1
|
Hu K, Geng Y, Yu J, Gu Y. Crystal structure prediction and non-superconductivity of N-doped LuH 3at near ambient pressure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:085401. [PMID: 37934039 DOI: 10.1088/1361-648x/ad0a4c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
Lanthanide polyhydrides, which have attracted the attention of researchers, are considered as a potential candidate material for high-temperature superconductivity. Especially, it is reported that N-doped LuH3exhibits near ambient superconductivity recently. It has attracted attention to room temperature superconductivity of ternary Lu-N-H systems at near ambient pressure. Here, we constructed a LuNH3(N-doped LuH3) compound to predict the crystal structural at relatively low pressures. We found a stable ternary LuNH3structure with a tetragonalP4mmphase under 5 GPa. In addition, ourTccalculations show that theP4mmLuNH3structure does not exhibit superconductivity down to 0.3 K at near ambient pressure due to the H atoms hardly contribute to acoustical phonons.
Collapse
Affiliation(s)
- Kai Hu
- Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, People's Republic of China
- Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Yixing Geng
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, People's Republic of China
| | - Jinqing Yu
- Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Yuqiu Gu
- Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| |
Collapse
|
2
|
Vekilova OY, Beyer DC, Bhat S, Farla R, Baran V, Simak SI, Kohlmann H, Häussermann U, Spektor K. Formation and Polymorphism of Semiconducting K 2SiH 6 and Strategy for Metallization. Inorg Chem 2023; 62:8093-8100. [PMID: 37188333 PMCID: PMC10231339 DOI: 10.1021/acs.inorgchem.2c04370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 05/17/2023]
Abstract
K2SiH6, crystallizing in the cubic K2PtCl6 structure type (Fm3̅m), features unusual hypervalent SiH62- complexes. Here, the formation of K2SiH6 at high pressures is revisited by in situ synchrotron diffraction experiments, considering KSiH3 as a precursor. At the investigated pressures, 8 and 13 GPa, K2SiH6 adopts the trigonal (NH4)2SiF6 structure type (P3̅m1) upon formation. The trigonal polymorph is stable up to 725 °C at 13 GPa. At room temperature, the transition into an ambient pressure recoverable cubic form occurs below 6.7 GPa. Theory suggests the existence of an additional, hexagonal, variant in the pressure interval 3-5 GPa. According to density functional theory band structure calculations, K2SiH6 is a semiconductor with a band gap around 2 eV. Nonbonding H-dominated states are situated below and Si-H anti-bonding states are located above the Fermi level. Enthalpically feasible and dynamically stable metallic variants of K2SiH6 may be obtained when substituting Si partially by Al or P, thus inducing p- and n-type metallicity, respectively. Yet, electron-phonon coupling appears weak, and calculated superconducting transition temperatures are <1 K.
Collapse
Affiliation(s)
- Olga Yu. Vekilova
- Department
of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
- Condensed
Matter Theory, Department of Physics, AlbaNova
University Center, Royal Institute of Technology (KTH), 106 91 Stockholm, Sweden
| | - Doreen C. Beyer
- Institute
for Inorganic Chemistry, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany
| | - Shrikant Bhat
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Robert Farla
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Volodymyr Baran
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Sergei I. Simak
- Theoretical
Physics Division, Department of Physics, Chemistry and Biology (IFM) Linköping University, SE-581 83 Linköping, Sweden
- Department
of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden
| | - Holger Kohlmann
- Institute
for Inorganic Chemistry, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany
| | - Ulrich Häussermann
- Department
of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Kristina Spektor
- Institute
for Inorganic Chemistry, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| |
Collapse
|
3
|
Zhong X, Sun Y, Iitaka T, Xu M, Liu H, Hemley RJ, Chen C, Ma Y. Prediction of Above-Room-Temperature Superconductivity in Lanthanide/Actinide Extreme Superhydrides. J Am Chem Soc 2022; 144:13394-13400. [PMID: 35820372 DOI: 10.1021/jacs.2c05834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Achieving room-temperature superconductivity has been an enduring scientific pursuit driven by broad fundamental interest and enticing potential applications. The recent discovery of high-pressure clathrate superhydride LaH10 with superconducting critical temperatures (Tc) of 250-260 K made it tantalizingly close to realizing this long-sought goal. Here, we report a remarkable finding based on an advanced crystal structure search method of a new class of extremely hydrogen-rich clathrate superhydride MH18 (M: rare-earth/actinide atom) stoichiometric compounds stabilized at an experimentally accessible pressure of 350 GPa. These compounds are predicted to host Tc up to 330 K, which is well above room temperature. The bonding and electronic properties of these MH18 clathrate superhydrides closely resemble those of atomic metallic hydrogen, giving rise to the highest Tc hitherto found in a thermodynamically stable hydride compound. An in-depth study of these extreme superhydrides offers insights for elucidating phonon-mediated superconductivity above room temperature in hydrogen-rich and other low-Z materials.
