1
|
Garin S, Levavi L, Gerst JE. EASI-ORC: A pipeline for the efficient analysis and segmentation of smFISH images for organelle-RNA colocalization measurements in yeast. Commun Biol 2025; 8:242. [PMID: 39955363 PMCID: PMC11829984 DOI: 10.1038/s42003-025-07682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Analysis of single-molecule fluorescent in situ hybridization (smFISH) images is important to translate cellular image data into a quantifiable format. Although smFISH is the gold standard for RNA localization measurements, there are no freely available, user-friendly applications for assaying messenger RNA (mRNA) localization to organelles. EASI-ORC (Efficient Analysis and Segmentation of smFISH Images for Organelle-RNA Colocalization) is a novel pipeline for the automated analysis of multiple smFISH images of yeast cells. EASI-ORC automates the segmentation of cells and organelles, identifies bona fide smFISH signals, and measures mRNA-organelle colocalization. EASI-ORC is efficient, unbiased, and plots the colocalization data and statistical analyses. EASI-ORC utilizes existing ImageJ plugins and original scripts, thus allowing for free access and ease-of-use. To circumvent technical literacy issues, a step-by-step user guide is provided. EASI-ORC offers a robust solution to smFISH image analysis - one that saves time, effort and provides consistent measurements of mRNA-organelle colocalization in yeast.
Collapse
Affiliation(s)
- Shahar Garin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Liav Levavi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Jeffrey E Gerst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
2
|
Wu J, Jaffrey SR. Live-Cell Imaging of mRNA Using a Pepper RNA Tag. Methods Mol Biol 2025; 2875:1-7. [PMID: 39535635 DOI: 10.1007/978-1-0716-4248-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Live-cell imaging of mRNA enables tracking of mRNA localization and its dynamics in real time. This is fundamentally important in understanding how cells use RNA to regulate gene expression and orchestrate biological processes. Here, we describe a method of using an engineered RNA tag, called Pepper RNA tag, to visualizing mRNA in living cells. In this method, an mRNA of interest engineered to contain the Pepper RNA tag turns on the fluorescence signals of fluorogenic proteins, which enables tracking of mRNA in living cells.
Collapse
Affiliation(s)
- Jiahui Wu
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
3
|
Kannaiah S, Goldberger O, Alam N, Barnabas G, Pozniak Y, Nussbaum-Shochat A, Schueler-Furman O, Geiger T, Amster-Choder O. MinD-RNase E interplay controls localization of polar mRNAs in E. coli. EMBO J 2024; 43:637-662. [PMID: 38243117 PMCID: PMC10897333 DOI: 10.1038/s44318-023-00026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024] Open
Abstract
The E. coli transcriptome at the cell's poles (polar transcriptome) is unique compared to the membrane and cytosol. Several factors have been suggested to mediate mRNA localization to the membrane, but the mechanism underlying polar localization of mRNAs remains unknown. Here, we combined a candidate system approach with proteomics to identify factors that mediate mRNAs localization to the cell poles. We identified the pole-to-pole oscillating protein MinD as an essential factor regulating polar mRNA localization, although it is not able to bind RNA directly. We demonstrate that RNase E, previously shown to interact with MinD, is required for proper localization of polar mRNAs. Using in silico modeling followed by experimental validation, the membrane-binding site in RNase E was found to mediate binding to MinD. Intriguingly, not only does MinD affect RNase E interaction with the membrane, but it also affects its mode of action and dynamics. Polar accumulation of RNase E in ΔminCDE cells resulted in destabilization and depletion of mRNAs from poles. Finally, we show that mislocalization of polar mRNAs may prevent polar localization of their protein products. Taken together, our findings show that the interplay between MinD and RNase E determines the composition of the polar transcriptome, thus assigning previously unknown roles for both proteins.
Collapse
Affiliation(s)
- Shanmugapriya Kannaiah
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, 91120, Jerusalem, Israel.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA.
| | - Omer Goldberger
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, 91120, Jerusalem, Israel
| | - Nawsad Alam
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, 91120, Jerusalem, Israel
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Georgina Barnabas
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 6997801, Tel-Aviv, Israel
- Department of Pathology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yair Pozniak
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 6997801, Tel-Aviv, Israel
| | - Anat Nussbaum-Shochat
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, 91120, Jerusalem, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, 91120, Jerusalem, Israel
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 6997801, Tel-Aviv, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100001, Rehovot, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, 91120, Jerusalem, Israel.
| |
Collapse
|
4
|
Wang J, Horlacher M, Cheng L, Winther O. RNA trafficking and subcellular localization-a review of mechanisms, experimental and predictive methodologies. Brief Bioinform 2023; 24:bbad249. [PMID: 37466130 PMCID: PMC10516376 DOI: 10.1093/bib/bbad249] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
RNA localization is essential for regulating spatial translation, where RNAs are trafficked to their target locations via various biological mechanisms. In this review, we discuss RNA localization in the context of molecular mechanisms, experimental techniques and machine learning-based prediction tools. Three main types of molecular mechanisms that control the localization of RNA to distinct cellular compartments are reviewed, including directed transport, protection from mRNA degradation, as well as diffusion and local entrapment. Advances in experimental methods, both image and sequence based, provide substantial data resources, which allow for the design of powerful machine learning models to predict RNA localizations. We review the publicly available predictive tools to serve as a guide for users and inspire developers to build more effective prediction models. Finally, we provide an overview of multimodal learning, which may provide a new avenue for the prediction of RNA localization.
