1
|
Hachiman M, Kuroda H. The Synthesis of GABA during the Tailbud Stage Is Required for Axial Elongation in Xenopus laevis embryos. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001448. [PMID: 39816626 PMCID: PMC11729716 DOI: 10.17912/micropub.biology.001448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/20/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025]
Abstract
In Xenopus laevis , axial elongation beyond the tailbud stage requires gamma-aminobutyric acid (GABA). However, the role of GABA synthesized during early development in this process remains unclear. In this study, by treating embryos with allylglycine (AG), an inhibitor of GABA synthesis, we observed a significant reduction in axial elongation. This inhibition was rescued by exogenous GABA, demonstrating that GABA synthesis via glutamate decarboxylase (GAD) is essential for axial elongation after the tailbud stage. Our findings suggest that GABA-dependent elongation functions independently of mechanisms like convergent extension, which are crucial during early development.
Collapse
Affiliation(s)
- Masaki Hachiman
- Graduate School of Media and Governance, Keio University, Kanagawa, Japan
| | - Hiroki Kuroda
- Faculty of Environment and Information Studies, Keio University, Kanagawa, Japan
| |
Collapse
|
2
|
Lara J, Mastela C, Abd M, Pitstick L, Ventrella R. Tail Tales: What We Have Learned About Regeneration from Xenopus Laevis Tadpoles. Int J Mol Sci 2024; 25:11597. [PMID: 39519148 PMCID: PMC11547152 DOI: 10.3390/ijms252111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the regenerative capacity of Xenopus laevis, focusing on tail regeneration, as a model to uncover cellular, molecular, and developmental mechanisms underlying tissue repair. X. laevis tadpoles provide unique insights into regenerative biology due to their regeneration-competent and -incompetent stages and ability to regrow complex structures in the tail, including the spinal cord, muscle, and skin, after amputation. The review delves into the roles of key signaling pathways, such as those involving reactive oxygen species (ROS) and signaling molecules like BMPs and FGFs, in orchestrating cellular responses during regeneration. It also examines how mechanotransduction, epigenetic regulation, and metabolic shifts influence tissue restoration. Comparisons of regenerative capacity with other species shed light on the evolutionary loss of regenerative abilities and underscore X. laevis as an invaluable model for understanding the constraints of tissue repair in higher organisms. This comprehensive review synthesizes recent findings, suggesting future directions for exploring regeneration mechanisms, with potential implications for advancing regenerative medicine.
Collapse
Affiliation(s)
- Jessica Lara
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Camilla Mastela
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Magda Abd
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Lenore Pitstick
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Rosa Ventrella
- Precision Medicine Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
3
|
Gavazzi LM, Nair M, Suydam R, Usip S, Thewissen JGM, Cooper LN. Protein signaling and morphological development of the tail fluke in the embryonic beluga whale (Delphinapterus leucas). Dev Dyn 2024; 253:859-874. [PMID: 38494595 PMCID: PMC11656686 DOI: 10.1002/dvdy.704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND During the land-to-sea transition of cetaceans (whales, dolphins, and porpoises), the hindlimbs were lost and replaced by an elaborate tail fluke that evolved 32 Ma. All modern cetaceans utilize flukes for lift-based propulsion, and nothing is known of this organ's molecular origins during embryonic development. This study utilizes immunohistochemistry to identify the spatiotemporal location of protein signals known to drive appendage outgrowth in other vertebrates (e.g., Sonic Hedgehog [SHH], GREMLIN [GREM], wingless-type family member 7a [WNT], and fibroblast growth factors [FGFs]) and to test the hypothesis that signals associated with outgrowth and patterning of the tail fluke are similar to a tetrapod limb. Specifically, this study utilizes an embryo of a beluga whale (Delphinapterus leucas) as a case study. RESULTS Results showed epidermal signals of WNT and FGFs, and mesenchymal/epidermal signals of SHH and GREM. These patterns are most consistent with vertebrate limb development. Overall, these data are most consistent with the hypothesis that outgrowth of tail flukes in cetaceans employs a signaling pattern that suggests genes essential for limb outgrowth and patterning shape this evolutionarily novel appendage. CONCLUSIONS While these data add insights into the molecular signals potentially driving the evolution and development of tail flukes in cetaceans, further exploration of the molecular drivers of fluke development is required.