Collapse
Affiliation(s)
- Xin Zhong
- State Key Laboratory of Superhard Materials and International Center for Computational Method & Software, College of Physics, Jilin University, Changchun 130012, China.,Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China
| | - Ying Sun
- State Key Laboratory of Superhard Materials and International Center for Computational Method & Software, College of Physics, Jilin University, Changchun 130012, China
| | - Toshiaki Iitaka
- Discrete Event Simulation Research Team, RIKEN Center for Computational Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Meiling Xu
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Hanyu Liu
- State Key Laboratory of Superhard Materials and International Center for Computational Method & Software, College of Physics, Jilin University, Changchun 130012, China.,International Center of Future Science, Jilin University, Changchun 130012, China
| | - Russell J Hemley
- Departments of Physics, Chemistry, and Earth and Environmental Sciences, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Changfeng Chen
- Department of Physics and Astronomy, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Yanming Ma
- State Key Laboratory of Superhard Materials and International Center for Computational Method & Software, College of Physics, Jilin University, Changchun 130012, China.,International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
4
|
Jaroń T, Ying J, Tkacz M, Grzelak A, Prakapenka VB, Struzhkin VV, Grochala W. Synthesis, Structure, and Electric Conductivity of Higher Hydrides of Ytterbium at High Pressure. Inorg Chem 2022; 61:8694-8702. [PMID: 35642313 PMCID: PMC9490838 DOI: 10.1021/acs.inorgchem.2c00405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Indexed: 11/28/2022]
Abstract
While most of the rare-earth metals readily form trihydrides, due to increased stability of the filled 4f electronic shell for Yb(II), only YbH2.67, formally corresponding to YbII(YbIIIH4)2 (or Yb3H8), remains the highest hydride of ytterbium. Utilizing the diamond anvil cell methodology and synchrotron powder X-ray diffraction, we have attempted to push this limit further via hydrogenation of metallic Yb and Yb3H8. Compression of the latter has also been investigated in a neutral pressure-transmitting medium (PTM). While the in situ heating of Yb facilitates the formation of YbH2+x hydrides, we have not observed clear qualitative differences between the systems compressed in H2 and He or Ne PTM. In all of these cases, a sequence of phase transitions occurred within ca. 13-18 GPa (P3̅1m-I4/m phase) and around 27 GPa (to the I4/mmm phase). The molecular volume of the systems compressed in H2 PTM is ca. 1.5% larger than of those compressed in inert gases, suggesting a small hydrogen uptake. Nevertheless, hydrogenation toward YbH3 is incomplete, and polyhydrides do not form up to the highest pressure studied here (ca. 75 GPa). As pointed out by electronic transport measurements, the mixed-valence Yb3H8 retains its semiconducting character up to >50 GPa, although the very low remnant activation energy of conduction (<5 meV) suggests that metallization under further compression should be achievable. Finally, we provide a theoretical description of a hypothetical stoichiometric YbH3.
