1
|
Naturale VF, Pickett MA, Feldman JL. Context matters: Lessons in epithelial polarity from the Caenorhabditis elegans intestine and other tissues. Curr Top Dev Biol 2023; 154:37-71. [PMID: 37100523 DOI: 10.1016/bs.ctdb.2023.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Epithelia are tissues with diverse morphologies and functions across metazoans, ranging from vast cell sheets encasing internal organs to internal tubes facilitating nutrient uptake, all of which require establishment of apical-basolateral polarity axes. While all epithelia tend to polarize the same components, how these components are deployed to drive polarization is largely context-dependent and likely shaped by tissue-specific differences in development and ultimate functions of polarizing primordia. The nematode Caenorhabditis elegans (C. elegans) offers exceptional imaging and genetic tools and possesses unique epithelia with well-described origins and roles, making it an excellent model to investigate polarity mechanisms. In this review, we highlight the interplay between epithelial polarization, development, and function by describing symmetry breaking and polarity establishment in a particularly well-characterized epithelium, the C. elegans intestine. We compare intestinal polarization to polarity programs in two other C. elegans epithelia, the pharynx and epidermis, correlating divergent mechanisms with tissue-specific differences in geometry, embryonic environment, and function. Together, we emphasize the importance of investigating polarization mechanisms against the backdrop of tissue-specific contexts, while also underscoring the benefits of cross-tissue comparisons of polarity.
Collapse
Affiliation(s)
- Victor F Naturale
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Melissa A Pickett
- Department of Biology, Stanford University, Stanford, CA, United States; Department of Biological Sciences, San José State University, San José, CA, United States
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
2
|
Abstract
As multi-cellular organisms evolved from small clusters of cells to complex metazoans, biological tubes became essential for life. Tubes are typically thought of as mainly playing a role in transport, with the hollow space (lumen) acting as a conduit to distribute nutrients and waste, or for gas exchange. However, biological tubes also provide a platform for physiological, mechanical, and structural functions. Indeed, tubulogenesis is often a critical aspect of morphogenesis and organogenesis. C. elegans is made up of tubes that provide structural support and protection (the epidermis), perform the mechanical and enzymatic processes of digestion (the buccal cavity, pharynx, intestine, and rectum), transport fluids for osmoregulation (the excretory system), and execute the functions necessary for reproduction (the germline, spermatheca, uterus and vulva). Here we review our current understanding of the genetic regulation, molecular processes, and physical forces involved in tubulogenesis and morphogenesis of the epidermal, digestive and excretory systems in C. elegans.
Collapse
Affiliation(s)
- Daniel D Shaye
- Department of Physiology and Biophysics, University of Illinois at Chicago-College of Medicine, Chicago, IL, United States.
| | - Martha C Soto
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States.
| |
Collapse
|
3
|
Zhou H, Zhou T, Zhang B, Lei W, Yuan W, Shan J, Zhang Y, Gupta N, Hu M. RIOK-2 protein is essential for egg hatching in a common parasitic nematode. Int J Parasitol 2020; 50:595-602. [PMID: 32592810 DOI: 10.1016/j.ijpara.2020.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 11/18/2022]
Abstract
The atypical protein kinase RIOK-2 is a non-ribosomal factor essential for ribosome maturation in yeast and human cells; however, little is known about its physiological role in pathogens. Our earlier work examined the expression profile of a RIOK-2 gene (Ss-riok-2) in Strongyloides stercoralis - a prevalent nematode parasite of dogs and humans. Herein, we demonstrate that Ss-RIOK-2 encodes a catalytically active kinase, distributed primarily in the cytoplasm of intestinal and hypodermal cells in transgenic larvae. Its expression oscillates as the free-living L1s develop into infective L3s. Overexpression of a catalytically impaired Ss-RIOK-2-D228A mutant delayed the development of transgenic larvae, while ectopic expression of another dominant negative isoform with a mutation in the ATP-binding site (K123A) abrogated the process of egg hatching, which could be rescued by co-expressing a wild-type Ss-RIOK-2 but not by its Ss-RIOK-1 ortholog. Collectively, our findings show a critical and specific role of Ss-RIOK-2 during the development of a pathogenic roundworm, which can be exploited to develop anti-infectives.