Collapse
Affiliation(s)
- L. M. Gavazzi
- School of Biomedical SciencesKent State UniversityKentOhioUSA
- Musculoskeletal Research Focus Area, Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - M. Nair
- Wright State UniversityDaytonOhioUSA
| | - R. Suydam
- Department of Wildlife ManagementNorth Slope BoroughUtqiaġvikAlaskaUSA
| | - S. Usip
- Musculoskeletal Research Focus Area, Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - J. G. M. Thewissen
- Musculoskeletal Research Focus Area, Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - L. N. Cooper
- Musculoskeletal Research Focus Area, Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| |
Collapse
|
4
|
Arimoto A, Nishitsuji K, Hisata K, Satoh N, Tagawa K. Transcriptomic evidence for Brachyury expression in the caudal tip region of adult Ptychodera flava (Hemichordata). Dev Growth Differ 2023; 65:470-480. [PMID: 37483093 DOI: 10.1111/dgd.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Most metazoans have a single copy of the T-box transcription factor gene Brachyury. This gene is expressed in cells of the blastopore of late blastulae and the archenteron invagination region of gastrulae. It appears to be crucial for gastrulation and mesoderm differentiation of embryos. Although this expression pattern is shared by most deuterostomes, Brachyury expression has not been reported in adult stages. Here we show that Brachyury of an indirect developer, the hemichordate acorn worm Ptychodera flava, is expressed not only in embryonic cells, but also in cells of the caudal tip (anus) region of adults. This spatially restricted expression, shown by whole-mount in situ hybridization, was confirmed by Iso-Seq RNA sequencing and single-cell RNA-seq (scRNA-seq) analysis. Iso-Seq analysis showed that gene expression occurs only in the caudal region of adults, but not in anterior regions, including the stomochord. scRNA-seq analysis showed a cluster that contained Brachyury-expressing cells comprising epidermis- and mesoderm-related cells, but which is unlikely to be associated with the nervous system or muscle. Although further investigation is required to examine the roles of Brachyury in adults, this study provides important clues for extending studies on Brachyury expression involved in development of the most posterior region of deuterostomes.
Collapse
Affiliation(s)
- Asuka Arimoto
- Marine Biological Laboratory, Blue Innovation Division, Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
| | - Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kuni Tagawa
- Marine Biological Laboratory, Blue Innovation Division, Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
- Faculty of Science and Technology, Maulana Malik Ibrahim State Islamic University of Malang, Kota Malang, Indonesia
| |
Collapse
|
5
|
Ikeda T, Inamori K, Kawanishi T, Takeda H. Reemployment of Kupffer's vesicle cells into axial and paraxial mesoderm via transdifferentiation. Dev Growth Differ 2022; 64:163-177. [PMID: 35129208 DOI: 10.1111/dgd.12774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 01/25/2023]
Abstract
Kupffer's vesicle (KV) in the teleost embryo is a fluid-filled vesicle surrounded by a layer of epithelial cells with rotating primary cilia. KV transiently acts as the left-right organizer and degenerates after the establishment of left-right asymmetric gene expression. Previous labelling experiments in zebrafish embryos indicated that descendants of KV-epithelial cells are incorporated into mesodermal tissues after the collapse of KV. However, the overall picture of their differentiation potency had been unclear due to the lack of suitable genetic tools and molecular analyses. In the present study, we established a novel zebrafish transgenic line with a promoter of dand5, in which all KV-epithelial cells and their descendants are specifically labelled until the larval stage. We found that KV-epithelial cells undergo epithelial-mesenchymal transition upon KV collapse and infiltrate into adjacent mesodermal progenitors, the presomitic mesoderm and chordoneural hinge. Once incorporated, the descendants of KV-epithelial cells expressed distinct mesodermal differentiation markers and contributed to the mature populations such as the axial muscles and notochordal sheath through normal developmental process. These results indicate that differentiated KV-epithelial cells possess unique plasticity in that they are reemployed into mesodermal lineages through transdifferentiation after they complete their initial role in KV.
Collapse
Affiliation(s)
- Takafumi Ikeda
- Laboratory of Embryology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kiichi Inamori
- Laboratory of Embryology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Toru Kawanishi
- Laboratory of Embryology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takeda
- Laboratory of Embryology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Introducing dorsoventral patterning in adult regenerating lizard tails with gene-edited embryonic neural stem cells. Nat Commun 2021; 12:6010. [PMID: 34650077 PMCID: PMC8516916 DOI: 10.1038/s41467-021-26321-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/23/2021] [Indexed: 11/09/2022] Open
Abstract
Lizards regenerate amputated tails but fail to recapitulate the dorsoventral patterning achieved during embryonic development. Regenerated lizard tails form ependymal tubes (ETs) that, like embryonic tail neural tubes (NTs), induce cartilage differentiation in surrounding cells via sonic hedgehog (Shh) signaling. However, adult ETs lack characteristically roof plate-associated structures and express Shh throughout their circumferences, resulting in the formation of unpatterned cartilage tubes. Both NTs and ETs contain neural stem cells (NSCs), but only embryonic NSC populations differentiate into roof plate identities when protected from endogenous Hedgehog signaling. NSCs were isolated from parthenogenetic lizard embryos, rendered unresponsive to Hedgehog signaling via CRISPR/Cas9 gene knockout of smoothened (Smo), and implanted back into clonally-identical adults to regulate tail regeneration. Here we report that Smo knockout embryonic NSCs oppose cartilage formation when engrafted to adult ETs, representing an important milestone in the creation of regenerated lizard tails with dorsoventrally patterned skeletal tissues. Organisms with regenerative capacity typically regrow organs with correct axial patterning, however, regrown lizard tails lack this feature. Here the authors used neural stem cells to induce patterning in regenerating lizard tails and rescued normal skeletal morphology.