Collapse
Affiliation(s)
- Jun Wang
- Bioinformatics Centre, Department of Biology, University of Copenhagen, København Ø 2100, Denmark
| | - Marc Horlacher
- Computational Health Center, Helmholtz Center, Munich, Germany
| | - Lixin Cheng
- Shenzhen People’s Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China
| | - Ole Winther
- Bioinformatics Centre, Department of Biology, University of Copenhagen, København Ø 2100, Denmark
- Center for Genomic Medicine, Rigshospitalet (Copenhagen University Hospital), Copenhagen 2100, Denmark
- Section for Cognitive Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
5
|
Crook OM, Lilley KS, Gatto L, Kirk PD. Semi-Supervised Non-Parametric Bayesian Modelling of Spatial Proteomics. Ann Appl Stat 2022; 16:22-aoas1603. [PMID: 36507469 PMCID: PMC7613899 DOI: 10.1214/22-aoas1603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Understanding sub-cellular protein localisation is an essential component in the analysis of context specific protein function. Recent advances in quantitative mass-spectrometry (MS) have led to high resolution mapping of thousands of proteins to sub-cellular locations within the cell. Novel modelling considerations to capture the complex nature of these data are thus necessary. We approach analysis of spatial proteomics data in a non-parametric Bayesian framework, using K-component mixtures of Gaussian process regression models. The Gaussian process regression model accounts for correlation structure within a sub-cellular niche, with each mixture component capturing the distinct correlation structure observed within each niche. The availability of marker proteins (i.e. proteins with a priori known labelled locations) motivates a semi-supervised learning approach to inform the Gaussian process hyperparameters. We moreover provide an efficient Hamiltonian-within-Gibbs sampler for our model. Furthermore, we reduce the computational burden associated with inversion of covariance matrices by exploiting the structure in the covariance matrix. A tensor decomposition of our covariance matrices allows extended Trench and Durbin algorithms to be applied to reduce the computational complexity of inversion and hence accelerate computation. We provide detailed case-studies on Drosophila embryos and mouse pluripotent embryonic stem cells to illustrate the benefit of semi-supervised functional Bayesian modelling of the data.
Collapse
|
6
|
Fang J, Lerit DA. Orb-dependent polyadenylation contributes to PLP expression and centrosome scaffold assembly. Development 2022; 149:dev200426. [PMID: 35661190 PMCID: PMC9340551 DOI: 10.1242/dev.200426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/25/2022] [Indexed: 12/17/2024]
Abstract
As the microtubule-organizing centers of most cells, centrosomes engineer the bipolar mitotic spindle required for error-free mitosis. Drosophila Pericentrin-like protein (PLP) directs formation of a pericentriolar material (PCM) scaffold required for PCM organization and microtubule-organizing center function. Here, we investigate the post-transcriptional regulation of Plp mRNA. We identify conserved binding sites for cytoplasmic polyadenylation element binding (CPEB) proteins within the Plp 3'-untranslated region and examine the role of the CPEB ortholog Oo18 RNA-binding protein (Orb) in Plp mRNA regulation. Our data show that Orb interacts biochemically with Plp mRNA to promote polyadenylation and PLP protein expression. Loss of orb, but not orb2, diminishes PLP levels in embryonic extracts. Consequently, PLP localization to centrosomes and its function in PCM scaffolding are compromised in orb mutant embryos, resulting in genomic instability and embryonic lethality. Moreover, we find that PLP overexpression restores centrosome scaffolding and rescues the cell division defects caused by orb depletion. Our data suggest that Orb modulates PLP expression at the level of Plp mRNA polyadenylation and demonstrates that the post-transcriptional regulation of core, conserved centrosomal mRNAs is crucial for centrosome function.
Collapse
Affiliation(s)
| | - Dorothy A. Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Pichon X, Moissoglu K, Coleno E, Wang T, Imbert A, Robert MC, Peter M, Chouaib R, Walter T, Mueller F, Zibara K, Bertrand E, Mili S. The kinesin KIF1C transports APC-dependent mRNAs to cell protrusions. RNA (NEW YORK, N.Y.) 2021; 27:1528-1544. [PMID: 34493599 PMCID: PMC8594469 DOI: 10.1261/rna.078576.120] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 09/01/2021] [Indexed: 05/25/2023]
Abstract
RNA localization and local translation are important for numerous cellular functions. In mammals, a class of mRNAs localize to cytoplasmic protrusions in an APC-dependent manner, with roles during cell migration. Here, we investigated this localization mechanism. We found that the KIF1C motor interacts with APC-dependent mRNAs and is required for their localization. Live cell imaging revealed rapid, active transport of single mRNAs over long distances that requires both microtubules and KIF1C. Two-color imaging directly revealed single mRNAs transported by single KIF1C motors, with the 3'UTR being sufficient to trigger KIF1C-dependent RNA transport and localization. Moreover, KIF1C remained associated with peripheral, multimeric RNA clusters and was required for their formation. These results reveal a widespread RNA transport pathway in mammalian cells, in which the KIF1C motor has a dual role in transporting RNAs and clustering them within cytoplasmic protrusions. Interestingly, KIF1C also transports its own mRNA, suggesting a possible feedback loop acting at the level of mRNA transport.
Collapse
Affiliation(s)
- Xavier Pichon
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, 34000 Montpellier, France
| | - Konstadinos Moissoglu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20814, USA
| | - Emeline Coleno
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, 34000 Montpellier, France
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Tianhong Wang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20814, USA
| | - Arthur Imbert
- MINES ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, 77300 Fontainebleau, France
- Institut Curie, 75248 Paris Cedex, France
- INSERM, U900, 75248 Paris Cedex, France
| | - Marie-Cécile Robert
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, 34000 Montpellier, France
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Marion Peter
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, 34000 Montpellier, France
| | - Racha Chouaib
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, 34000 Montpellier, France
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Thomas Walter
- MINES ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, 77300 Fontainebleau, France
- Institut Curie, 75248 Paris Cedex, France
- INSERM, U900, 75248 Paris Cedex, France
| | - Florian Mueller
- Unité Imagerie et Modélisation, Institut Pasteur and CNRS UMR 3691, 75015 Paris, France
- C3BI, USR 3756 IP CNRS - Paris, France
| | - Kazem Zibara
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
- ER045, PRASE, DSST, Lebanese University, Beirut, Lebanon
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, 34000 Montpellier, France
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20814, USA
| |
Collapse
|
8
|
Meher PK, Rai A, Rao AR. mLoc-mRNA: predicting multiple sub-cellular localization of mRNAs using random forest algorithm coupled with feature selection via elastic net. BMC Bioinformatics 2021; 22:342. [PMID: 34167457 PMCID: PMC8223360 DOI: 10.1186/s12859-021-04264-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Localization of messenger RNAs (mRNAs) plays a crucial role in the growth and development of cells. Particularly, it plays a major role in regulating spatio-temporal gene expression. The in situ hybridization is a promising experimental technique used to determine the localization of mRNAs but it is costly and laborious. It is also a known fact that a single mRNA can be present in more than one location, whereas the existing computational tools are capable of predicting only a single location for such mRNAs. Thus, the development of high-end computational tool is required for reliable and timely prediction of multiple subcellular locations of mRNAs. Hence, we develop the present computational model to predict the multiple localizations of mRNAs. RESULTS The mRNA sequences from 9 different localizations were considered. Each sequence was first transformed to a numeric feature vector of size 5460, based on the k-mer features of sizes 1-6. Out of 5460 k-mer features, 1812 important features were selected by the Elastic Net statistical model. The Random Forest supervised learning algorithm was then employed for predicting the localizations with the selected features. Five-fold cross-validation accuracies of 70.87, 68.32, 68.36, 68.79, 96.46, 73.44, 70.94, 97.42 and 71.77% were obtained for the cytoplasm, cytosol, endoplasmic reticulum, exosome, mitochondrion, nucleus, pseudopodium, posterior and ribosome respectively. With an independent test set, accuracies of 65.33, 73.37, 75.86, 72.99, 94.26, 70.91, 65.53, 93.60 and 73.45% were obtained for the respective localizations. The developed approach also achieved higher accuracies than the existing localization prediction tools. CONCLUSIONS This study presents a novel computational tool for predicting the multiple localization of mRNAs. Based on the proposed approach, an online prediction server "mLoc-mRNA" is accessible at http://cabgrid.res.in:8080/mlocmrna/ . The developed approach is believed to supplement the existing tools and techniques for the localization prediction of mRNAs.
