interaction of biological model systems with solvent molecules (e.g., water), since the hydration of the biomolecules controls their structure and mechanism of action, the study of the molecular properties of hydrated systems containing a limited number of water molecules (microsolvation) is the basis for understanding the solvation process and how structure and reactivity vary from gas phase to solution. Although hydrogen bonding is probably the most widespread interaction in nature, other emerging classes, such as halogen, chalcogen and pnicogen interactions, have attracted much attention because of the role they play in different fields. Their understanding requires, first of all, the characterization of the directionality, strength, and nature of such interactions as well as a comprehensive analysis of their competition with other non-covalent bonds. In this review, it is shown how state-of-the-art quantum-chemical computations combined with rotational spectroscopy allow for fully characterizing intermolecular interactions taking place in molecular complexes from both structural and energetic points of view. The transition from bi-molecular complex to microsolvation and then to condensed phase is shortly addressed.
Collapse
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi 2, I-40126 Bologna, Italy
| | - Lorenzo Spada
- Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi 2, I-40126 Bologna, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Silvia Alessandrini
- Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi 2, I-40126 Bologna, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
25
|
Medves M, Sementa L, Toffoli D, Fronzoni G, Fortunelli A, Stener M. An efficient hybrid scheme for time dependent density functional theory. J Chem Phys 2020; 152:184104. [PMID: 32414253 DOI: 10.1063/5.0005954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A hybrid approach able to perform Time Dependent Density Functional Theory (TDDFT) simulations with the same accuracy as that of hybrid exchange-correlation (xc-) functionals but at a fraction of the computational cost is developed, implemented, and validated. The scheme, which we name Hybrid Diagonal Approximation (HDA), consists in employing in the response function a hybrid xc-functional (containing a fraction of the non-local Hartree-Fock exchange) only for the diagonal elements of the omega matrix, while the adiabatic local density approximation is employed for the off-diagonal terms. HDA is especially (but not exclusively) advantageous when using Slater type orbital basis sets and allows one to employ them in a uniquely efficient way, as we demonstrate here by implementing HDA in a local version of the Amsterdam Density Functional code. The new protocol is tested on NH3, C6H6, and the [Au25(SCH3)18]- cluster as prototypical cases ranging from small molecules to ligand-protected metal clusters, finding excellent agreement with respect to both full kernel TDDFT simulations and experimental data. Additionally, a specific comparison test between full kernel and HDA is considered at the Casida level on seven other molecular species, which further confirm the accuracy of the approach for all investigated systems. For the [Au25(SCH3)18]- cluster, a speedup by a factor of seven is obtained with respect to the full kernel. The HDA, therefore, promises to provide a quantitative description of the optical properties of medium-sized systems (nanoclusters) at an affordable cost, thanks to its computational efficiency, especially in combination with a complex polarization algorithm version of TDDFT.
Collapse
Affiliation(s)
- Marco Medves
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Luca Sementa
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Daniele Toffoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Giovanna Fronzoni
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Alessandro Fortunelli
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
26
|
DFT meets the segmented polarization consistent basis sets: Performances in the computation of molecular structures, rotational and vibrational spectroscopic properties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127886] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Del Galdo S, Fusè M, Barone V. The ONIOM/PMM Model for Effective Yet Accurate Simulation of Optical and Chiroptical Spectra in Solution: Camphorquinone in Methanol as a Case Study. J Chem Theory Comput 2020; 16:3294-3306. [PMID: 32250614 PMCID: PMC7222099 DOI: 10.1021/acs.jctc.0c00124] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
This paper deals
with the development and first validation of a
composite approach for the simulation of chiroptical spectra in solution
aimed to strongly reduce the number of full QM computations without
any significant accuracy loss. The approach starts from the quantum
mechanical computation of reference spectra including vibrational
averaging effects and taking average solvent effects into account
by means of the polarizable continuum model. Next, the snapshots of
classical molecular dynamics computations are clusterized and one
reference configuration from each cluster is used to compute a reference
spectrum. Local fluctuation effects within each cluster are then taken
into account by means of the perturbed matrix model. The performance
of the proposed approach is tested on the challenging case of the
optical and chiroptical spectra
of camphorquinone in methanol solution. Although further validations
are surely needed, the results of this first study are quite promising
also taking into account that agreement with experimental data is
reached by just a couple of full quantum mechanical geometry optimizations
and frequency computations.