Collapse
|
7
|
Gladysheva J, Evnukova E, Kondakova E, Kulakova M, Efremov V. Neurulation in the posterior region of zebrafish, Danio rerio embryos. J Morphol 2021; 282:1437-1454. [PMID: 34233026 DOI: 10.1002/jmor.21396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/06/2022]
Abstract
The neural tube of amniotes is formed through different mechanisms that take place in the anterior and posterior regions and involve neural plate folding or mesenchymal condensation followed by its cavitation. Meanwhile, in teleost trunk region, the neural plate forms the neural keel, while the lumen develops later. However, the data on neurulation and other morphogenetic processes in the posterior body region in Teleostei remain fragmentary. We proposed that there could be variations in the morphogenetic processes, such as cell shape changes and cell rearrangements, in the posterior region compared to the anterior one at the different stages. Here, we performed morphological and histochemical analyses of morphogenetic processes with an emphasis on neurulation in the zebrafish tail bud (TB) and posterior region. To analyze the posterior expression of sox2 and tbxta we performed whole mount in situ hybridization. We showed that the TB cells of variable shapes and orientation are tightly packed, and the neural and notochord primordia develop first. The shape of the neural primordium undergoes numerous changes as a result of cell rearrangements leading to the development of the neural rod. At the prim-6 stage, the cells of the neural primordium directly form the neural rod. The neuroepithelial cells undergo sequential shape changes. At the stage of the neural rod formation, the apical regions of triangular neuroepithelial cells of the floor plate are enriched in F-actin. The neurocoel development onset is above the apical poles of neuroepithelial cells. The expression domains of sox2 and tbxta become more restricted during the development.
Collapse
Affiliation(s)
- Julia Gladysheva
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation.,The Scandinavia AVA-PETER Clinic, St. Petersburg, Russian Federation
| | - Evdokia Evnukova
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation
| | - Ekaterina Kondakova
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation.,Federal State Scientific Establishment "Berg State Research Institute on Lake and River Fisheries" (GosNIORH), St. Petersburg branch of VNIRO, Russian federal Research Institute of Fisheries and Oceanography, Moscow, Russian Federation
| | - Milana Kulakova
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation
| | - Vladimir Efremov
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation
| |
Collapse
|
8
|
Tojima S. Relationship between sacral shape variation and phylogeny in Old World monkeys. J Morphol 2021; 282:1287-1297. [PMID: 34053126 DOI: 10.1002/jmor.21384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/08/2022]
Abstract
The sacrum, an essential skeletal element in the trunk, articulates with the ilium and lumbar and caudal vertebrae. While there are known morphological differences between hominoids and cercopithecoids (Old World monkeys), sacral morphological variations among cercopithecoids have rarely been studied outside of research on tail length variation. Increased knowledge regarding sacral variations in extant primates, however, could help in understanding and reconstructing their evolutionary development. Therefore, this study aimed to explore phylogenetic sacral shape variations among cercopithecoids. Geometric morphometric analyses were performed on 221 sacra from 39 different cercopithecoid species. Clear shape differences were observed among Colobinae, Cercopithecini, and Papionini, particularly in the spinous processes and sacral lateral mass. These parts function as muscle attachment points or skeletal joints, and variations in them seemed to reflect their required functions. However, the significance of the relationship between shape and function was not so great as to explain all the observed variation. According to recent genetic/developmental biological studies, shape variations may also be caused by the pleiotropic effects of some genes, such as posterior Hox genes. Therefore, while skeletal morphology has previously been considered to be directly connected to skeletal function, this study's results suggest that other factors influencing sacral shape require further research.
Collapse
Affiliation(s)
- Sayaka Tojima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka, Japan
| |
Collapse
|
9
|
Lee H, Ismail T, Kim Y, Chae S, Ryu HY, Lee DS, Kwon TK, Park TJ, Kwon T, Lee HS. Xenopus gpx3 Mediates Posterior Development by Regulating Cell Death during Embryogenesis. Antioxidants (Basel) 2020; 9:antiox9121265. [PMID: 33322741 PMCID: PMC7764483 DOI: 10.3390/antiox9121265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Glutathione peroxidase 3 (GPx3) belongs to the glutathione peroxidase family of selenoproteins and is a key antioxidant enzyme in multicellular organisms against oxidative damage. Downregulation of GPx3 affects tumor progression and metastasis and is associated with liver and heart disease. However, the physiological significance of GPx3 in vertebrate embryonic development remains poorly understood. The current study aimed to investigate the functional roles of gpx3 during embryogenesis. To this end, we determined gpx3's spatiotemporal expression using Xenopus laevis as a model organism. Using reverse transcription polymerase chain reaction (RT-PCR), we demonstrated the zygotic nature of this gene. Interestingly, the expression of gpx3 enhanced during the tailbud stage of development, and whole mount in situ hybridization (WISH) analysis revealed gpx3 localization in prospective tail region of developing embryo. gpx3 knockdown using antisense morpholino oligonucleotides (MOs) resulted in short post-anal tails, and these malformed tails were significantly rescued by glutathione peroxidase mimic ebselen. The gene expression analysis indicated that gpx3 knockdown significantly altered the expression of genes associated with Wnt, Notch, and bone morphogenetic protein (BMP) signaling pathways involved in tailbud development. Moreover, RNA sequencing identified that gpx3 plays a role in regulation of cell death in the developing embryo. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and phospho-histone 3 (PH3) staining confirmed the association of gpx3 knockdown with increased cell death and decreased cell proliferation in tail region of developing embryos, establishing the involvement of gpx3 in tailbud development by regulating the cell death. Furthermore, these findings are inter-related with increased reactive oxygen species (ROS) levels in gpx3 knockdown embryos, as measured by using a redox-sensitive fluorescent probe HyPer. Taken together, our results suggest that gpx3 plays a critical role in posterior embryonic development by regulating cell death and proliferation during vertebrate embryogenesis.