Collapse
Affiliation(s)
- Prabina Kumar Meher
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | | |
Collapse
|
9
|
Bergalet J, Patel D, Legendre F, Lapointe C, Benoit Bouvrette LP, Chin A, Blanchette M, Kwon E, Lécuyer E. Inter-dependent Centrosomal Co-localization of the cen and ik2 cis-Natural Antisense mRNAs in Drosophila. Cell Rep 2021; 30:3339-3352.e6. [PMID: 32160541 DOI: 10.1016/j.celrep.2020.02.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/24/2019] [Accepted: 02/10/2020] [Indexed: 11/30/2022] Open
Abstract
Overlapping genes are prevalent in most genomes, but the extent to which this organization influences regulatory events operating at the post-transcriptional level remains unclear. Studying the cen and ik2 genes of Drosophila melanogaster, which are convergently transcribed as cis-natural antisense transcripts (cis-NATs) with overlapping 3' UTRs, we found that their encoded mRNAs strikingly co-localize to centrosomes. These transcripts physically interact in a 3' UTR-dependent manner, and the targeting of ik2 requires its 3' UTR sequence and the presence of cen mRNA, which serves as the main driver of centrosomal co-localization. The cen transcript undergoes localized translation in proximity to centrosomes, and its localization is perturbed by polysome-disrupting drugs. By interrogating global fractionation-sequencing datasets generated from Drosophila and human cellular models, we find that RNAs expressed as cis-NATs tend to co-localize to specific subcellular fractions. This work suggests that post-transcriptional interactions between RNAs with complementary sequences can dictate their localization fate in the cytoplasm.
Collapse
Affiliation(s)
- Julie Bergalet
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Dhara Patel
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire and Programme de Biologie Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Félix Legendre
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire and Programme de Biologie Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Catherine Lapointe
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Louis Philip Benoit Bouvrette
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire and Programme de Biologie Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Ashley Chin
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada; Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | | | - Eunjeong Kwon
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Eric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire and Programme de Biologie Moléculaire, Université de Montréal, Montréal, QC, Canada; Division of Experimental Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
10
|
Safieddine A, Coleno E, Salloum S, Imbert A, Traboulsi AM, Kwon OS, Lionneton F, Georget V, Robert MC, Gostan T, Lecellier CH, Chouaib R, Pichon X, Le Hir H, Zibara K, Mueller F, Walter T, Peter M, Bertrand E. A choreography of centrosomal mRNAs reveals a conserved localization mechanism involving active polysome transport. Nat Commun 2021; 12:1352. [PMID: 33649340 PMCID: PMC7921559 DOI: 10.1038/s41467-021-21585-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
Local translation allows for a spatial control of gene expression. Here, we use high-throughput smFISH to screen centrosomal protein-coding genes, and we describe 8 human mRNAs accumulating at centrosomes. These mRNAs localize at different stages during cell cycle with a remarkable choreography, indicating a finely regulated translational program at centrosomes. Interestingly, drug treatments and reporter analyses reveal a common translation-dependent localization mechanism requiring the nascent protein. Using ASPM and NUMA1 as models, single mRNA and polysome imaging reveals active movements of endogenous polysomes towards the centrosome at the onset of mitosis, when these mRNAs start localizing. ASPM polysomes associate with microtubules and localize by either motor-driven transport or microtubule pulling. Remarkably, the Drosophila orthologs of the human centrosomal mRNAs also localize to centrosomes and also require translation. These data identify a conserved family of centrosomal mRNAs that localize by active polysome transport mediated by nascent proteins. Centrosomes function as microtubule organizing centers where several mRNAs accumulate. By employing high-throughput single molecule FISH screening, the authors discover that 8 human mRNAs localize to centrosomes with unique cell cycle dependent patterns using an active polysome targeting mechanism.