Collapse
Affiliation(s)
- Sara Del Galdo
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Marco Fusè
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
28
|
A General User-Friendly Tool for Kinetic Calculations of Multi-Step Reactions within the Virtual Multifrequency Spectrometer Project. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We discuss the implementation of a computer program for accurate calculation of the kinetics of chemical reactions integrated in the user-friendly, multi-purpose Virtual Multifrequency Spectrometer tool. The program is based on the ab initio modeling of the involved molecular species, the adoption of transition-state theory for each elementary step of the reaction, and the use of a master-equation approach accounting for the complete reaction scheme. Some features of the software are illustrated through examples including the interconversion reaction of hydroxyacetone and 2-hydroxypropanal and the production of HCN and HNC from vinyl cyanide.
Collapse
|
29
|
Boussessi R, Tasinato N, Pietropolli Charmet A, Stoppa P, Barone V. Sextic centrifugal distortion constants: interplay of density functional and basis set for accurate yet feasible computations. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1734678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | | | | | - Paolo Stoppa
- Università Ca’ Foscari Venezia, Dipartimento di Scienze Molecolari e Nanosistemi, Mestre Venezia, Italy
| | | |
Collapse
|
30
|
New tools for the astrochemist: Multi-scale computational modelling and helium droplet-based spectroscopy. Phys Life Rev 2020; 32:95-98. [DOI: 10.1016/j.plrev.2019.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 11/24/2022]
|
31
|
A never-ending story in the sky: The secrets of chemical evolution. Phys Life Rev 2020; 32:59-94. [DOI: 10.1016/j.plrev.2019.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 01/13/2023]
|
32
|
Martino M, Salvadori A, Lazzari F, Paoloni L, Nandi S, Mancini G, Barone V, Rampino S. Chemical promenades: Exploring potential-energy surfaces with immersive virtual reality. J Comput Chem 2020; 41:1310-1323. [PMID: 32058615 DOI: 10.1002/jcc.26172] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 01/28/2023]
Abstract
The virtual-reality framework AVATAR (Advanced Virtual Approach to Topological Analysis of Reactivity) for the immersive exploration of potential-energy landscapes is presented. AVATAR is based on modern consumer-grade virtual-reality technology and builds on two key concepts: (a) the reduction of the dimensionality of the potential-energy surface to two process-tailored, physically meaningful generalized coordinates, and (b) the analogy between the evolution of a chemical process and a pathway through valleys (potential wells) and mountain passes (saddle points) of the associated potential energy landscape. Examples including the discovery of competitive reaction paths in simple A + BC collisional systems and the interconversion between conformers in ring-puckering motions of flexible rings highlight the innovation potential that augmented and virtual reality convey for teaching, training, and supporting research in chemistry.
Collapse
Affiliation(s)
- Marta Martino
- SMART Laboratory, Scuola Normale Superiore, Pisa, Italy
| | | | | | | | - Surajit Nandi
- SMART Laboratory, Scuola Normale Superiore, Pisa, Italy
| | | | | | | |
Collapse
|
33
|
Cerezo J, Aranda D, Avila Ferrer FJ, Prampolini G, Santoro F. Adiabatic-Molecular Dynamics Generalized Vertical Hessian Approach: A Mixed Quantum Classical Method To Compute Electronic Spectra of Flexible Molecules in the Condensed Phase. J Chem Theory Comput 2020; 16:1215-1231. [PMID: 31855424 DOI: 10.1021/acs.jctc.9b01009] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We present a general mixed quantum classical method that couples classical molecular dynamics (MD) and vibronic models to compute the shape of electronic spectra of flexible molecules in the condensed phase without, in principle, any phenomenological broadening. It is based on a partition of the nuclear motions of the solute + solvent system in "soft" and "stiff" vibrational modes and an adiabatic hypothesis that assumes that stiff modes are much faster than soft ones. In this framework, the spectrum is rigorously expressed as a conformational integral of quantum vibronic spectra along the stiff coordinates only. Soft modes enter at the classical level through the conformational distribution that is sampled with classical MD runs. In each configuration, reduced-dimensionality quadratic Hamiltonians are built in the space of the stiff coordinates only, thanks to a generalization of the Vertical Hessian harmonic model and an iterative application of projectors in internal coordinates to remove soft modes. Quantum vibronic spectra, specific for each sampled configuration of the soft coordinates, are then computed at the desired temperature with efficient time-dependent techniques, and the global spectrum simply arises from their average. For consistency of the whole procedure, classical MD runs are performed with quantum-mechanically derived force fields, parameterized at the same level of theory selected for generating the quadratic Hamiltonians along the stiff coordinates. Application to N-methyl-6-oxyquinolinium betaine in water, dithiophene in ethanol, and cyanidine in water is presented to show the performance of the method.