Collapse
Affiliation(s)
- Hongchan Lee
- KNU-Center for Nonlinear Dynamics, CMRI, BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (H.L.); (T.I.); (Y.K.); (H.-Y.R.); (D.-S.L.)
| | - Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (H.L.); (T.I.); (Y.K.); (H.-Y.R.); (D.-S.L.)
| | - Youni Kim
- KNU-Center for Nonlinear Dynamics, CMRI, BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (H.L.); (T.I.); (Y.K.); (H.-Y.R.); (D.-S.L.)
| | - Shinhyeok Chae
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), College of Information-Bio Convergence, Ulsan 44919, Korea;
| | - Hong-Yeoul Ryu
- KNU-Center for Nonlinear Dynamics, CMRI, BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (H.L.); (T.I.); (Y.K.); (H.-Y.R.); (D.-S.L.)
| | - Dong-Seok Lee
- KNU-Center for Nonlinear Dynamics, CMRI, BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (H.L.); (T.I.); (Y.K.); (H.-Y.R.); (D.-S.L.)
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea;
| | - Tae Joo Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), College of Information-Bio Convergence, Ulsan 44919, Korea;
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), College of Information-Bio Convergence, Ulsan 44919, Korea;
- Correspondence: (T.K.); (H.-S.L.); Tel.: +82-52-217-2583 (T.K.); +82-53-950-7367 (H.-S.L.); Fax: +82-52-217-3229 (T.K.); +82-53-943-2762 (H.-S.L.)
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (H.L.); (T.I.); (Y.K.); (H.-Y.R.); (D.-S.L.)
- Correspondence: (T.K.); (H.-S.L.); Tel.: +82-52-217-2583 (T.K.); +82-53-950-7367 (H.-S.L.); Fax: +82-52-217-3229 (T.K.); +82-53-943-2762 (H.-S.L.)
| |
Collapse
|
10
|
Bénazéraf B. Dynamics and mechanisms of posterior axis elongation in the vertebrate embryo. Cell Mol Life Sci 2019; 76:89-98. [PMID: 30283977 PMCID: PMC11105343 DOI: 10.1007/s00018-018-2927-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/27/2022]
Abstract
During development, the vertebrate embryo undergoes significant morphological changes which lead to its future body form and functioning organs. One of these noticeable changes is the extension of the body shape along the antero-posterior (A-P) axis. This A-P extension, while taking place in multiple embryonic tissues of the vertebrate body, involves the same basic cellular behaviors: cell proliferation, cell migration (of new progenitors from a posterior stem zone), and cell rearrangements. However, the nature and the relative contribution of these different cellular behaviors to A-P extension appear to vary depending upon the tissue in which they take place and on the stage of embryonic development. By focusing on what is known in the neural and mesodermal tissues of the bird embryo, I review the influences of cellular behaviors in posterior tissue extension. In this context, I discuss how changes in distinct cell behaviors can be coordinated at the tissue level (and between tissues) to synergize, build, and elongate the posterior part of the embryonic body. This multi-tissue framework does not only concern axis elongation, as it could also be generalized to morphogenesis of any developing organs.