Collapse
Affiliation(s)
- Adham Safieddine
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France. .,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France. .,ER045, PRASE, and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| | - Emeline Coleno
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Soha Salloum
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France.,ER045, PRASE, and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Arthur Imbert
- MINES ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, Fontainebleau, France.,Institut Curie, Paris, Cedex, France.,INSERM, U900, Paris, Cedex, France
| | - Abdel-Meneem Traboulsi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Oh Sung Kwon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | | | | | - Marie-Cécile Robert
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Thierry Gostan
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Charles-Henri Lecellier
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Racha Chouaib
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France.,ER045, PRASE, and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Xavier Pichon
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Hervé Le Hir
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Kazem Zibara
- ER045, PRASE, and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Florian Mueller
- Imaging and Modeling Unit, Institut Pasteur, UMR 3691 CNRS, C3BI USR 3756 IP CNRS, Paris, France
| | - Thomas Walter
- MINES ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, Fontainebleau, France.,Institut Curie, Paris, Cedex, France.,INSERM, U900, Paris, Cedex, France
| | - Marion Peter
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France. .,Equipe Labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France. .,Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
11
|
Bhagavatula S, Knust E. A putative stem-loop structure in Drosophila crumbs is required for mRNA localisation in epithelia and germline cells. J Cell Sci 2021; 134:224086. [PMID: 33310910 DOI: 10.1242/jcs.236497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/30/2020] [Indexed: 01/02/2023] Open
Abstract
Crumbs (Crb) is an evolutionarily conserved transmembrane protein localised to the apical membrane of epithelial cells. Loss or mislocalisation of Crb is often associated with disruption of apicobasal cell polarity. crb mRNA is also apically enriched in epithelial cells, and, as shown here, accumulates in the oocyte of developing egg chambers. We narrowed down the localisation element (LE) of crb mRNA to 47 nucleotides, which form a putative stem-loop structure that may be recognised by Egalitarian (Egl). Mutations in conserved nucleotides abrogate apical transport. crb mRNA enrichment in the oocyte is affected in egl mutant egg chambers. A CRISPR-based genomic deletion of the crb locus that includes the LE disrupts asymmetric crb mRNA localisation in epithelia and prevents its accumulation in the oocyte during early stages of oogenesis, but does not affect Crb protein localisation in embryonic and follicular epithelia. However, flies lacking the LE show ectopic Crb protein expression in the nurse cells. These data suggest an additional role for the Drosophila 3'-UTR in regulating translation in a tissue-specific manner.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Srija Bhagavatula
- Max-Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Elisabeth Knust
- Max-Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
12
|
Engel KL, Arora A, Goering R, Lo HYG, Taliaferro JM. Mechanisms and consequences of subcellular RNA localization across diverse cell types. Traffic 2020; 21:404-418. [PMID: 32291836 PMCID: PMC7304542 DOI: 10.1111/tra.12730] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Essentially all cells contain a variety of spatially restricted regions that are important for carrying out specialized functions. Often, these regions contain specialized transcriptomes that facilitate these functions by providing transcripts for localized translation. These transcripts play a functional role in maintaining cell physiology by enabling a quick response to changes in the cellular environment. Here, we review how RNA molecules are trafficked within cells, with a focus on the subcellular locations to which they are trafficked, mechanisms that regulate their transport and clinical disorders associated with misregulation of the process.
Collapse
Affiliation(s)
- Krysta L Engel
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ankita Arora
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hei-Yong G Lo
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
13
|
Abstract
RNA localization is a key biological strategy for organizing the cytoplasm and generating both cellular and developmental polarity. During RNA localization, RNAs are targeted asymmetrically to specific subcellular destinations, resulting in spatially and temporally restricted gene expression through local protein synthesis. First discovered in oocytes and embryos, RNA localization is now recognized as a significant regulatory strategy for diverse RNAs, both coding and non-coding, in a wide range of cell types. Yet, the highly polarized cytoplasm of the oocyte remains a leading model to understand not only the principles and mechanisms underlying RNA localization, but also links to the formation of biomolecular condensates through phase separation. Here, we discuss both RNA localization and biomolecular condensates in oocytes with a particular focus on the oocyte of the frog, Xenopus laevis.
Collapse
Affiliation(s)
- Sarah E Cabral
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Kimberly L Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
14
|
Chaudhuri A, Das S, Das B. Localization elements and zip codes in the intracellular transport and localization of messenger RNAs in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1591. [PMID: 32101377 DOI: 10.1002/wrna.1591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Abstract
Intracellular trafficking and localization of mRNAs provide a mechanism of regulation of expression of genes with excellent spatial control. mRNA localization followed by localized translation appears to be a mechanism of targeted protein sorting to a specific cell-compartment, which is linked to the establishment of cell polarity, cell asymmetry, embryonic axis determination, and neuronal plasticity in metazoans. However, the complexity of the mechanism and the components of mRNA localization in higher organisms prompted the use of the unicellular organism Saccharomyces cerevisiae as a simplified model organism to study this vital process. Current knowledge indicates that a variety of mRNAs are asymmetrically and selectively localized to the tip of the bud of the daughter cells, to the vicinity of endoplasmic reticulum, mitochondria, and nucleus in this organism, which are connected to diverse cellular processes. Interestingly, specific cis-acting RNA localization elements (LEs) or RNA zip codes play a crucial role in the localization and trafficking of these localized mRNAs by providing critical binding sites for the specific RNA-binding proteins (RBPs). In this review, we present a comprehensive account of mRNA localization in S. cerevisiae, various types of localization elements influencing the mRNA localization, and the RBPs, which bind to these LEs to implement a number of vital physiological processes. Finally, we emphasize the significance of this process by highlighting their connection to several neuropathological disorders and cancers. This article is categorized under: RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Anusha Chaudhuri
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Subhadeep Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|
15
|
Zebrafish embryogenesis – A framework to study regulatory RNA elements in development and disease. Dev Biol 2020; 457:172-180. [DOI: 10.1016/j.ydbio.2019.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 12/26/2022]
|
16
|
Shotwell CR, Cleary JD, Berglund JA. The potential of engineered eukaryotic RNA-binding proteins as molecular tools and therapeutics. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1573. [PMID: 31680457 DOI: 10.1002/wrna.1573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/21/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Eukaroytic RNA-binding proteins (RBPs) recognize and process RNAs through recognition of their sequence motifs via RNA-binding domains (RBDs). RBPs usually consist of one or more RBDs and can include additional functional domains that modify or cleave RNA. Engineered RBPs have been used to answer basic biology questions, control gene expression, locate viral RNA in vivo, as well as many other tasks. Given the growing number of diseases associated with RNA and RBPs, engineered RBPs also have the potential to serve as therapeutics. This review provides an in depth description of recent advances in engineered RBPs and discusses opportunities and challenges in the field. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Methods > RNA Nanotechnology RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Carl R Shotwell
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - John D Cleary
- RNA Institute, University at Albany, Albany, New York
| | - J Andrew Berglund
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York
| |
Collapse
|
17
|
Taliaferro JM. Classical and emerging techniques to identify and quantify localized RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1542. [PMID: 31044542 DOI: 10.1002/wrna.1542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
In essentially every cell, proteins are asymmetrically distributed according to their function. For many genes, this protein sorting problem is solved by transporting RNA molecules encoding the protein, rather than the protein itself, to the desired subcellular location. The protein is then translated on-site to immediately produce a correctly localized protein. This strategy is widely used as thousands of RNAs localize to distinct locations across diverse cell types and species. One of the fundamental challenges to study this process is the determination of the subcellular spatial distribution of any given RNA. The number of tools available for the study of RNA localization, from classical and state-of-the-art methods for the visualization of individual RNA molecules within cells to the profiling of localized transcriptomes, is rapidly growing. These include imaging-based approaches, a variety of biochemical and mechanical fractionation techniques, and proximity-labeling methods. These procedures allow for both the detailed study of the molecular requirements for the localization of individual RNA molecules and computational studies of RNA transport on a genomic scale. Together, they have the ability to allow insight into the regulatory principles that govern the localization of diverse RNAs. These new techniques provide the framework for integrating our knowledge of the regulation of RNA localization with that of other posttranscriptional processes. This article is categorized under: RNA Export and Localization > RNA Localization RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
18
|
Crook OM, Breckels LM, Lilley KS, Kirk PD, Gatto L. A Bioconductor workflow for the Bayesian analysis of spatial proteomics. F1000Res 2019; 8:446. [PMID: 31119032 PMCID: PMC6509962 DOI: 10.12688/f1000research.18636.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2019] [Indexed: 02/02/2023] Open
Abstract
Knowledge of the subcellular location of a protein gives valuable insight into its function. The field of spatial proteomics has become increasingly popular due to improved multiplexing capabilities in high-throughput mass spectrometry, which have made it possible to systematically localise thousands of proteins per experiment. In parallel with these experimental advances, improved methods for analysing spatial proteomics data have also been developed. In this workflow, we demonstrate using `pRoloc` for the Bayesian analysis of spatial proteomics data. We detail the software infrastructure and then provide step-by-step guidance of the analysis, including setting up a pipeline, assessing convergence, and interpreting downstream results. In several places we provide additional details on Bayesian analysis to provide users with a holistic view of Bayesian analysis for spatial proteomics data.