Collapse
Affiliation(s)
- Huan Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Taoxun Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Biying Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Weiqiang Lei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wang Yuan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jianan Shan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ying Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Nishith Gupta
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China; Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
4
|
Fan L, Kovacevic I, Heiman MG, Bao Z. A multicellular rosette-mediated collective dendrite extension. eLife 2019; 8:38065. [PMID: 30767892 PMCID: PMC6400498 DOI: 10.7554/elife.38065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
Coordination of neurite morphogenesis with surrounding tissues is crucial to the establishment of neural circuits, but the underlying cellular and molecular mechanisms remain poorly understood. We show that neurons in a C. elegans sensory organ, called the amphid, undergo a collective dendrite extension to form the sensory nerve. The amphid neurons first assemble into a multicellular rosette. The vertex of the rosette, which becomes the dendrite tips, is attached to the anteriorly migrating epidermis and carried to the sensory depression, extruding the dendrites away from the neuronal cell bodies. Multiple adhesion molecules including DYF-7, SAX-7, HMR-1 and DLG-1 function redundantly in rosette-to-epidermis attachment. PAR-6 is localized to the rosette vertex and dendrite tips, and promotes DYF-7 localization and dendrite extension. Our results suggest a collective mechanism of neurite extension that is distinct from the classical pioneer-follower model and highlight the role of mechanical cues from surrounding tissues in shaping neurites.
Collapse
Affiliation(s)
- Li Fan
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Ismar Kovacevic
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Maxwell G Heiman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| |
Collapse
|
5
|
Rochester JD, Tanner PC, Sharp CS, Andralojc KM, Updike DL. PQN-75 is expressed in the pharyngeal gland cells of Caenorhabditiselegans and is dispensable for germline development. Biol Open 2017; 6:1355-1363. [PMID: 28916707 PMCID: PMC5612245 DOI: 10.1242/bio.027987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Caenorhabditis elegans, five pharyngeal gland cells reside in the terminal bulb of the pharynx and extend anterior processes to five contact points in the pharyngeal lumen. Pharyngeal gland cells secrete mucin-like proteins thought to facilitate digestion, hatching, molting and assembly of the surface coat of the cuticle, but supporting evidence has been sparse. Here we show pharyngeal gland cell expression of PQN-75, a unique protein containing an N-terminal signal peptide, nucleoporin (Nup)-like phenylalanine/glycine (FG) repeats, and an extensive polyproline repeat domain with similarities to human basic salivary proline-rich pre-protein PRB2. Imaging of C-terminal tagged PQN-75 shows localization throughout pharyngeal gland cell processes but not the pharyngeal lumen; instead, aggregates of PQN-75 are occasionally found throughout the pharynx, suggesting secretion from pharyngeal gland cells into the surrounding pharyngeal muscle. PQN-75 does not affect fertility and brood size in C. elegans but confers some degree of stress resistance and thermotolerance through unknown mechanisms. Summary: PQN-75 is expressed in pharyngeal gland cells and shares similarity with human basic salivary proline-rich protein PBR2, suggesting evolutionary conservation between gland cells in the upper digestive tract.
Collapse
Affiliation(s)
- Jesse D Rochester
- The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA
| | - Paige C Tanner
- The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA
| | - Catherine S Sharp
- The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA
| | | | - Dustin L Updike
- The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA
| |
Collapse
|
6
|
Lažetić V, Fay DS. Molting in C. elegans. WORM 2017; 6:e1330246. [PMID: 28702275 DOI: 10.1080/21624054.2017.1330246] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022]
Abstract
Molting is an essential developmental process for the majority of animal species on Earth. During the molting process, which is a specialized form of extracellular matrix (ECM) remodeling, the old apical ECM, or cuticle, is replaced with a new one. Many of the genes and pathways identified as important for molting in nematodes are highly conserved in vertebrates and include regulators and components of vesicular trafficking, steroid-hormone signaling, developmental timers, and hedgehog-like signaling. In this review, we discuss what is known about molting, with a focus on studies in Caenorhabditis elegans. We also describe the key structural elements of the cuticle that must be released, newly synthesized, or remodeled for proper molting to occur.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - David S Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
7
|
Chisholm AD, Hutter H, Jin Y, Wadsworth WG. The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans. Genetics 2016; 204:849-882. [PMID: 28114100 PMCID: PMC5105865 DOI: 10.1534/genetics.115.186262] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment.
Collapse
Affiliation(s)
| | - Harald Hutter
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, and
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
- Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, Chevy Chase, Maryland, and
| | - William G Wadsworth
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
8
|
Abstract
The respiratory endoderm develops from a small cluster of cells located on the ventral anterior foregut. This population of progenitors generates the myriad epithelial lineages required for proper lung function in adults through a complex and delicately balanced series of developmental events controlled by many critical signaling and transcription factor pathways. In the past decade, understanding of this process has grown enormously, helped in part by cell lineage fate analysis and deep sequencing of the transcriptomes of various progenitors and differentiated cell types. This review explores how these new techniques, coupled with more traditional approaches, have provided a detailed picture of development of the epithelial lineages in the lung and insight into how aberrant development can lead to lung disease.
Collapse
|