Collapse
Affiliation(s)
- Bertrand Bénazéraf
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
11
|
Alibardi L. Review: The Regenerating Tail Blastema of Lizards as a Model to Study Organ Regeneration and Tumor Growth Regulation in Amniotes. Anat Rec (Hoboken) 2018; 302:1469-1490. [DOI: 10.1002/ar.24029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology at University of Bologna Bologna Italy
| |
Collapse
|
12
|
Bergmann PJ, Morinaga G. The convergent evolution of snake‐like forms by divergent evolutionary pathways in squamate reptiles*. Evolution 2018; 73:481-496. [DOI: 10.1111/evo.13651] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Philip J. Bergmann
- Department of Biology Clark University 950 Main Street Worcester Massachusetts 01610
| | - Gen Morinaga
- Department of Biology Clark University 950 Main Street Worcester Massachusetts 01610
| |
Collapse
|
13
|
Rodrigo Albors A, Halley PA, Storey KG. Lineage tracing of axial progenitors using Nkx1-2CreER T2 mice defines their trunk and tail contributions. Development 2018; 145:dev.164319. [PMID: 30201686 PMCID: PMC6198475 DOI: 10.1242/dev.164319] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022]
Abstract
The vertebrate body forms by continuous generation of new tissue from progenitors at the posterior end of the embryo. The study of these axial progenitors has proved to be challenging in vivo largely because of the lack of unique molecular markers to identify them. Here, we elucidate the expression pattern of the transcription factor Nkx1-2 in the mouse embryo and show that it identifies axial progenitors throughout body axis elongation, including neuromesodermal progenitors and early neural and mesodermal progenitors. We create a tamoxifen-inducible Nkx1-2CreERT2 transgenic mouse and exploit the conditional nature of this line to uncover the lineage contributions of Nkx1-2-expressing cells at specific stages. We show that early Nkx1-2-expressing epiblast cells contribute to all three germ layers, mostly neuroectoderm and mesoderm, excluding notochord. Our data are consistent with the presence of some self-renewing axial progenitors that continue to generate neural and mesoderm tissues from the tail bud. This study identifies Nkx1-2-expressing cells as the source of most trunk and tail tissues in the mouse and provides a useful tool to genetically label and manipulate axial progenitors in vivo. Summary: Changing lineage contributions of axial progenitors to the developing mouse embryo are revealed using a tamoxifen-inducible Cre line under the control of the endogenous Nkx1-2 promoter.
Collapse
Affiliation(s)
- Aida Rodrigo Albors
- Neural Development Group, Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Pamela A Halley
- Neural Development Group, Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Kate G Storey
- Neural Development Group, Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
14
|
Row RH, Pegg A, Kinney BA, Farr GH, Maves L, Lowell S, Wilson V, Martin BL. BMP and FGF signaling interact to pattern mesoderm by controlling basic helix-loop-helix transcription factor activity. eLife 2018; 7:31018. [PMID: 29877796 PMCID: PMC6013256 DOI: 10.7554/elife.31018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 05/26/2018] [Indexed: 02/06/2023] Open
Abstract
The mesodermal germ layer is patterned into mediolateral subtypes by signaling factors including BMP and FGF. How these pathways are integrated to induce specific mediolateral cell fates is not well understood. We used mesoderm derived from post-gastrulation neuromesodermal progenitors (NMPs), which undergo a binary mediolateral patterning decision, as a simplified model to understand how FGF acts together with BMP to impart mediolateral fate. Using zebrafish and mouse NMPs, we identify an evolutionarily conserved mechanism of BMP and FGF-mediated mediolateral mesodermal patterning that occurs through modulation of basic helix-loop-helix (bHLH) transcription factor activity. BMP imparts lateral fate through induction of Id helix loop helix (HLH) proteins, which antagonize bHLH transcription factors, induced by FGF signaling, that specify medial fate. We extend our analysis of zebrafish development to show that bHLH activity is responsible for the mediolateral patterning of the entire mesodermal germ layer.
Collapse
Affiliation(s)
- Richard H Row
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| | - Amy Pegg
- MRC Center for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian A Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| | - Gist H Farr
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, United States
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, United States.,Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, United States
| | - Sally Lowell
- MRC Center for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Valerie Wilson
- MRC Center for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| |
Collapse
|
15
|
Tharmarajah G, Eckhard U, Jain F, Marino G, Prudova A, Urtatiz O, Fuchs H, de Angelis MH, Overall CM, Van Raamsdonk CD. Melanocyte development in the mouse tail epidermis requires the Adamts9 metalloproteinase. Pigment Cell Melanoma Res 2018; 31:693-707. [PMID: 29781574 DOI: 10.1111/pcmr.12711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
Abstract
The mouse tail has an important role in the study of melanogenesis, because mouse tail skin can be used to model human skin pigmentation. To better understand the development of melanocytes in the mouse tail, we cloned two dominant ENU-generated mutations of the Adamts9 gene, Und3 and Und4, which cause an unpigmented ring of epidermis in the middle of the tail, but do not alter pigmentation in the rest of the mouse. Adamts9 encodes a widely expressed zinc metalloprotease with thrombospondin type 1 repeats with few known substrates. Melanocytes are lost in the Adamts9 mutant tail epidermis at a relatively late stage of development, around E18.5. Studies of our Adamts9 conditional allele suggest that there is a melanocyte cell-autonomous requirement for Adamts9. In addition, we used a proteomics approach, TAILS N-terminomics, to identify new Adamts9 candidate substrates in the extracellular matrix of the skin. The tail phenotype of Adamts9 mutants is strikingly similar to the unpigmented trunk belt in Adamts20 mutants, which suggests a particular requirement for Adamts family activity at certain positions along the anterior-posterior axis.
