1
|
Klein BP, Stoodley MA, Morgan DB, Rochford LA, Williams LBS, Ryan PTP, Sattler L, Weber SM, Hilt G, Liddy TJ, Lee TL, Maurer RJ, Duncan DA. Probing the role of surface termination in the adsorption of azupyrene on copper. NANOSCALE 2024. [PMID: 38426652 DOI: 10.1039/d3nr04690g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The role of the inorganic substrate termination, within the organic-inorganic interface, has been well studied for systems that contain strong localised bonding. However, how varying the substrate termination affects coordination to delocalised electronic states, like that found in aromatic molecules, is an open question. Azupyrene, a non-alternant polycyclic aromatic hydrocarbon, is known to bind strongly to metal surfaces through its delocalised π orbitals, thus yielding an ideal probe into delocalised surface-adsorbate interactions. Normal incidence X-ray standing wave (NIXSW) measurements and density functional theory calculations are reported for the adsorption of azupyrene on the (111), (110) and (100) surface facets of copper to investigate the dependence of the adsorption structure on the substrate termination. Structural models based on hybrid density functional theory calculations with non-local many-body dispersion yield excellent agreement with the experimental NIXSW results. No statistically significant difference in the azupyrene adsorption height was observed between the (111) and (100) surfaces. On the Cu(110) surface, the molecule was found to adsorb 0.06 ± 0.04 Å closer to the substrate than on the other surface facets. The most energetically favoured adsorption site on each surface, as determined by DFT, is subtly different, but in each case involved a configuration where the aromatic rings were centred above a hollow site, consistent with previous reports for the adsorption of small aromatic molecules on metal surfaces.
Collapse
Affiliation(s)
- Benedikt P Klein
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Matthew A Stoodley
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Dylan B Morgan
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Luke A Rochford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| | - Leon B S Williams
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
- School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
- School of Physics and Astronomy, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Paul T P Ryan
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
- Department of Materials, Imperial College London, Prince Consort Rd, SW7 2AZ, UK
| | - Lars Sattler
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Sebastian M Weber
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Gerhard Hilt
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Thomas J Liddy
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Tien-Lin Lee
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| | - Reinhard J Maurer
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - David A Duncan
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| |
Collapse
|
2
|
Alizadeh Sahraei A, Mejia Bohorquez B, Tremblay D, Moineau S, Garnier A, Larachi F, Lagüe P. Insight into the Binding Mechanisms of Quartz-Selective Peptides: Toward Greener Flotation Processes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17922-17937. [PMID: 37010879 PMCID: PMC10103053 DOI: 10.1021/acsami.3c01275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Mining practices, chiefly froth flotation, are being critically reassessed to replace their use of biohazardous chemical reagents in favor of biofriendly alternatives as a path toward green processes. In this regard, this study aimed at evaluating the interactions of peptides, as potential floatation collectors, with quartz using phage display and molecular dynamics (MD) simulations. Quartz-selective peptide sequences were initially identified by phage display at pH = 9 and further modeled by a robust simulation scheme combining classical MD, replica exchange MD, and steered MD calculations. Our residue-specific analyses of the peptides revealed that positively charged arginine and lysine residues were favorably attracted by the quartz surface at basic pH. The negatively charged residues at pH 9 (i.e., aspartic acid and glutamic acid) further showed affinity toward the quartz surface through electrostatic interactions with the positively charged surface-bound Na+ ions. The best-binding heptapeptide combinations, however, contained both positively and negatively charged residues in their composition. The flexibility of peptide chains was also shown to directly affect the adsorption behavior of the peptide. While attractive intrapeptide interactions were dominated by a weak peptide-quartz binding, the repulsive self-interactions in the peptides improved the binding propensity to the quartz surface. Our results showed that MD simulations are fully capable of revealing mechanistic details of peptide adsorption to inorganic surfaces and are an invaluable tool to accelerate the rational design of peptide sequences for mineral processing applications.