Collapse
Affiliation(s)
- Tomasz Jaroń
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
- Geophysical
Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, District of Columbia 20015, United States
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-089 Warsaw, Poland
| | - Jianjun Ying
- Geophysical
Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, District of Columbia 20015, United States
- HPCAT,
Geophysical Laboratory, Carnegie Institution
of Washington, Argonne, Illinois 60439, United
States
| | - Marek Tkacz
- Institute
for Physical Chemistry, Polish Academy of Science, 01-224 Warsaw, Poland
| | - Adam Grzelak
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Vitali B. Prakapenka
- Consortium
for Advanced Radiation Sources, The University
of Chicago, Chicago, Illinois 60637, United
States
| | - Viktor V. Struzhkin
- Geophysical
Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, District of Columbia 20015, United States
- Center
for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Wojciech Grochala
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
5
|
Ma L, Wang K, Xie Y, Yang X, Wang Y, Zhou M, Liu H, Yu X, Zhao Y, Wang H, Liu G, Ma Y. High-Temperature Superconducting Phase in Clathrate Calcium Hydride CaH_{6} up to 215 K at a Pressure of 172 GPa. PHYSICAL REVIEW LETTERS 2022; 128:167001. [PMID: 35522494 DOI: 10.1103/physrevlett.128.167001] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/18/2022] [Accepted: 03/09/2022] [Indexed: 05/25/2023]
Abstract
The recent discovery of superconductive rare earth and actinide superhydrides has ushered in a new era of superconductivity research at high pressures. This distinct type of clathrate metal hydrides was first proposed for alkaline-earth-metal hydride CaH_{6} that, however, has long eluded experimental synthesis, impeding an understanding of pertinent physics. Here, we report successful synthesis of CaH_{6} and its measured superconducting critical temperature T_{c} of 215 K at 172 GPa, which is evidenced by a sharp drop of resistivity to zero and a characteristic decrease of T_{c} under a magnetic field up to 9 T. An estimate based on the Werthamer-Helfand-Hohenberg model gives a giant zero-temperature upper critical magnetic field of 203 T. These remarkable benchmark superconducting properties place CaH_{6} among the most outstanding high-T_{c} superhydrides, marking it as the hitherto only clathrate metal hydride outside the family of rare earth and actinide hydrides. This exceptional case raises great prospects of expanding the extraordinary class of high-T_{c} superhydrides to a broader variety of compounds that possess more diverse material features and physics characteristics.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- International Center of Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Kui Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- International Center of Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
| | - Yu Xie
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- International Center of Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun 130012, China
| | - Xin Yang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- International Center of Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
| | - Yingying Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- International Center of Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
| | - Mi Zhou
- International Center of Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
| | - Hanyu Liu
- International Center of Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
- State Key Laboratory of Superhard Materials and Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Xiaohui Yu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongsheng Zhao
- Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
| | - Hongbo Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- International Center of Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
| | - Guangtao Liu
- International Center of Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
| | - Yanming Ma
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- International Center of Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Estimation of the Grüneisen Parameter of High-Entropy Alloy-Type Functional Materials: The Cases of REO0.7F0.3BiS2 and MTe. CONDENSED MATTER 2022. [DOI: 10.3390/condmat7020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In functional materials such as thermoelectric materials and superconductors, the interplay between functionality, electronic structure, and phonon characteristics is one of the key factors to improve functionality and to understand the underlying mechanisms. In the first part of this article, we briefly review investigations on lattice anharmonicity in functional materials on the basis of the Grüneisen parameter (γG). We show that γG can be a good index for large lattice anharmonicity and for detecting a change in anharmonicity amplitude in functional materials. Then, we show original results on the estimation of γG for recently developed high-entropy alloy-type (HEA-type) functional materials with a layered structure and a NaCl-type structure. As a common trend for those two systems with two- and three-dimensional structures, we found that γG increased with a slight increase in the configurational entropy of mixing (ΔSmix) and then decreased with increasing ΔSmix in the high-entropy region.
Collapse
|
7
|
Li H, Gao T, Ma S, Ye X. Predicted structures and superconductivity of LiYH n ( n = 5-10) under high pressure. Phys Chem Chem Phys 2022; 24:8432-8438. [PMID: 35343528 DOI: 10.1039/d2cp00059h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structures of LiYHn (n = 5-10) compounds in the pressure range of 0-300 GPa have been extensively explored using the CALYPSO structure prediction method based on the particle swarm optimization algorithm and first-principles calculation. Four stable structures (P21/m LiYH6, C2/c LiYH8, P1̄ LiYH9, R3̄m LiYH10) and three metastable phases (Pnma LiYH6, P1̄ LiYH8, Immm LiYH9) were predicted. They all exhibit metallic and superconducting behavior in their respective stable pressure ranges, and the predicted superconducting transition temperature Tc is within 22-109 K when the pressure is greater than 100 GPa. It was found that after doping Li into YHn (n = 6, 9, 10), the H2 units in the system increased, the electron-phonon coupling interaction weakened, and Tc decreased when the structural characteristics, electronic density of states distribution, and superconductivity of LiYHn and YHn (n = 6, 8, 9, 10) were compared. Systems that have a high density of H_s states and a low number of Y_d states at the Fermi level have stronger electron-phonon coupling (EPC) interactions and higher Tc.