Collapse
Affiliation(s)
- Grace Tharmarajah
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Ulrich Eckhard
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Fagun Jain
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Giada Marino
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Anna Prudova
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Oscar Urtatiz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Martin H de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science, Weihenstephan Technische Universitat, Freising, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christopher M Overall
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Catherine D Van Raamsdonk
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Vaglia JL, Fornari C, Evans PK. Posterior tail development in the salamander Eurycea cirrigera: exploring cellular dynamics across life stages. Dev Genes Evol 2017; 227:85-99. [PMID: 28101674 DOI: 10.1007/s00427-016-0573-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
Abstract
During embryogenesis, the body axis elongates and specializes. In vertebrate groups such as salamanders and lizards, elongation of the posterior body axis (tail) continues throughout life. This phenomenon of post-embryonic tail elongation via addition of vertebrae has remained largely unexplored, and little is known about the underlying developmental mechanisms that promote vertebral addition. Our research investigated tail elongation across life stages in a non-model salamander species, Eurycea cirrigera (Plethodontidae). Post-embryonic addition of segments suggests that the tail tip retains some aspects of embryonic cell/tissue organization and gene expression throughout the life cycle. We describe cell and tissue differentiation and segmentation of the posterior tail using serial histology and expression of the axial tissue markers, MF-20 and Pax6. Embryonic expression patterns of HoxA13 and C13 are shown with in situ hybridization. Tissue sections reveal that the posterior spinal cord forms via cavitation and precedes development of the underlying cartilaginous rod after embryogenesis. Post-embryonic tail elongation occurs in the absence of somites and mesenchymal cells lateral to the midline express MF-20. Pax6 expression was observed only in the spinal cord and some mesenchymal cells of adult Eurycea tails. Distinct temporal and spatial patterns of posterior Hox13 gene expression were observed throughout embryogenesis. Overall, important insights to cell organization, differentiation, and posterior Hox gene expression may be gained from this work. We suggest that further work on gene expression in the elongating adult tail could shed light on mechanisms that link continual axial elongation with regeneration.
Collapse
Affiliation(s)
- Janet L Vaglia
- Department of Biology, DePauw University, 1 E Hanna Street, Greencastle, IN, 46135, USA.
| | - Chet Fornari
- Department of Biology, DePauw University, 1 E Hanna Street, Greencastle, IN, 46135, USA
| | - Paula K Evans
- Department of Biology, DePauw University, 1 E Hanna Street, Greencastle, IN, 46135, USA
| |
Collapse
|
17
|
Goto H, Kimmey SC, Row RH, Matus DQ, Martin BL. FGF and canonical Wnt signaling cooperate to induce paraxial mesoderm from tailbud neuromesodermal progenitors through regulation of a two-step epithelial to mesenchymal transition. Development 2017; 144:1412-1424. [PMID: 28242612 DOI: 10.1242/dev.143578] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/16/2017] [Indexed: 12/17/2022]
Abstract
Mesoderm induction begins during gastrulation. Recent evidence from several vertebrate species indicates that mesoderm induction continues after gastrulation in neuromesodermal progenitors (NMPs) within the posteriormost embryonic structure, the tailbud. It is unclear to what extent the molecular mechanisms of mesoderm induction are conserved between gastrula and post-gastrula stages of development. Fibroblast growth factor (FGF) signaling is required for mesoderm induction during gastrulation through positive transcriptional regulation of the T-box transcription factor brachyury We find in zebrafish that FGF is continuously required for paraxial mesoderm (PM) induction in post-gastrula NMPs. FGF signaling represses the NMP markers brachyury (ntla) and sox2 through regulation of tbx16 and msgn1, thereby committing cells to a PM fate. FGF-mediated PM induction in NMPs functions in tight coordination with canonical Wnt signaling during the epithelial to mesenchymal transition (EMT) from NMP to mesodermal progenitor. Wnt signaling initiates EMT, whereas FGF signaling terminates this event. Our results indicate that germ layer induction in the zebrafish tailbud is not a simple continuation of gastrulation events.
Collapse
Affiliation(s)
- Hana Goto
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Samuel C Kimmey
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Richard H Row
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
18
|
Taniguchi Y, Kurth T, Weiche S, Reichelt S, Tazaki A, Perike S, Kappert V, Epperlein HH. The posterior neural plate in axolotl gives rise to neural tube or turns anteriorly to form somites of the tail and posterior trunk. Dev Biol 2017; 422:155-170. [DOI: 10.1016/j.ydbio.2016.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 11/28/2022]
|
19
|
Xu C, Grizante MB, Kusumi K. Somitogenesis and Axial Development in Reptiles. Methods Mol Biol 2017; 1650:335-353. [PMID: 28809033 DOI: 10.1007/978-1-4939-7216-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Among amniote vertebrates, reptiles display the greatest variation in axial skeleton morphology. Only recently have they been used in gene expression studies of somitogenesis , challenging previous assumptions about the segmentation clock and axial patterning. An increasing number of reptile genomes and transcriptomes are becoming available as next-generation sequencing becomes more affordable. Information regarding gene sequence and structure can be used to design and synthesize labeled riboprobes by in vitro transcription for gene expression analysis by in situ hybridization, thus, enabling the characterization of spatial and temporal expression patterns of genes involved in somitogenesis, a topic of great interest within evolutionary developmental studies of vertebrates.