Collapse
Affiliation(s)
| | - Daniel Aranda
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa , Area della Ricerca, via G. Moruzzi 1 , I-56124 Pisa , Italy.,Departamento de Química Física, Facultad de Ciencias, Andalucía Tech , Universidad de Málaga , E-29071 Málaga , Spain
| | - Francisco José Avila Ferrer
- Departamento de Química Física, Facultad de Ciencias, Andalucía Tech , Universidad de Málaga , E-29071 Málaga , Spain
| | - Giacomo Prampolini
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa , Area della Ricerca, via G. Moruzzi 1 , I-56124 Pisa , Italy
| | - Fabrizio Santoro
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa , Area della Ricerca, via G. Moruzzi 1 , I-56124 Pisa , Italy
| |
Collapse
|
34
|
Puzzarini C, Barone V. The challenging playground of astrochemistry: an integrated rotational spectroscopy - quantum chemistry strategy. Phys Chem Chem Phys 2020; 22:6507-6523. [PMID: 32163090 DOI: 10.1039/d0cp00561d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While it is now well demonstrated that the interstellar medium (ISM) is characterized by a diverse and complex chemistry, a significant number of features in radioastronomical spectra are still unassigned and call for new laboratory efforts, which are increasingly based on integrated experimental and computational strategies. In parallel, the identification of an increasing number of molecules containing more than five atoms and at least one carbon atom (the so-called "interstellar" complex organic molecules), which can play a relevant role in the chemistry of life, raises the additional issue of how these species can be produced in the typical harsh conditions of the ISM. On these grounds, this perspective aims to present an integrated rotational spectroscopy - quantum chemistry approach for supporting radioastronomical observations and a computational strategy for contributing to the elucidation of chemical reactivity in the interstellar space.
Collapse
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician", University of Bologna, via F. Selmi 2, I-40126 Bologna, Italy.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, I-56126, Italy
| |
Collapse
|
35
|
Fortino M, Collini E, Pedone A, Bloino J. Role of specific solute–solvent interactions on the photophysical properties of distyryl substituted BODIPY derivatives. Phys Chem Chem Phys 2020; 22:10981-10994. [DOI: 10.1039/d0cp00034e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The role played by specific solute–solvent interactions on the spectroscopic properties of experimentally available BODIPY derivatives has been investigated.