Collapse
Affiliation(s)
- Huan Li
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China. .,Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou, 621908, China.
| | - Tao Gao
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
| | - Shiyin Ma
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
| | - Xiaoqiu Ye
- Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou, 621908, China.
| |
Collapse
|
8
|
High-Temperature Superconductivity in the Lanthanide Hydrides at Extreme Pressures. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hydrogen-rich superhydrides are promising high-Tc superconductors, with superconductivity experimentally observed near room temperature, as shown in recently discovered lanthanide superhydrides at very high pressures, e.g., LaH10 at 170 GPa and CeH9 at 150 GPa. Superconductivity is believed to be closely related to the high vibrational modes of the bound hydrogen ions. Here, we studied the limit of extreme pressures (above 200 GPa) where lanthanide hydrides with large hydrogen content have been reported. We focused on LaH16 and CeH16, two prototype candidates for achieving a large electronic contribution from hydrogen in the electron–phonon coupling. In this work, we propose a first-principles calculation platform with the inclusion of many-body corrections to evaluate the detailed physical properties of the Ce–H and La–H systems and to understand the structure, stability, and superconductivity of these systems at ultra-high pressure. We provide a practical approach to further investigate conventional superconductivity in hydrogen-rich superhydrides. We report that density functional theory provides accurate structure and phonon frequencies, but many-body corrections lead to an increase of the critical temperature, which is associated with the spectral weight transfer of the f-states.
Collapse
|
9
|
Zhang X, Zhao Y, Yang G. Superconducting ternary hydrides under high pressure. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1582] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaohua Zhang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science Yanshan University Qinhuangdao China
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light‐Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun China
| | - Yaping Zhao
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science Yanshan University Qinhuangdao China
| | - Guochun Yang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science Yanshan University Qinhuangdao China
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light‐Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun China
| |
Collapse
|
10
|
Affiliation(s)
- Hideo Hosono
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Masaaki Kitano
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
11
|
Ding S, Su R, Cui W, Hao J, Shi J, Li Y. High-Pressure Phases and Properties of the Mg 3Sb 2 Compound. ACS OMEGA 2020; 5:31902-31907. [PMID: 33344844 PMCID: PMC7745450 DOI: 10.1021/acsomega.0c04797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Pressure always plays an important role in influencing the structure configuration and electronic properties of materials. Here, combining density function theory and structure prediction algorithm, we systematically studied the Mg3Sb2 system from its phase transition to thermodynamic and electronic properties under high pressure. We find that two novel phases, namely Cm and C2/m, are stable under high pressure. Calculation results of phonon dispersions showed that both novel phases have no imaginary frequency, which indicates that the novel phases are thermodynamically stable. Due to the larger ionic radius of Sb compared to N, P, and As elements, the Mg3Sb2 compound shows a different electronic property at high pressure. The electronic calculations show that the novel phases of Cm and C2/m of Mg3Sb2 possess metallic behavior under high pressure. These results provide new insights for understanding the Mg3Sb2 compound.
Collapse
Affiliation(s)
- Shicong Ding
- Laboratory of Quantum Functional
Materials Design and Application, School of Physics and Electronic
Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Ruiming Su
- Laboratory of Quantum Functional
Materials Design and Application, School of Physics and Electronic
Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Wenwen Cui
- Laboratory of Quantum Functional
Materials Design and Application, School of Physics and Electronic
Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Jian Hao
- Laboratory of Quantum Functional
Materials Design and Application, School of Physics and Electronic
Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Jingming Shi
- Laboratory of Quantum Functional
Materials Design and Application, School of Physics and Electronic
Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Yinwei Li
- Laboratory of Quantum Functional
Materials Design and Application, School of Physics and Electronic
Engineering, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
12
|
Yan Y, Bi T, Geng N, Wang X, Zurek E. A Metastable CaSH 3 Phase Composed of HS Honeycomb Sheets that is Superconducting Under Pressure. J Phys Chem Lett 2020; 11:9629-9636. [PMID: 33125247 DOI: 10.1021/acs.jpclett.0c02299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Evolutionary searches have predicted a number of ternary Ca-S-H phases that could be synthesized at pressures of 100-300 GPa. P63/mmc CaSH2, Pnma CaSH2, Cmc21 CaSH6, and I4̅ CaSH20 were composed of a Ca-S lattice along with H2 molecules coordinated in a "side-on" fashion to Ca. The H-H bond lengths in these semiconducting phases were elongated because of H2 σ → Ca d donation, and Ca d → H2 σ* back-donation, via a Kubas-like mechanism. P6̅m2 CaSH3, consisting of two-dimensional HS and CaH2 sheets, was metastable and metallic above 128 GPa. The presence of van Hove singularities increased its density of states at the Fermi level and concomitantly the superconducting critical temperature, which was estimated to be as high as ∼100 K at 128 GPa. This work will inspire the search for superconductivity in materials based upon honeycomb HX (X = S, Se, Te) and MH2 (M = Mg, Ca, Sr, Ba) layers under pressure.