Collapse
Affiliation(s)
- Cindy Xu
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Mariana B Grizante
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
20
|
Xu X, Sun X, Hu XS, Zhuang Y, Liu YC, Meng H, Miao L, Yu H, Luo SJ. Whole Genome Sequencing Identifies a Missense Mutation in HES7 Associated with Short Tails in Asian Domestic Cats. Sci Rep 2016; 6:31583. [PMID: 27560986 PMCID: PMC4997960 DOI: 10.1038/srep31583] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/19/2016] [Indexed: 11/18/2022] Open
Abstract
Domestic cats exhibit abundant variations in tail morphology and serve as an excellent model to study the development and evolution of vertebrate tails. Cats with shortened and kinked tails were first recorded in the Malayan archipelago by Charles Darwin in 1868 and remain quite common today in Southeast and East Asia. To elucidate the genetic basis of short tails in Asian cats, we built a pedigree of 13 cats segregating at the trait with a founder from southern China and performed linkage mapping based on whole genome sequencing data from the pedigree. The short-tailed trait was mapped to a 5.6 Mb region of Chr E1, within which the substitution c. 5T > C in the somite segmentation-related gene HES7 was identified as the causal mutation resulting in a missense change (p.V2A). Validation in 245 unrelated cats confirmed the correlation between HES7-c. 5T > C and Chinese short-tailed feral cats as well as the Japanese Bobtail breed, indicating a common genetic basis of the two. In addition, some of our sampled kinked-tailed cats could not be explained by either HES7 or the Manx-related T-box, suggesting at least three independent events in the evolution of domestic cats giving rise to short-tailed traits.
Collapse
Affiliation(s)
- Xiao Xu
- Peking-Tsinghua Center for Life Sciences, Laboratory of Genomic Diversity and Evolution, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xin Sun
- Peking-Tsinghua Center for Life Sciences, Laboratory of Genomic Diversity and Evolution, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xue-Song Hu
- Peking-Tsinghua Center for Life Sciences, Laboratory of Genomic Diversity and Evolution, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Zhuang
- Peking-Tsinghua Center for Life Sciences, Laboratory of Genomic Diversity and Evolution, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yue-Chen Liu
- Peking-Tsinghua Center for Life Sciences, Laboratory of Genomic Diversity and Evolution, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hao Meng
- Peking-Tsinghua Center for Life Sciences, Laboratory of Genomic Diversity and Evolution, School of Life Sciences, Peking University, Beijing 100871, China
| | - Lin Miao
- Peking-Tsinghua Center for Life Sciences, Laboratory of Genomic Diversity and Evolution, School of Life Sciences, Peking University, Beijing 100871, China
| | - He Yu
- Peking-Tsinghua Center for Life Sciences, Laboratory of Genomic Diversity and Evolution, School of Life Sciences, Peking University, Beijing 100871, China
| | - Shu-Jin Luo
- Peking-Tsinghua Center for Life Sciences, Laboratory of Genomic Diversity and Evolution, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Immunolocalization of 5BrdU long retaining labeled cells and macrophage infiltration in the scarring limb of lizard after limb amputation. Tissue Cell 2016; 48:197-207. [DOI: 10.1016/j.tice.2016.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023]
|
22
|
Taminato T, Yokota D, Araki S, Ovara H, Yamasu K, Kawamura A. Enhancer activity-based identification of functional enhancers using zebrafish embryos. Genomics 2016; 108:102-7. [PMID: 27256877 DOI: 10.1016/j.ygeno.2016.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 02/03/2023]
Abstract
Chromatin immunoprecipitation (ChIP) against enhancer-associated marks with massive sequencing is a powerful approach to identify genome-wide distributions of putative enhancers. However, functional in vivo analysis is required to elucidate the activities of predicted enhancers. Using zebrafish embryos, we established a ChIP-Injection method that enables identification of functional enhancers based on their enhancer activities in embryos. Each reporter gene possessing the enhancer-associated genomic region enriched by ChIP was injected into zebrafish embryos to analyze the activity of putative enhancers. By using the ChIP-Injection, we identified 32 distinct putative enhancers that drove specific expression. Additionally, we generated transgenic lines that exhibit distributions of the EGFP signal as was observed in the screening. Furthermore, the expression pattern driven by the identified somite-specific enhancer resembled that of the gene acta2. The results indicate that ChIP-Injection provides an efficient approach for identification of active enhancers in a potentially wide variety of developmental tissues and stages.