Collapse
Affiliation(s)
- Oliver M. Crook
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK
- MRC Biostatistics Unit, Cambridge Institute for Public Health, University of Cambridge, Cambridge, CB2 0SR, UK
| | - Lisa M. Breckels
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Kathryn S. Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Paul D.W. Kirk
- MRC Biostatistics Unit, Cambridge Institute for Public Health, University of Cambridge, Cambridge, CB2 0SR, UK
| | - Laurent Gatto
- Université catholique de Louvain, Brussels, 1200, Belgium
| |
Collapse
|
19
|
Gatto L, Breckels LM, Lilley KS. Assessing sub-cellular resolution in spatial proteomics experiments. Curr Opin Chem Biol 2019; 48:123-149. [PMID: 30711721 PMCID: PMC6391913 DOI: 10.1016/j.cbpa.2018.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 12/04/2022]
Abstract
The sub-cellular localisation of a protein is vital in defining its function, and a protein's mis-localisation is known to lead to adverse effect. As a result, numerous experimental techniques and datasets have been published, with the aim of deciphering the localisation of proteins at various scales and resolutions, including high profile mass spectrometry-based efforts. Here, we present a meta-analysis assessing and comparing the sub-cellular resolution of 29 such mass spectrometry-based spatial proteomics experiments using a newly developed tool termed QSep. Our goal is to provide a simple quantitative report of how well spatial proteomics resolve the sub-cellular niches they describe to inform and guide developers and users of such methods.
Collapse
Affiliation(s)
- Laurent Gatto
- Computational Proteomics Unit, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK; Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK; de Duve Institute, UCLouvain, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| | - Lisa M Breckels
- Computational Proteomics Unit, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK; Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| |
Collapse
|
20
|
Bioinformatics Approaches to Gain Insights into cis-Regulatory Motifs Involved in mRNA Localization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:165-194. [PMID: 31811635 DOI: 10.1007/978-3-030-31434-7_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Messenger RNA (mRNA) is a fundamental intermediate in the expression of proteins. As an integral part of this important process, protein production can be localized by the targeting of mRNA to a specific subcellular compartment. The subcellular destination of mRNA is suggested to be governed by a region of its primary sequence or secondary structure, which consequently dictates the recruitment of trans-acting factors, such as RNA-binding proteins or regulatory RNAs, to form a messenger ribonucleoprotein particle. This molecular ensemble is requisite for precise and spatiotemporal control of gene expression. In the context of RNA localization, the description of the binding preferences of an RNA-binding protein defines a motif, and one, or more, instance of a given motif is defined as a localization element (zip code). In this chapter, we first discuss the cis-regulatory motifs previously identified as mRNA localization elements. We then describe motif representation in terms of entropy and information content and offer an overview of motif databases and search algorithms. Finally, we provide an outline of the motif topology of asymmetrically localized mRNA molecules.
Collapse
|
21
|
Crook OM, Mulvey CM, Kirk PDW, Lilley KS, Gatto L. A Bayesian mixture modelling approach for spatial proteomics. PLoS Comput Biol 2018; 14:e1006516. [PMID: 30481170 PMCID: PMC6258510 DOI: 10.1371/journal.pcbi.1006516] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/17/2018] [Indexed: 01/01/2023] Open
Abstract
Analysis of the spatial sub-cellular distribution of proteins is of vital importance to fully understand context specific protein function. Some proteins can be found with a single location within a cell, but up to half of proteins may reside in multiple locations, can dynamically re-localise, or reside within an unknown functional compartment. These considerations lead to uncertainty in associating a protein to a single location. Currently, mass spectrometry (MS) based spatial proteomics relies on supervised machine learning algorithms to assign proteins to sub-cellular locations based on common gradient profiles. However, such methods fail to quantify uncertainty associated with sub-cellular class assignment. Here we reformulate the framework on which we perform statistical analysis. We propose a Bayesian generative classifier based on Gaussian mixture models to assign proteins probabilistically to sub-cellular niches, thus proteins have a probability distribution over sub-cellular locations, with Bayesian computation performed using the expectation-maximisation (EM) algorithm, as well as Markov-chain Monte-Carlo (MCMC). Our methodology allows proteome-wide uncertainty quantification, thus adding a further layer to the analysis of spatial proteomics. Our framework is flexible, allowing many different systems to be analysed and reveals new modelling opportunities for spatial proteomics. We find our methods perform competitively with current state-of-the art machine learning methods, whilst simultaneously providing more information. We highlight several examples where classification based on the support vector machine is unable to make any conclusions, while uncertainty quantification using our approach provides biologically intriguing results. To our knowledge this is the first Bayesian model of MS-based spatial proteomics data.