Collapse
Affiliation(s)
- Yan Yan
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
- School of Sciences, Changchun University, Changchun 130022, China
| | - Tiange Bi
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Nisha Geng
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Xiaoyu Wang
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Eva Zurek
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| |
Collapse
|
13
|
Spektor K, Crichton WA, Filippov S, Simak SI, Fischer A, Häussermann U. Na 3FeH 7 and Na 3CoH 6: Hydrogen-Rich First-Row Transition Metal Hydrides from High Pressure Synthesis. Inorg Chem 2020; 59:16467-16473. [PMID: 33141575 PMCID: PMC7672699 DOI: 10.1021/acs.inorgchem.0c02294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
The
formation of ternary hydrogen-rich hydrides involving the first-row
transition metals TM = Fe and Co in high oxidation states is demonstrated
from in situ synchrotron diffraction studies of reaction mixtures
NaH–TM–H2 at p ≈ 10
GPa. Na3FeH7 and Na3CoH6 feature pentagonal bipyramidal FeH73– and octahedral CoH63– 18-electron complexes,
respectively. At high pressure, high temperature (300 < T ≤ 470 °C) conditions, metal atoms are arranged
as in the face-centered cubic Heusler structure, and ab initio molecular
dynamics simulations suggest that the complexes undergo reorientational
dynamics. Upon cooling, subtle changes in the diffraction patterns
evidence reversible and rapid phase transitions associated with ordering
of the complexes. During decompression, Na3FeH7 and Na3CoH6 transform to tetragonal and orthorhombic
low pressure forms, respectively, which can be retained at ambient
pressure. The discovery of Na3FeH7 and Na3CoH6 establishes a consecutive series of homoleptic
hydrogen-rich complexes for first-row transition metals from Cr to
Ni. In situ synchrotron diffraction studies
of reaction mixtures NaH−TM−H2 (TM = Fe,
Co) at p ≈ 10 GPa revealed the formation of
ternary hydrides Na3FeH7 and Na3CoH6 featuring pentagonal bipyramidal Fe(IV)H73− and octahedral Co(III)H63− complexes, respectively. The discovery of Na3FeH7 and Na3CoH6 establishes a consecutive
series of homoleptic hydrogen-rich complexes for first-row transition
metals from Cr to Ni.
Collapse
Affiliation(s)
- Kristina Spektor
- ESRF, The European Synchrotron Radiation Facility, F-38000 Grenoble, France
| | - Wilson A Crichton
- ESRF, The European Synchrotron Radiation Facility, F-38000 Grenoble, France
| | - Stanislav Filippov
- Theoretical Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden.,Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Sergei I Simak
- Theoretical Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Andreas Fischer
- Department of Physics, Augsburg University, D-86135 Augsburg, Germany
| | - Ulrich Häussermann
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
14
|
Chen D, Gao W, Jiang Q. Distinguishing the Structures of High-Pressure Hydrides with Nuclear Magnetic Resonance Spectroscopy. J Phys Chem Lett 2020; 11:9439-9445. [PMID: 33108187 DOI: 10.1021/acs.jpclett.0c02657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The structural characterization of high-pressure hydrides has encountered many difficulties mainly due to the weak X-ray scattering of hydrogen. Herein, we investigate the prospect of detecting the H3S and LaH10 structures with nuclear magnetic resonance (NMR) spectroscopy. Our calculations demonstrate that the different candidate structures of H3S (or LaH10) exhibit significant differences in the electric field gradient (EFG) tensor of the 33S (or 139La) sites, indicating that the NMR spectroscopy can well capture the structural differences, even the small changes in the atomic position, and hence can be used to effectively probe the structures and the phase transitions of H3S and LaH10. Our results clarify the relationship between the structures and the EFG tensor parameters and provide a potential means to detect the structures of high-pressure hydrides.