Collapse
Affiliation(s)
- Abolfazl Alizadeh Sahraei
- Department
of Chemical Engineering, Université
Laval, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Barbara Mejia Bohorquez
- Department
of Chemical Engineering, Université
Laval, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- PROTEO,
The Quebec Network for Research on Protein Function, Engineering,
and Applications, 1045
Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Denise Tremblay
- PROTEO,
The Quebec Network for Research on Protein Function, Engineering,
and Applications, 1045
Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- IBIS,
Institut de biologie intégrative et des systèmes, 1030 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- Department
of Biochemistry, Microbiology and Bioinformatics, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Sylvain Moineau
- PROTEO,
The Quebec Network for Research on Protein Function, Engineering,
and Applications, 1045
Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- IBIS,
Institut de biologie intégrative et des systèmes, 1030 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- Department
of Biochemistry, Microbiology and Bioinformatics, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Alain Garnier
- Department
of Chemical Engineering, Université
Laval, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- PROTEO,
The Quebec Network for Research on Protein Function, Engineering,
and Applications, 1045
Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Faïçal Larachi
- Department
of Chemical Engineering, Université
Laval, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Patrick Lagüe
- PROTEO,
The Quebec Network for Research on Protein Function, Engineering,
and Applications, 1045
Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- IBIS,
Institut de biologie intégrative et des systèmes, 1030 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- Department
of Biochemistry, Microbiology and Bioinformatics, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
3
|
Romero M, Mombrú D, Pignanelli F, Faccio R, Mombrú AW. Hybrid Organic-Inorganic Materials and Interfaces With Mixed Ionic-Electronic Transport Properties: Advances in Experimental and Theoretical Approaches. Front Chem 2022; 10:892013. [PMID: 35494643 PMCID: PMC9039017 DOI: 10.3389/fchem.2022.892013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Abstract
The main goal of this mini-review is to provide an updated state-of-the-art of the hybrid organic-inorganic materials focusing mainly on interface phenomena involving ionic and electronic transport properties. First, we review the most relevant preparation techniques and the structural features of hybrid organic-inorganic materials prepared by solution-phase reaction of inorganic/organic precursor into organic/inorganic hosts and vapor-phase infiltration of the inorganic precursor into organic hosts and molecular layer deposition of organic precursor onto the inorganic surface. Particular emphasis is given to the advances in joint experimental and theoretical studies discussing diverse types of computational simulations for hybrid-organic materials and interfaces. We make a specific revision on the separately ionic, and electronic transport properties of these hybrid organic-inorganic materials focusing mostly on interface phenomena. Finally, we deepen into mixed ionic-electronic transport properties and provide our concluding remarks and give some perspectives about this growing field of research.
Collapse
Affiliation(s)
- Mariano Romero
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y Sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | | | | | - Ricardo Faccio
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y Sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Alvaro W. Mombrú
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y Sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
4
|
Fattahi A, Koohsari P, Shadman Lakmehsari M, Ghandi K. The Impact of the Surface Modification on Tin-Doped Indium Oxide Nanocomposite Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:155. [PMID: 35010105 PMCID: PMC8746389 DOI: 10.3390/nano12010155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023]
Abstract
This review provides an analysis of the theoretical methods to study the effects of surface modification on structural properties of nanostructured indium tin oxide (ITO), mainly by organic compounds. The computational data are compared with experimental data such as X-ray diffraction (XRD), atomic force microscopy (AFM) and energy-dispersive X-ray spectroscopy (EDS) data with the focus on optoelectronic and electrocatalytic properties of the surface to investigate potential relations of these properties and applications of ITO in fields such as biosensing and electronic device fabrication. Our analysis shows that the change in optoelectronic properties of the surface is mainly due to functionalizing the surface with organic molecules and that the electrocatalytic properties vary as a function of size.
Collapse
Affiliation(s)
- Arash Fattahi
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Peyman Koohsari
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan P.O. Box 45195-313, Iran; (P.K.); (M.S.L.)
| | - Muhammad Shadman Lakmehsari
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan P.O. Box 45195-313, Iran; (P.K.); (M.S.L.)
| | - Khashayar Ghandi
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
5
|
Orr A, Wang M, Beykal B, Ganesh HS, Hearon SE, Pistikopoulos EN, Phillips TD, Tamamis P. Combining Experimental Isotherms, Minimalistic Simulations, and a Model to Understand and Predict Chemical Adsorption onto Montmorillonite Clays. ACS OMEGA 2021; 6:14090-14103. [PMID: 34124432 PMCID: PMC8190805 DOI: 10.1021/acsomega.1c00481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/11/2021] [Indexed: 05/05/2023]
Abstract
An attractive approach to minimize human and animal exposures to toxic environmental contaminants is the use of safe and effective sorbent materials to sequester them. Montmorillonite clays have been shown to tightly bind diverse toxic chemicals. Due to their promise as sorbents to mitigate chemical exposures, it is important to understand their function and rapidly screen and predict optimal clay-chemical combinations for further testing. We derived adsorption free-energy values for a structurally and physicochemically diverse set of toxic chemicals using experimental adsorption isotherms performed in the current and previous studies. We studied the diverse set of chemicals using minimalistic MD simulations and showed that their interaction energies with calcium montmorillonite clays calculated using simulation snapshots in combination with their net charge and their corresponding solvent's dielectric constant can be used as inputs to a minimalistic model to predict adsorption free energies in agreement with experiments. Additionally, experiments and computations were used to reveal structural and physicochemical properties associated with chemicals that can be adsorbed to calcium montmorillonite clay. These properties include positively charged groups, phosphine groups, halide-rich moieties, hydrogen bond donor/acceptors, and large, rigid structures. The combined experimental and computational approaches used in this study highlight the importance and potential applicability of analogous methods to study and design novel advanced sorbent systems in the future, broadening their applicability for environmental contaminants.