Collapse
Affiliation(s)
- Oliver M. Crook
- Computational Proteomics Unit, Department of Biochemistry, University of Cambridge, Cambridge, UK
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, Cambridge Institute for Public Health, Cambridge, UK
| | - Claire M. Mulvey
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Paul D. W. Kirk
- MRC Biostatistics Unit, Cambridge Institute for Public Health, Cambridge, UK
| | - Kathryn S. Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Laurent Gatto
- Computational Proteomics Unit, Department of Biochemistry, University of Cambridge, Cambridge, UK
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
- * E-mail:
| |
Collapse
|
22
|
Bovaird S, Patel D, Padilla JCA, Lécuyer E. Biological functions, regulatory mechanisms, and disease relevance of RNA localization pathways. FEBS Lett 2018; 592:2948-2972. [PMID: 30132838 DOI: 10.1002/1873-3468.13228] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
The asymmetric subcellular distribution of RNA molecules from their sites of transcription to specific compartments of the cell is an important aspect of post-transcriptional gene regulation. This involves the interplay of intrinsic cis-regulatory elements within the RNA molecules with trans-acting RNA-binding proteins and associated factors. Together, these interactions dictate the intracellular localization route of RNAs, whose downstream impacts have wide-ranging implications in cellular physiology. In this review, we examine the mechanisms underlying RNA localization and discuss their biological significance. We also review the growing body of evidence pointing to aberrant RNA localization pathways in the development and progression of diseases.
Collapse
Affiliation(s)
- Samantha Bovaird
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Dhara Patel
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, QC, Canada
| | - Juan-Carlos Alberto Padilla
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Eric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, QC, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, QC, Canada
| |
Collapse
|
23
|
CRISPR–Cas13 Precision Transcriptome Engineering in Cancer. Cancer Res 2018; 78:4107-4113. [DOI: 10.1158/0008-5472.can-18-0785] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/10/2018] [Accepted: 05/29/2018] [Indexed: 12/29/2022]
|
24
|
Benoit Bouvrette LP, Cody NAL, Bergalet J, Lefebvre FA, Diot C, Wang X, Blanchette M, Lécuyer E. CeFra-seq reveals broad asymmetric mRNA and noncoding RNA distribution profiles in Drosophila and human cells. RNA (NEW YORK, N.Y.) 2018; 24:98-113. [PMID: 29079635 PMCID: PMC5733575 DOI: 10.1261/rna.063172.117] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/13/2017] [Indexed: 05/26/2023]
Abstract
Cells are highly asymmetrical, a feature that relies on the sorting of molecular constituents, including proteins, lipids, and nucleic acids, to distinct subcellular locales. The localization of RNA molecules is an important layer of gene regulation required to modulate localized cellular activities, although its global prevalence remains unclear. We combine biochemical cell fractionation with RNA-sequencing (CeFra-seq) analysis to assess the prevalence and conservation of RNA asymmetric distribution on a transcriptome-wide scale in Drosophila and human cells. This approach reveals that the majority (∼80%) of cellular RNA species are asymmetrically distributed, whether considering coding or noncoding transcript populations, in patterns that are broadly conserved evolutionarily. Notably, a large number of Drosophila and human long noncoding RNAs and circular RNAs display enriched levels within specific cytoplasmic compartments, suggesting that these RNAs fulfill extra-nuclear functions. Moreover, fraction-specific mRNA populations exhibit distinctive sequence characteristics. Comparative analysis of mRNA fractionation profiles with that of their encoded proteins reveals a general lack of correlation in subcellular distribution, marked by strong cases of asymmetry. However, coincident distribution profiles are observed for mRNA/protein pairs related to a variety of functional protein modules, suggesting complex regulatory inputs of RNA localization to cellular organization.
Collapse
Affiliation(s)
- Louis Philip Benoit Bouvrette
- Institut de Recherches Clinique de Montréal (IRCM), Montréal H2W 1R7, Canada
- Département de Biochimie, Université de Montréal, Montréal H3C 3J7, Canada
| | - Neal A L Cody
- Institut de Recherches Clinique de Montréal (IRCM), Montréal H2W 1R7, Canada
| | - Julie Bergalet
- Institut de Recherches Clinique de Montréal (IRCM), Montréal H2W 1R7, Canada
| | - Fabio Alexis Lefebvre
- Institut de Recherches Clinique de Montréal (IRCM), Montréal H2W 1R7, Canada
- Département de Biochimie, Université de Montréal, Montréal H3C 3J7, Canada
| | - Cédric Diot
- Institut de Recherches Clinique de Montréal (IRCM), Montréal H2W 1R7, Canada
- Département de Biochimie, Université de Montréal, Montréal H3C 3J7, Canada
| | - Xiaofeng Wang
- Institut de Recherches Clinique de Montréal (IRCM), Montréal H2W 1R7, Canada
| | - Mathieu Blanchette
- McGill School of Computer Science, McGill University, Montréal H3A 0E9, Canada
| | - Eric Lécuyer
- Institut de Recherches Clinique de Montréal (IRCM), Montréal H2W 1R7, Canada
- Département de Biochimie, Université de Montréal, Montréal H3C 3J7, Canada
- Division of Experimental Medicine, McGill University, Montréal H4A 3J1, Canada
| |
Collapse
|
25
|
Yan S, Acharya S, Gröning S, Großhans J. Slam protein dictates subcellular localization and translation of its own mRNA. PLoS Biol 2017; 15:e2003315. [PMID: 29206227 PMCID: PMC5730382 DOI: 10.1371/journal.pbio.2003315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 12/14/2017] [Accepted: 11/14/2017] [Indexed: 12/18/2022] Open
Abstract
Many mRNAs specifically localize within the cytoplasm and are present in RNA-protein complexes. It is generally assumed that localization and complex formation of these RNAs are controlled by trans-acting proteins encoded by genes different than the RNAs themselves. Here, we analyze slow as molasses (slam) mRNA that prominently colocalizes with its encoded protein at the basal cortical compartment during cellularization. The functional implications of this striking colocalization have been unknown. Here, we show that slam mRNA translation is spatiotemporally controlled. We found that translation was largely restricted to the onset of cellularization when Slam protein levels at the basal domain sharply increase. slam mRNA was translated locally, at least partially, as not yet translated mRNA transiently accumulated at the basal region. Slam RNA accumulated at the basal domain only if Slam protein was present. Furthermore, a slam RNA with impaired localization but full coding capacity was only weakly translated. We detected a biochemical interaction of slam mRNA and protein as demonstrated by specific co-immunoprecipitation from embryonic lysate. The intimate relationship of slam mRNA and protein may constitute a positive feedback loop that facilitates and controls timely and rapid accumulation of Slam protein at the prospective basal region.