Collapse
Affiliation(s)
- Da Chen
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Wang Gao
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
15
|
Spektor K, Crichton WA, Filippov S, Klarbring J, Simak SI, Fischer A, Häussermann U. Na-Ni-H Phase Formation at High Pressures and High Temperatures: Hydrido Complexes [NiH 5] 3- Versus the Perovskite NaNiH 3. ACS OMEGA 2020; 5:8730-8743. [PMID: 32337435 PMCID: PMC7178781 DOI: 10.1021/acsomega.0c00239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/19/2020] [Indexed: 05/28/2023]
Abstract
The Na-Ni-H system was investigated by in situ synchrotron diffraction studies of reaction mixtures NaH-Ni-H2 at around 5, 10, and 12 GPa. The existence of ternary hydrogen-rich hydrides with compositions Na3NiH5 and NaNiH3, where Ni attains the oxidation state II, is demonstrated. Upon heating at ∼5 GPa, face-centered cubic (fcc) Na3NiH5 forms above 430 °C. Upon cooling, it undergoes a rapid and reversible phase transition at 330 °C to an orthorhombic (Cmcm) form. Upon pressure release, Na3NiH5 further transforms into its recoverable Pnma form whose structure was elucidated from synchrotron powder diffraction data, aided by first-principles density functional theory (DFT) calculations. Na3NiH5 features previously unknown square pyramidal 18-electron complexes NiH5 3-. In the high temperature fcc form, metal atoms are arranged as in the Heusler structure, and ab initio molecular dynamics simulations suggest that the complexes are dynamically disordered. The Heusler-type metal partial structure is essentially maintained in the low temperature Cmcm form, in which NiH5 3- complexes are ordered. It is considerably rearranged in the low pressure Pnma form. Experiments at 10 GPa showed an initial formation of fcc Na3NiH5 followed by the addition of the perovskite hydride NaNiH3, in which Ni(II) attains an octahedral environment by H atoms. NaNiH3 is recoverable at ambient pressures and represents the sole product of 12 GPa experiments. DFT calculations show that the decomposition of Na3NiH5 = NaNiH3 + 2 NaH is enthalpically favored at all pressures, suggesting that Na3NiH5 is metastable and its formation is kinetically favored. Ni-H bonding in metallic NaNiH3 is considered covalent, as in electron precise Na3NiH5, but delocalized in the polyanion [NiH3]-.
Collapse
Affiliation(s)
- Kristina Spektor
- ESRF,
The European Synchrotron Radiation Facility, F-38000 Grenoble, France
| | - Wilson A. Crichton
- ESRF,
The European Synchrotron Radiation Facility, F-38000 Grenoble, France
| | - Stanislav Filippov
- Theoretical
Physics Division, Department of Physics, Chemistry and Biology (IFM) Linköping University, SE-581 83 Linköping, Sweden
- Department
of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Johan Klarbring
- Theoretical
Physics Division, Department of Physics, Chemistry and Biology (IFM) Linköping University, SE-581 83 Linköping, Sweden
| | - Sergei I. Simak
- Theoretical
Physics Division, Department of Physics, Chemistry and Biology (IFM) Linköping University, SE-581 83 Linköping, Sweden
| | - Andreas Fischer
- Department
of Physics, Augsburg University, D-86135 Augsburg, Germany
| | - Ulrich Häussermann
- Department
of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
16
|
Li X, Xie Y, Sun Y, Huang P, Liu H, Chen C, Ma Y. Chemically Tuning Stability and Superconductivity of P-H Compounds. J Phys Chem Lett 2020; 11:935-939. [PMID: 31958371 DOI: 10.1021/acs.jpclett.9b03856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Experimental evidence has revealed superconductivity with a critical temperature, Tc, around 100 K in compressed solid phosphine, but theoretical studies have hitherto found no stable structure in any binary P-H system, leaving the characterization of the new superconductor unsettled. Here we present the findings of an advanced structure search and first-principles calculations unveiling the effect of Li as an electron donor that stabilizes the crystal structure and produces robust phonon-mediated superconductivity in the resulting Li-P-H compounds in wide ranges of stoichiometry and pressure. We showcase a trigonal LiP2H14 phase that reaches Tc of 169 K at 230 GPa and then decreases with rising pressure, which can be remedied by substituting Li with Be or Na, which considerably enhances Tc. These findings highlight the intricate and effective chemical tuning of stabilizing the crystal structure and enhancing the superconductivity in a distinct class of ternary hydrides, opening new avenues for designing and optimizing new high-Tc hydride superconductors.