Collapse
|
36
|
Puzzarini C, Barone V. Challenges in astrochemistry: The spectroscopic point of view: Comment on "Prebiotic chemistry and origins of life research with atomistic computer simulations" by A. Pérez-Villa, F. Pietrucci, and A.M. Saitta. Phys Life Rev 2019; 34-35:143-146. [PMID: 31761732 DOI: 10.1016/j.plrev.2019.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, I-40126 Bologna, Italy.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| |
Collapse
|
37
|
Evaluation of Molecular Polarizability and of Intensity Carrying Modes Contributions in Circular Dichroism Spectroscopies. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We re-examine the theory of electronic and vibrational circular dichroism spectroscopy in terms of the formalism of frequency-dependent molecular polarizabilities. We show the link between Fermi’s gold rule in circular dichroism and the trace of the complex electric dipole–magnetic dipole polarizability. We introduce the C++ code polar to compute the molecular polarizability complex tensors from quantum chemistry outputs, thus simulating straightforwardly UV-visible absorption (UV-Vis)/electronic circular dichroism (ECD) spectra, and infrared (IR)/vibrational circular dichroism (VCD) spectra. We validate the theory and the code by referring to literature data of a large group of chiral molecules, showing the remarkable accuracy of density functional theory (DFT) methods. We anticipate the application of this methodology to the interpretation of vibrational spectra in various measurement conditions, even in presence of metal surfaces with plasmonic properties. Our theoretical developments aim, in the long run, at embedding the quantum-mechanical details of the chiroptical spectroscopic response of a molecule into the simulation of the electromagnetic field distribution at the surface of plasmonic devices. Such simulations are also instrumental to the interpretation of the experimental spectra measured from devices designed to enhance chiroptical interactions by the surface plasmon resonance of metal nanostructures.
Collapse
|
38
|
Fusè M, Mazzeo G, Longhi G, Abbate S, Masi M, Evidente A, Puzzarini C, Barone V. Unbiased Determination of Absolute Configurations by vis-à-vis Comparison of Experimental and Simulated Spectra: The Challenging Case of Diplopyrone. J Phys Chem B 2019; 123:9230-9237. [PMID: 31580674 DOI: 10.1021/acs.jpcb.9b08375] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A new experimental-computational strategy for the determination of the absolute configuration (AC) of complex chiral molecules is proposed by combining diverse experimental spectroscopies with quantum-mechanical simulations well beyond the current computational practice. Key features are the conformer search and relative stability evaluation performed by a new stochastic two-level tool followed by a vis-à-vis comparison of experimental and computed spectra without any ad hoc adjustment. The entire computational procedure is embedded in the user-friendly VMS software, and its reliability is granted by the inclusion of mechanic/electric/magnetic anharmonicity as well as ro-vibrational and vibronic couplings by means of generalized perturbation theory in conjunction with double-hybrid functionals combined with empirical dispersion contributions and suitable basis sets. To test and validate the new approach, the puzzling case of diplopyrone, a fungal phytotoxic metabolite, has been chosen: the close match between new experimental and simulated infrared absorption and vibrational circular dichroism spectra has led to the unbiased evaluation of its AC.
Collapse
Affiliation(s)
- Marco Fusè
- Scuola Normale Superiore , Piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale , Università di Brescia , Viale Europa 11 , 25123 Brescia , Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale , Università di Brescia , Viale Europa 11 , 25123 Brescia , Italy.,Consiglio Nazionale delle Ricerche-I.N.O. c/o CSMT , via Branze, 45 - 25123 Brescia , Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale , Università di Brescia , Viale Europa 11 , 25123 Brescia , Italy.,Consiglio Nazionale delle Ricerche-I.N.O. c/o CSMT , via Branze, 45 - 25123 Brescia , Italy
| | - Marco Masi
- Dipartimento di Scienze Chimiche , Università di Napoli Federico II , Complesso Universitario Monte S. Angelo, Via Cintia 4 , 80126 Napoli , Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche , Università di Napoli Federico II , Complesso Universitario Monte S. Angelo, Via Cintia 4 , 80126 Napoli , Italy
| | - Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician" , Università di Bologna , Via Selmi 2 , I-40126 Bologna , Italy
| | - Vincenzo Barone
- Scuola Normale Superiore , Piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| |
Collapse
|
39
|
Mendolicchio M, Baiardi A, Fronzoni G, Stener M, Grazioli C, de Simone M, Barone V. Theory meets experiment for unravelling the C1s X-ray photoelectron spectra of pyridine, 2-fluoropyridine, and 2,6-difluoropyridine. J Chem Phys 2019; 151:124105. [DOI: 10.1063/1.5122310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
| | - Alberto Baiardi
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Giovanna Fronzoni