Collapse
Affiliation(s)
- Shuling Yan
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, Göttingen, Germany
| | - Sreemukta Acharya
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, Göttingen, Germany
| | - Stephanie Gröning
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, Göttingen, Germany
| | - Jörg Großhans
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, Göttingen, Germany
| |
Collapse
|
26
|
Optimized FISH methods for visualizing RNA localization properties in Drosophila and human tissues and cultured cells. Methods 2017; 126:156-165. [DOI: 10.1016/j.ymeth.2017.06.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 11/24/2022] Open
|
27
|
Lefebvre FA, Cody NA, Bouvrette LPB, Bergalet J, Wang X, Lécuyer E. CeFra-seq: Systematic mapping of RNA subcellular distribution properties through cell fractionation coupled to deep-sequencing. Methods 2017; 126:138-148. [DOI: 10.1016/j.ymeth.2017.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/18/2017] [Accepted: 05/21/2017] [Indexed: 12/18/2022] Open
|
28
|
Abil Z, Gumy LF, Zhao H, Hoogenraad CC. Inducible Control of mRNA Transport Using Reprogrammable RNA-Binding Proteins. ACS Synth Biol 2017; 6:950-956. [PMID: 28260376 PMCID: PMC5477001 DOI: 10.1021/acssynbio.7b00025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Localization of mRNA is important
in a number of cellular processes
such as embryogenesis, cellular motility, polarity, and a variety
of neurological processes. A synthetic device that controls cellular
mRNA localization would facilitate investigations on the significance
of mRNA localization in cellular function and allow an additional
level of controlling gene expression. In this work, we developed the
PUF (Pumilio and FBF homology domain)-assisted localization of RNA
(PULR) system, which utilizes a eukaryotic cell’s cytoskeletal
transport machinery to reposition mRNA within a cell. Depending on
the cellular motor used, we show ligand-dependent transport of mRNA
toward either pole of the microtubular network of cultured cells.
In addition, implementation of the reprogrammable PUF domain allowed
the transport of untagged endogenous mRNA in primary neurons.
Collapse
Affiliation(s)
- Zhanar Abil
- Department
of Biochemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Laura F. Gumy
- Cell
Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Huimin Zhao
- Department
of Biochemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Department
of Chemical and Biomolecular Engineering, Department of Bioengineering,
Department of Chemistry, and Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Casper C. Hoogenraad
- Cell
Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| |
Collapse
|
29
|
Abstract
Cells are highly organized entities that rely on intricate addressing mechanisms to sort their constituent molecules to precise subcellular locations. These processes are crucial for cells to maintain their proper organization and carry out specialized functions in the body, consequently genetic perturbations that clog up these addressing systems can contribute to disease aetiology. The trafficking of RNA molecules represents an important layer in the control of cellular organization, a process that is both highly prevalent and for which features of the regulatory machineries have been deeply conserved evolutionarily. RNA localization is commonly driven by trans-regulatory factors, including RNA binding proteins at the core, which recognize specific cis-acting zipcode elements within the RNA transcripts. Here, we first review the functions and biological benefits of intracellular RNA trafficking, from the perspective of both coding and non-coding RNAs. Next, we discuss the molecular mechanisms that modulate this localization, emphasizing the diverse features of the cis- and trans-regulators involved, while also highlighting emerging technologies and resources that will prove instrumental in deciphering RNA targeting pathways. We then discuss recent findings that reveal how co-transcriptional regulatory mechanisms operating in the nucleus can dictate the downstream cytoplasmic localization of RNAs. Finally, we survey the growing number of human diseases in which RNA trafficking pathways are impacted, including spinal muscular atrophy, Alzheimer's disease, fragile X syndrome and myotonic dystrophy. Such examples highlight the need to further dissect RNA localization mechanisms, which could ultimately pave the way for the development of RNA-oriented diagnostic and therapeutic strategies. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Ashley Chin
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada
| | - Eric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, Quebec, Canada.
| |
Collapse
|
30
|
Abstract
The organization of eukaryotic cells into distinct subcompartments is vital for all functional processes, and aberrant protein localization is a hallmark of many diseases. Microscopy methods, although powerful, are usually low-throughput and dependent on the availability of fluorescent fusion proteins or highly specific and sensitive antibodies. One method that provides a global picture of the cell is localization of organelle proteins by isotope tagging (LOPIT), which combines biochemical cell fractionation using density gradient ultracentrifugation with multiplexed quantitative proteomics mass spectrometry, allowing simultaneous determination of the steady-state distribution of hundreds of proteins within organelles. Proteins are assigned to organelles based on the similarity of their gradient distribution to those of well-annotated organelle marker proteins. We have substantially re-developed our original LOPIT protocol (published by Nature Protocols in 2006) to enable the subcellular localization of thousands of proteins per experiment (hyperLOPIT), including spatial resolution at the suborganelle and large protein complex level. This Protocol Extension article integrates all elements of the hyperLOPIT pipeline, including an additional enrichment strategy for chromatin, extended multiplexing capacity of isobaric mass tags, state-of-the-art mass spectrometry methods and multivariate machine-learning approaches for analysis of spatial proteomics data. We have also created an open-source infrastructure to support analysis of quantitative mass-spectrometry-based spatial proteomics data (http://bioconductor.org/packages/pRoloc) and an accompanying interactive visualization framework (http://www. bioconductor.org/packages/pRolocGUI). The procedure we outline here is applicable to any cell culture system and requires ∼1 week to complete sample preparation steps, ∼2 d for mass spectrometry data acquisition and 1-2 d for data analysis and downstream informatics.
Collapse
|
31
|
Lefebvre FA, Lécuyer E. Small Luggage for a Long Journey: Transfer of Vesicle-Enclosed Small RNA in Interspecies Communication. Front Microbiol 2017; 8:377. [PMID: 28360889 PMCID: PMC5352665 DOI: 10.3389/fmicb.2017.00377] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/23/2017] [Indexed: 12/25/2022] Open
Abstract
In the evolutionary arms race, symbionts have evolved means to modulate each other's physiology, oftentimes through the dissemination of biological signals. Beyond small molecules and proteins, recent evidence shows that small RNA molecules are transferred between organisms and transmit functional RNA interference signals across biological species. However, the mechanisms through which specific RNAs involved in cross-species communication are sorted for secretion and protected from degradation in the environment remain largely enigmatic. Over the last decade, extracellular vesicles have emerged as prominent vehicles of biological signals. They can stabilize specific RNA transcripts in biological fluids and selectively deliver them to recipient cells. Here, we review examples of small RNA transfers between plants and bacterial, fungal, and animal symbionts. We also discuss the transmission of RNA interference signals from intestinal cells to populations of the gut microbiota, along with its roles in intestinal homeostasis. We suggest that extracellular vesicles may contribute to inter-species crosstalk mediated by small RNA. We review the mechanisms of RNA sorting to extracellular vesicles and evaluate their relevance in cross-species communication by discussing conservation, stability, stoichiometry, and co-occurrence of vesicles with alternative communication vehicles.