Collapse
Affiliation(s)
- Xue Li
- International Center for Computational Method and Software & State Key Laboratory of Superhard Materials, College of Physics , Jilin University , Changchun 130012 , China
| | - Yu Xie
- International Center for Computational Method and Software & State Key Laboratory of Superhard Materials, College of Physics , Jilin University , Changchun 130012 , China
| | - Ying Sun
- International Center for Computational Method and Software & State Key Laboratory of Superhard Materials, College of Physics , Jilin University , Changchun 130012 , China
| | - Peihao Huang
- International Center for Computational Method and Software & State Key Laboratory of Superhard Materials, College of Physics , Jilin University , Changchun 130012 , China
| | - Hanyu Liu
- International Center for Computational Method and Software & State Key Laboratory of Superhard Materials, College of Physics , Jilin University , Changchun 130012 , China
- International Center of Future Science , Jilin University , Changchun 130012 , China
| | - Changfeng Chen
- Department of Physics and Astronomy , University of Nevada , Las Vegas , Nevada 89154 , United States
| | - Yanming Ma
- International Center for Computational Method and Software & State Key Laboratory of Superhard Materials, College of Physics , Jilin University , Changchun 130012 , China
- International Center of Future Science , Jilin University , Changchun 130012 , China
| |
Collapse
|
17
|
Tse JS. A chemical perspective on high pressure crystal structures and properties. Natl Sci Rev 2020; 7:149-169. [PMID: 34692029 PMCID: PMC8289026 DOI: 10.1093/nsr/nwz144] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 11/13/2022] Open
Abstract
The general availability of third generation synchrotron sources has ushered in a new era of high pressure research. The crystal structure of materials under compression can now be determined by X-ray diffraction using powder samples and, more recently, from multi-nano single crystal diffraction. Concurrently, these experimental advancements are accompanied by a rapid increase in computational capacity and capability, enabling the application of sophisticated quantum calculations to explore a variety of material properties. One of the early surprises is the finding that simple metallic elements do not conform to the general expectation of adopting 3D close-pack structures at high pressure. Instead, many novel open structures have been identified with no known analogues at ambient pressure. The occurrence of these structural types appears to be random with no rules governing their formation. The adoption of an open structure at high pressure suggested the presence of directional bonds. Therefore, a localized atomic hybrid orbital description of the chemical bonding may be appropriate. Here, the theoretical foundation and experimental evidence supporting this approach to the elucidation of the high pressure crystal structures of group I and II elements and polyhydrides are reviewed. It is desirable and advantageous to extend and apply established chemical principles to the study of the chemistry and chemical bonding of materials at high pressure.
Collapse
Affiliation(s)
- John S Tse
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| |
Collapse
|
18
|
Sun Y, Lv J, Xie Y, Liu H, Ma Y. Route to a Superconducting Phase above Room Temperature in Electron-Doped Hydride Compounds under High Pressure. PHYSICAL REVIEW LETTERS 2019; 123:097001. [PMID: 31524448 DOI: 10.1103/physrevlett.123.097001] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Indexed: 06/10/2023]
Abstract
The recent theory-orientated discovery of record high-temperature superconductivity (T_{c}∼250 K) in sodalitelike clathrate LaH_{10} is an important advance toward room-temperature superconductors. Here, we identify an alternative clathrate structure in ternary Li_{2}MgH_{16} with a remarkably high estimated T_{c} of ∼473 K at 250 GPa, which may allow us to obtain room-temperature or even higher-temperature superconductivity. The ternary compound mimics a Li- or electron-doped binary hydride of MgH_{16}. The parent hydride contains H_{2} molecules and is not a good superconductor. The extra electrons introduced break up the H_{2} molecules, increasing the amount of atomic hydrogen compared with the parent hydride, which is necessary for stabilizing the clathrate structure or other high-T_{c} structures. Our results provide a viable strategy for tuning the superconductivity of hydrogen-rich hydrides by donating electrons to hydrides via metal doping. Our approach may pave the way for finding high-T_{c} superconductors in a variety of ternary or quaternary hydrides.