- Dipartimento di Scienze Chimiche e Farmaceutiche, Universita’ di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Universita’ di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Cesare Grazioli
- IOM- CNR Laboratorio TASC, Basovizza SS-14, km 163.5, 34149 Trieste, Italy
| | - Monica de Simone
- IOM- CNR Laboratorio TASC, Basovizza SS-14, km 163.5, 34149 Trieste, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy
| |
Collapse
|
40
|
Ali A. Extraterrestrial abiological synthesis of organics in space and its significance to chemical evolution and the origin of life: Comment on "A never-ending story in the sky: The secrets of chemical evolution" by Cristina Puzzarini and Vincenzo Barone. Phys Life Rev 2019; 32:107-110. [PMID: 31473119 DOI: 10.1016/j.plrev.2019.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 11/24/2022]
Affiliation(s)
- Ashraf Ali
- Department of Physics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
41
|
Paoloni L, Rampino S, Barone V. Potential-Energy Surfaces for Ring-Puckering Motions of Flexible Cyclic Molecules through Cremer-Pople Coordinates: Computation, Analysis, and Fitting. J Chem Theory Comput 2019; 15:4280-4294. [PMID: 31244128 DOI: 10.1021/acs.jctc.9b00363] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ring-puckering motion in 12 flexible cyclic molecules is investigated by calculation and analysis of two-dimensional potential-energy surfaces (PESs) using the so-called ring-puckering coordinates proposed by Cremer and Pople. The PESs are calculated by means of density-functional theory using a B2PLYP-D3BJ exchange-correlation functional with a maug-cc-pVTZ basis set, and results are compared to the available experimental and theoretical data. Special care is devoted to the aspect of symmetry in such two-dimensional PESs, which are here reported for the first time also for molecules whose planar form has symmetry lower than D5 h or C2 v. The issue of PES fitting and that of solving the nuclear dynamics using ring-puckering coordinates are also addressed. Analytical formulations of the computed PESs using suitable functional forms with a limited set of parameters are provided.
Collapse
Affiliation(s)
- Lorenzo Paoloni
- SMART Laboratory , Scuola Normale Superiore , Piazza dei Cavalieri 7 , 56126 Pisa , Italia
| | - Sergio Rampino
- SMART Laboratory , Scuola Normale Superiore , Piazza dei Cavalieri 7 , 56126 Pisa , Italia
| | - Vincenzo Barone
- SMART Laboratory , Scuola Normale Superiore , Piazza dei Cavalieri 7 , 56126 Pisa , Italia
| |
Collapse
|
42
|
Puzzarini C, Bloino J, Tasinato N, Barone V. Accuracy and Interpretability: The Devil and the Holy Grail. New Routes across Old Boundaries in Computational Spectroscopy. Chem Rev 2019; 119:8131-8191. [DOI: 10.1021/acs.chemrev.9b00007] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, I-40126 Bologna, Italy
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Nicola Tasinato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
43
|
Del Galdo S, Chandramouli B, Mancini G, Barone V. Assessment of Multi-Scale Approaches for Computing UV–Vis Spectra in Condensed Phases: Toward an Effective yet Reliable Integration of Variational and Perturbative QM/MM Approaches. J Chem Theory Comput 2019; 15:3170-3184. [DOI: 10.1021/acs.jctc.9b00120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sara Del Galdo
- Istituto di Chimica dei Composti OrganoMetallici (ICCOMCNR), UOS di Pisa, Area della Ricerca CNR, Consiglio Nazionale delle Ricerche, Via G. Moruzzi 1, I-56124 Pisa, Italy
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Balasubramanian Chandramouli
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
- Compunet, Istituto Italiano di Tecnologia (IIT), Via Morego 30, I-16163 Genova, Italy
| | - Giordano Mancini
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
| |
Collapse
|
44
|
The 125Te Chemical Shift of Diphenyl Ditelluride: Chasing Conformers over a Flat Energy Surface. Molecules 2019; 24:molecules24071250. [PMID: 30935011 PMCID: PMC6480379 DOI: 10.3390/molecules24071250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022] Open
Abstract
The interest in diphenyl ditelluride (Ph2Te2) is related to its strict analogy to diphenyl diselenide (Ph2Se2), whose capacity to reduce organic peroxides is largely exploited in catalysis and green chemistry. Since the latter is also a promising candidate as an antioxidant drug and mimic of the ubiquitous enzyme glutathione peroxidase (GPx), the use of organotellurides in medicinal chemistry is gaining importance, despite the fact that tellurium has no recognized biological role and its toxicity must be cautiously pondered. Both Ph2Se2 and Ph2Te2 exhibit significant conformational freedom due to the softness of the inter-chalcogen and carbon–chalcogen bonds, preventing the existence of a unique structure in solution. Therefore, the accurate calculation of the NMR chemical shifts of these flexible molecules is not trivial. In this study, a detailed structural analysis of Ph2Te2 is carried out using a computational approach combining classical molecular dynamics and relativistic density functional theory methods. The goal is to establish how structural changes affect the electronic structure of diphenyl ditelluride, particularly the 125Te chemical shift.