Collapse
Affiliation(s)
- Fabio A. Lefebvre
- Institut de Recherches Cliniques de Montréal (IRCM), RNA Biology DepartmentMontreal, QC, Canada
- Département de Biochimie, Université de MontréalMontreal, QC, Canada
| | - Eric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), RNA Biology DepartmentMontreal, QC, Canada
- Département de Biochimie, Université de MontréalMontreal, QC, Canada
- Divison of Experimental Medicine, McGill UniversityMontreal, QC, Canada
| |
Collapse
|
32
|
Kejiou NS, Palazzo AF. mRNA localization as a rheostat to regulate subcellular gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [DOI: 10.1002/wrna.1416] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Nevraj S. Kejiou
- Department of Biochemistry; University of Toronto; Toronto Canada
| | | |
Collapse
|
33
|
Golani-Armon A, Arava Y. Localization of Nuclear-Encoded mRNAs to Mitochondria Outer Surface. BIOCHEMISTRY (MOSCOW) 2017; 81:1038-1043. [PMID: 27908229 DOI: 10.1134/s0006297916100023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The diverse functions of mitochondria depend on hundreds of different proteins. The vast majority of these proteins is encoded in the nucleus, translated in the cytosol, and must be imported into the organelle. Import was shown to occur after complete synthesis of the protein, with the assistance of cytosolic chaperones that maintain it in an unfolded state and target it to the mitochondrial translocase of the outer membrane (TOM complex). Recent studies, however, identified many mRNAs encoding mitochondrial proteins near the outer membrane of mitochondria. Translation studies suggest that many of these mRNAs are translated locally, presumably allowing cotranslational import into mitochondria. Herein we review these data and discuss its relevance for local protein synthesis. We also suggest alternative roles for mRNA localization to mitochondria. Finally, we suggest future research directions, including revealing the significance of localization to mitochondria physiology and the molecular players that regulate it.
Collapse
Affiliation(s)
- A Golani-Armon
- Technion - Israel Institute of Technology, Faculty of Biology, Haifa, 32000, Israel.
| | | |
Collapse
|
34
|
Comparative transcriptomic analysis of human and Drosophila extracellular vesicles. Sci Rep 2016; 6:27680. [PMID: 27282340 PMCID: PMC4901365 DOI: 10.1038/srep27680] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/19/2016] [Indexed: 12/25/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed nanoparticles containing specific repertoires of genetic material. In mammals, EVs can mediate the horizontal transfer of various cargos and signaling molecules, notably miRNA and mRNA species. Whether this form of intercellular communication prevails in other metazoans remains unclear. Here, we report the first parallel comparative morphologic and transcriptomic characterization of EVs from Drosophila and human cellular models. Electronic microscopy revealed that human and Drosophila cells release similar EVs with diameters ranging from 30 to 200 nm, which contain complex populations of transcripts. RNA-seq identified abundant ribosomal RNAs, related pseudogenes and retrotransposons in human and Drosophila EVs. Vault RNAs and Y RNAs abounded in human samples, whereas small nucleolar RNAs involved in pseudouridylation were most prevalent in Drosophila EVs. Numerous mRNAs were identified, largely consisting of exonic sequences displaying full-length read coverage and enriched for translation and electronic transport chain functions. By analogy with human systems, these sizeable similarities suggest that EVs could potentially enable RNA-mediated intercellular communication in Drosophila.
Collapse
|
35
|
Haimovich G, Cohen-Zontag O, Gerst JE. A role for mRNA trafficking and localized translation in peroxisome biogenesis and function? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:911-21. [PMID: 26367800 DOI: 10.1016/j.bbamcr.2015.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 02/03/2023]
Abstract
Peroxisomes are distinct membrane-enclosed organelles involved in the β-oxidation of fatty acids and synthesis of ether phospholipids (e.g. plasmalogens), as well as cholesterol and its derivatives (e.g. bile acids). Peroxisomes comprise a distinct and highly segregated subset of cellular proteins, including those of the peroxisome membrane and the interior matrix, and while the mechanisms of protein import into peroxisomes have been extensively studied, they are not fully understood. Here we will examine the potential role of RNA trafficking and localized translation on protein import into peroxisomes and its role in peroxisome biogenesis and function. Given that RNAs encoding peroxisome biogenesis (PEX) and matrix proteins have been found in association with the endoplasmic reticulum and peroxisomes, it suggests that localized translation may play a significant role in the import pathways of these different peroxisomal constituents.
Collapse
Affiliation(s)
- Gal Haimovich
- Dept. of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Osnat Cohen-Zontag
- Dept. of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jeffrey E Gerst
- Dept. of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
36
|
Sequestration of mRNAs Modulates the Timing of Translation during Meiosis in Budding Yeast. Mol Cell Biol 2015. [PMID: 26217015 DOI: 10.1128/mcb.00189-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Starvation of diploid cells of the budding yeast Saccharomyces cerevisiae induces them to enter meiosis and differentiate into haploid spores. During meiosis, the precise timing of gene expression is controlled at the level of transcription, and also translation. If cells are returned to rich medium after they have committed to meiosis, the transcript levels of most meiotically upregulated genes decrease rapidly. However, for a subset of transcripts whose translation is delayed until the end of meiosis II, termed protected transcripts, the transcript levels remain stable even after nutrients are reintroduced. The Ime2-Rim4 regulatory circuit controls both the delayed translation and the stability of protected transcripts. These protected mRNAs localize in discrete foci, which are not seen for transcripts of genes with different translational timing and are regulated by Ime2. These results suggest that Ime2 and Rim4 broadly regulate translational delay but that additional factors, such as mRNA localization, modulate this delay to tune the timing of gene expression to developmental transitions during sporulation.
Collapse
|