Collapse
Affiliation(s)
- Ying Sun
- Innovation Center of Computational Physics Methods and Software and State Key Laboratory for Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Jian Lv
- Innovation Center of Computational Physics Methods and Software and State Key Laboratory for Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Yu Xie
- Innovation Center of Computational Physics Methods and Software and State Key Laboratory for Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Hanyu Liu
- Innovation Center of Computational Physics Methods and Software and State Key Laboratory for Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Yanming Ma
- Innovation Center of Computational Physics Methods and Software and State Key Laboratory for Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
19
|
Spektor K, Crichton WA, Filippov S, Simak SI, Häussermann U. Exploring the Mg-Cr-H System at High Pressure and Temperature via in Situ Synchrotron Diffraction. Inorg Chem 2019; 58:11043-11050. [PMID: 31364366 DOI: 10.1021/acs.inorgchem.9b01569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The complex transition metal hydride Mg3CrH8 has been previously synthesized using high pressure conditions. It contains the first group 6 homoleptic hydrido complex, [Cr(II)H7]5-. Here, we investigated the formation of Mg3CrH8 by in situ studies of reaction mixtures of 3MgH2-Cr-H2 at 5 GPa. The formation of the known orthorhombic form (o-Mg3CrH8) was noticed at temperatures above 635 °C, albeit at a relatively slow rate. At temperatures around 750 °C a high temperature phase formed rapidly, which upon slow cooling converted into o-Mg3CrH8. The phase transition at high pressures occurred reversibly at ∼735 °C upon heating and at ∼675 °C upon slow cooling. Upon rapid cooling, a monoclinic polymorph (m-Mg3CrH8) was afforded which could be subsequently recovered and analyzed at ambient pressure. m-Mg3CrH8 was found to crystallize in P21/n space group (a = 5.128 Å, b = 16.482 Å, c = 4.805 Å, β = 90.27°). Its structure elucidation from high resolution synchrotron powder diffraction data was aided by first-principles DFT calculations. Like the orthorhombic polymorph, m-Mg3CrH8 contains pentagonal bipyramidal complexes [CrH7]5- and interstitial H-. The arrangement of metal atoms and interstitial H- resembles closely that of the high pressure orthorhombic form of Mg3MnH7. This suggests similar principles of formation and stabilization of hydrido complexes at high pressure and temperature conditions in the Mg-Cr-H and Mg-Mn-H systems. Calculated enthalpy versus pressure relations predict o-Mg3CrH8 being more stable than m-Mg3CrH8 by 6.5 kJ/mol at ambient pressure and by 13 kJ/mol at 5 GPa. The electronic structure of m-Mg3CrH8 is very similar to that of o-Mg3CrH8. The stable 18-electron complex [CrH7]5- is mirrored in the occupied states, and calculated band gaps are around 1.5 eV.
Collapse
Affiliation(s)
- Kristina Spektor
- ESRF , The European Synchrotron Radiation Facility , F-38000 Grenoble , France
| | - Wilson A Crichton
- ESRF , The European Synchrotron Radiation Facility , F-38000 Grenoble , France
| | - Stanislav Filippov
- Theoretical Physics Division, Department of Physics , Chemistry and Biology (IFM) Linköping University , SE-581 83 Linköping , Sweden.,Department of Materials and Environmental Chemistry , Stockholm University , SE-10691 Stockholm , Sweden
| | - Sergei I Simak
- Theoretical Physics Division, Department of Physics , Chemistry and Biology (IFM) Linköping University , SE-581 83 Linköping , Sweden
| | - Ulrich Häussermann
- Department of Materials and Environmental Chemistry , Stockholm University , SE-10691 Stockholm , Sweden
| |
Collapse
|
20
|
Zurek E, Bi T. High-temperature superconductivity in alkaline and rare earth polyhydrides at high pressure: A theoretical perspective. J Chem Phys 2019; 150:050901. [DOI: 10.1063/1.5079225] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Eva Zurek
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, USA
| | - Tiange Bi
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, USA
| |
Collapse
|
21
|
Durajski AP, Szczȩśniak R. Structural, electronic, vibrational, and superconducting properties of hydrogenated chlorine. J Chem Phys 2018; 149:074101. [DOI: 10.1063/1.5031202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Artur P. Durajski
- Institute of Physics, Czȩstochowa University of Technology, Ave. Armii Krajowej 19, 42-200 Czȩstochowa, Poland
| | - Radosław Szczȩśniak
- Institute of Physics, Czȩstochowa University of Technology, Ave. Armii Krajowej 19, 42-200 Czȩstochowa, Poland
| |
Collapse
|