Collapse
|
45
|
Baiardi A, Bloino J, Barone V. Time-Dependent Formulation of Resonance Raman Optical Activity Spectroscopy. J Chem Theory Comput 2018; 14:6370-6390. [PMID: 30281300 DOI: 10.1021/acs.jctc.8b00488] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this work, we extend the theoretical framework recently developed for the simulation of resonance Raman (RR) spectra of medium-to-large sized systems to its chiral counterpart, namely, resonance Raman optical activity (RROA). The theory is based on a time-dependent (TD) formulation, with the transition tensors obtained as half-Fourier transforms of the appropriate cross-correlation functions. The implementation has been kept as general as possible, supporting adiabatic and vertical models for the PES representation, both in Cartesian and internal coordinates, with the possible inclusion of Herzberg-Teller (HT) effects. Thanks to the integration of this TD-RROA procedure within a general-purpose quantum-chemistry program, both solvation and leading anharmonicity effects can be included in an effective way. The implementation is validated on one of the smallest chiral molecule (methyloxirane). Practical applications are illustrated with three medium-size organic molecules (naproxen-OCD3, quinidine and 2-Br-hexahelicene), whose simulated spectra are compared to the corresponding experimental data.
Collapse
Affiliation(s)
- Alberto Baiardi
- Scuola Normale Superiore , piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| | - Julien Bloino
- Scuola Normale Superiore , piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| | - Vincenzo Barone
- Scuola Normale Superiore , piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| |
Collapse
|
46
|
Saielli G. Computational Spectroscopy of Ionic Liquids for Bulk Structure Elucidation. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Giacomo Saielli
- CNR Institute on Membrane Technology; Unit of Padova; Via Marzolo 1-35131 Padova Italy
- Department of Chemical Sciences; University of Padova; Via Marzolo 1-35131 Padova Italy
| |
Collapse
|
47
|
Egidi F, Fusè M, Baiardi A, Bloino J, Li X, Barone V. Computational simulation of vibrationally resolved spectra for spin-forbidden transitions. Chirality 2018; 30:850-865. [PMID: 29727500 DOI: 10.1002/chir.22864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/25/2022]
Abstract
In this computational study, we illustrate a method for computing phosphorescence and circularly polarized phosphorescence spectra of molecular systems, which takes into account vibronic effects including both Franck-Condon and Herzberg-Teller contributions. The singlet and triplet states involved in the phosphorescent emission are described within the harmonic approximation, and the method fully takes mode-mixing effects into account when evaluating Franck-Condon integrals. Spin-orbit couplings, which are responsible for these otherwise forbidden phenomena, are accounted for by means of a relativistic two-component time-dependent density functional theory method. The model is applied to two types of chiral systems: camphorquinone, a rigid organic system that allows for an extensive benchmark, and some members of a class of iridium complexes. The merits and shortcomings of the methods are discussed, and some perspectives for future developments are offered.