Collapse
Affiliation(s)
- Tomohito Taminato
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Daisuke Yokota
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Soh Araki
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Hiroki Ovara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Kyo Yamasu
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Akinori Kawamura
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan.
| |
Collapse
|
23
|
Anderson MJ, Schimmang T, Lewandoski M. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension. PLoS Genet 2016; 12:e1006018. [PMID: 27144312 PMCID: PMC4856314 DOI: 10.1371/journal.pgen.1006018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 04/08/2016] [Indexed: 01/08/2023] Open
Abstract
During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is a major advance toward understanding how these tissue layers interact during axis extension with important implications in human disease. During embryological development, the vertebrate embryo undergoes profound growth in a head-to-tail direction. During this process, formation of different structures within adjacent tissue layers must occur in a coordinated fashion. Insights into how these adjacent tissues molecularly communicate with each other is essential to understanding both basic embryology and the underlying causes of human birth defects. Mice lacking Fgf3, which encodes a secreted signaling factor, have long been known to have premature axis termination, but the underlying mechanism has not been studied until now. Through a series of complex genetic experiments, we show that FGF3 is an essential factor for coordination of neural tube development and axis extension. FGF3 is secreted from the mesodermal layer, which is the major driver of extending the axis, and negatively regulates expression of another class of secreted signaling molecules in the neuroepithelium, BMPs. In the absence of FGF3, excessive BMP signals cause a delay in neural tube closure, premature specification of neural crest cells and negatively affect the mesoderm, causing a premature termination of the embryological axis. Our work suggests that FGF3 may be a player in the complex etiology of the human birth defect, spina bifida, the failure of posterior neural tube closure.
Collapse
Affiliation(s)
- Matthew J. Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Thomas Schimmang
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
24
|
Cearns MD, Escuin S, Alexandre P, Greene NDE, Copp AJ. Microtubules, polarity and vertebrate neural tube morphogenesis. J Anat 2016; 229:63-74. [PMID: 27025884 DOI: 10.1111/joa.12468] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
Microtubules (MTs) are key cellular components, long known to participate in morphogenetic events that shape the developing embryo. However, the links between the cellular functions of MTs, their effects on cell shape and polarity, and their role in large-scale morphogenesis remain poorly understood. Here, these relationships were examined with respect to two strategies for generating the vertebrate neural tube: bending and closure of the mammalian neural plate; and cavitation of the teleost neural rod. The latter process has been compared with 'secondary' neurulation that generates the caudal spinal cord in mammals. MTs align along the apico-basal axis of the mammalian neuroepithelium early in neural tube closure, participating functionally in interkinetic nuclear migration, which indirectly impacts on cell shape. Whether MTs play other functional roles in mammalian neurulation remains unclear. In the zebrafish, MTs are important for defining the neural rod midline prior to its cavitation, both by localizing apical proteins at the tissue midline and by orienting cell division through a mirror-symmetric MT apparatus that helps to further define the medial localization of apical polarity proteins. Par proteins have been implicated in centrosome positioning in neuroepithelia as well as in the control of polarized morphogenetic movements in the neural rod. Understanding of MT functions during early nervous system development has so far been limited, partly by techniques that fail to distinguish 'cause' from 'effect'. Future developments will likely rely on novel ways to selectively impair MT function in order to investigate the roles they play.
Collapse
Affiliation(s)
- Michael D Cearns
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| | - Sarah Escuin
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| | - Paula Alexandre
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| |
Collapse
|
25
|
Row RH, Tsotras SR, Goto H, Martin BL. The zebrafish tailbud contains two independent populations of midline progenitor cells that maintain long-term germ layer plasticity and differentiate in response to local signaling cues. Development 2015; 143:244-54. [PMID: 26674311 DOI: 10.1242/dev.129015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/09/2015] [Indexed: 12/25/2022]
Abstract
Vertebrate body axis formation depends on a population of bipotential neuromesodermal cells along the posterior wall of the tailbud that make a germ layer decision after gastrulation to form spinal cord and mesoderm. Despite exhibiting germ layer plasticity, these cells never give rise to midline tissues of the notochord, floor plate and dorsal endoderm, raising the question of whether midline tissues also arise from basal posterior progenitors after gastrulation. We show in zebrafish that local posterior signals specify germ layer fate in two basal tailbud midline progenitor populations. Wnt signaling induces notochord within a population of notochord/floor plate bipotential cells through negative transcriptional regulation of sox2. Notch signaling, required for hypochord induction during gastrulation, continues to act in the tailbud to specify hypochord from a notochord/hypochord bipotential cell population. Our results lend strong support to a continuous allocation model of midline tissue formation in zebrafish, and provide an embryological basis for zebrafish and mouse bifurcated notochord phenotypes as well as the rare human congenital split notochord syndrome. We demonstrate developmental equivalency between the tailbud progenitor cell populations. Midline progenitors can be transfated from notochord to somite fate after gastrulation by ectopic expression of msgn1, a master regulator of paraxial mesoderm fate, or if transplanted into the bipotential progenitors that normally give rise to somites. Our results indicate that the entire non-epidermal posterior body is derived from discrete, basal tailbud cell populations. These cells remain receptive to extracellular cues after gastrulation and continue to make basic germ layer decisions.
Collapse
Affiliation(s)
- Richard H Row
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Steve R Tsotras
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Hana Goto
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|