Collapse
Affiliation(s)
- Asuka
A. Orr
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
- Texas
A&M Energy Institute, Texas A&M
University, College
Station, Texas 77843-3372, United States
| | - Meichen Wang
- Veterinary
Integrative Biosciences Department, College of Veterinary Medicine
and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Burcu Beykal
- Texas
A&M Energy Institute, Texas A&M
University, College
Station, Texas 77843-3372, United States
| | - Hari S. Ganesh
- Texas
A&M Energy Institute, Texas A&M
University, College
Station, Texas 77843-3372, United States
| | - Sara E. Hearon
- Veterinary
Integrative Biosciences Department, College of Veterinary Medicine
and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Efstratios N. Pistikopoulos
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
- Texas
A&M Energy Institute, Texas A&M
University, College
Station, Texas 77843-3372, United States
| | - Timothy D. Phillips
- Veterinary
Integrative Biosciences Department, College of Veterinary Medicine
and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Phanourios Tamamis
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
- Texas
A&M Energy Institute, Texas A&M
University, College
Station, Texas 77843-3372, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77843-3003, United States
| |
Collapse
|
6
|
Ross-Naylor JA, Mijajlovic M, Biggs MJ. Energy Landscapes of a Pair of Adsorbed Peptides. J Phys Chem B 2020; 124:2401-2409. [PMID: 32125854 DOI: 10.1021/acs.jpcb.0c00859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The wide relevance of peptide adsorption in natural and synthetic contexts means it has attracted much attention. Molecular dynamics (MD) simulation has been widely used in these endeavors. Much of this has focused on single peptides due to the computational effort required to capture the rare events that characterize their adsorption. This focus is, however, of limited practical relevance as in reality, most systems of interest operate in the nondilute regime where peptides will interact with other adsorbed peptides. As an alternative to MD simulation, we have used energy landscape mapping (ELM) to investigate two met-enkephalin molecules adsorbed at a gas/graphite interface. Major conformations of the adsorbed peptides and the connecting transition states are elucidated along with the associated energy barriers and rates of exchange. The last of these makes clear that MD simulations are currently of limited use in probing the co-adsorption of two peptides, let alone more. The constant volume heat capacity as a function of temperature is also presented. Overall, this study represents a significant step toward characterizing peptide adsorption beyond the dilute limit.
Collapse
Affiliation(s)
- James A Ross-Naylor
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Milan Mijajlovic
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Mark J Biggs
- College of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
7
|
Ross-Naylor JA, Mijajlovic M, Biggs MJ. Energy Landscape Mapping and Replica Exchange Molecular Dynamics of an Adsorbed Peptide. J Phys Chem B 2020; 124:2527-2538. [DOI: 10.1021/acs.jpcb.9b10568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- James A. Ross-Naylor
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Milan Mijajlovic
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Mark J. Biggs
- College of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
8
|
Effect of Biomolecules on the Nanostructure and Nanomechanical Property of Calcium-Silicate-Hydrate. Sci Rep 2018; 8:9491. [PMID: 29934541 PMCID: PMC6014986 DOI: 10.1038/s41598-018-27746-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/11/2018] [Indexed: 11/08/2022] Open
Abstract
Inspired by nature, this paper investigates the effect of biomolecules, such as amino acids and proteins, on the nanostructure and mechanical stiffness of calcium-silicate-hydrate (C-S-H). Amino acids with distinct functional groups, and proteins with different structures and compositions were used in the synthesis of the C-S-H nanocomposite. The atomic structure was examined using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The morphology was investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). AFM nanoindentation was used to evaluate the Young's modulus of the modified C-S-H. Positively charged, H-bond forming and hydrophobic amino acids were shown to influence the atomic structure of C-S-H. The effect of negatively charged amino acid on atomic structure was more pronounced at higher C/S ratio. A noticeable increase in silicate polymerization of C-S-H modified with proteins at high C/S ratio was observed. The microscopic examination demonstrated a globular morphology for all samples except for C-S-H modified with hemoglobin, which showed a platelet morphology. The Young's modulus of C-S-H with amino acids and proteins showed a general reduction compared to that of the control C-S-H.
Collapse
|