Collapse
Affiliation(s)
| | | | | | - Julien Bloino
- Institute of Chemistry of Organometallic Compounds, National Research Council of Italy, Pisa, Italy
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
48
|
Morzan UN, Alonso de Armiño DJ, Foglia NO, Ramírez F, González Lebrero MC, Scherlis DA, Estrin DA. Spectroscopy in Complex Environments from QM–MM Simulations. Chem Rev 2018; 118:4071-4113. [DOI: 10.1021/acs.chemrev.8b00026] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Uriel N. Morzan
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Diego J. Alonso de Armiño
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Nicolás O. Foglia
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Francisco Ramírez
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Mariano C. González Lebrero
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Damián A. Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Darío A. Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
49
|
Chandramouli B, Del Galdo S, Mancini G, Tasinato N, Barone V. Tailor-made computational protocols for precise characterization of small biological building blocks using QM and MM approaches. Biopolymers 2018. [DOI: 10.1002/bip.23109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Balasubramanian Chandramouli
- Scuola Normale Superiore, Piazza dei Cavalieri 7; Pisa 56126 Italy
- Compunet, Istituto Italiano di Tecnologia, via Morego 30; Genova Italy
| | - Sara Del Galdo
- Scuola Normale Superiore, Piazza dei Cavalieri 7; Pisa 56126 Italy
| | - Giordano Mancini
- Scuola Normale Superiore, Piazza dei Cavalieri 7; Pisa 56126 Italy
- Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3; Pisa 56127 Italy
| | - Nicola Tasinato
- Scuola Normale Superiore, Piazza dei Cavalieri 7; Pisa 56126 Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7; Pisa 56126 Italy
- Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3; Pisa 56127 Italy
| |
Collapse
|
50
|
Puzzarini C, Barone V. Diving for Accurate Structures in the Ocean of Molecular Systems with the Help of Spectroscopy and Quantum Chemistry. Acc Chem Res 2018; 51:548-556. [PMID: 29400950 DOI: 10.1021/acs.accounts.7b00603] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The prediction and interpretation of structural properties are the starting points for a deep understanding of thermochemistry, kinetics, and spectroscopic signatures of molecular systems. To give an example, detailed knowledge of the conformational behavior of the main building blocks of biomolecules in the gas phase (i.e., without the perturbing effect of the environment) is a mandatory prerequisite toward the understanding of the role played by different interactions in determining the biological activity in terms of structure-activity relationships. The first step to take is an unambiguous definition of molecular structure. We address the so-called Born-Oppenheimer equilibrium structure, which is defined in a rigorous manner and isotopically independent, and the target accuracy. For the latter, we aim at so-called "spectroscopic" accuracy, which implies uncertainties of a few milliangstroms for bond lengths and smaller than a tenth of degree for angles. If on one side the continuous enhancements of the experimental techniques give access to new and unprecedented spectroscopic determinations, on the other side they require increasing efforts for an unbiased interpretation and analysis. Among the pieces of information, accurate molecular structures play a particularly important role. Indeed, there is a strong relationship between the experimental outcome and the electronic structure of the system. Spectroscopic techniques, in particular those exploited in the gas phase, are therefore accurate and reliable sources for structural information. However, it is seldom straightforward to derive molecular structures directly from the experimental information. Indeed, even in the favorable case of investigations in the gas phase, vibrational effects are always present, and disentangling their contributions requires collection of information for all vibrational modes, a nearly impossible task. To overcome these limitations, joint theory-spectroscopy strategies can be identified, which are referred to as "top-down" and "bottom-up". The first approach, denoted as the semiexperimental approach, relies on extracting from experimental outcomes the equilibrium structure by using quantum-chemical computations to recover vibrational effects. The bottom-up approach consists in verifying the computed equilibrium geometry by means of a comparison between calculated and experimental spectroscopic parameters that probe structural characteristics. In this contribution, we try to review the most important challenges in accurate molecular structure determinations, with particular emphasis on the "solution" provided by a joint theoretical-experimental approach and on the current state of the art. Starting from the illustration of different strategies, we proceed by addressing the increasing complexity in the derivation of equilibrium geometries: we start from the construction of a database of accurate structures, we then face the problem of extending the dimension of the systems amenable to accurate structural determinations, and finally we move to the challenge of understanding the nature of intermolecular interactions.
Collapse
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di
Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei
Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|